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ABSTRACT
In pristine graphene ribbons, disruption of the aromatic bond network results in depopulation of covalent 
orbitals and tends to elongate the edge, with an effective force of fe ~ 2 eV/Å (larger for armchair edges than for 
zigzag edges, according to calculations). This force can have quite striking macroscopic manifestations in the 
case of narrow ribbons, as it favors their spontaneous twisting, resulting in the parallel edges forming a double 
helix, resembling DNA, with a pitchλt of about 15 20 lattice parameters. Through atomistic simulations, we 
investigate how the torsionτ~1/λt decreases with the width of the ribbon, and observe its bifurcation: the twist 
of wider ribbons abruptly vanishes and instead the corrugation localizes near the edges. The length-scale (λe) of 
the emerging sinusoidal “frill” at the edge is fully determined by the intrinsic parameters of graphene, namely 
its bending stiffness D=1.5 eV and the edge force fe withλe ~D/fe. Analysis reveals other warping confi gurations 
and suggests their sensitivity to the chemical passivation of the edges, leading to possible applications in 
sensors.
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The special physical properties of monoatomic sp2-
carbon sheets and ribbons have been described 
previously [1, 2]. However, experimental testing 
and exploration have been hampered by the 
difficulty in singling out these nanoscale objects, 
until it was shown [3] to be possible through a direct 
mechanical lift-off from crystalline graphite. This 
has inspired further interest and multiple efforts in 
synthesis, chemical modifications, measurements, 
and theoretical models, focusing mainly on their 
electronic and magnetic properties [4 6]. Many of 
these fascinating and important phenomena depend 

on the geometrical structure of the flat monoatomic 
sheet  membrane ,  and can be  a l tered by  i t s 
deformation. Deformations can be caused by various 
factors, including thermal fluctuations or chemical 
functionalization [7], such as oxidation [8, 9].

In contrast to relatively stiff carbon nanotubes, 
graphene ribbons are very fl exible, “fl imsy” objects. 
To quantify this characteristic, one can compare the 
bending stiffness K of a nanotube of diameter d with 
the bending stiffness of a ribbon of equivalent cross 
section mass, that is of width w=πd. For this, the most 
straightforward way is to circumvent the details of 
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atomistic calculations and apply a well parameterized 
shell model [10 12], with the effective shell thickness 
h and Young’s modulus Y. Accordingly, its in-plane 
stiffness is C=Yh, and the bending stiffness of the 
shell D=Yh3/[12(1 ν2)] (further small corrections 
due to the Poisson ratioν≈ 0.2 have been omitted). 
Following elementary relationships, one then finds 
the bending stiffness of a ribbon (Knr) and a tube (Knt),

Knr= πDd≈ (π/12)Yh3d and Knt=(π/8)Cd3≈ (π/8)Yhd3

Therefore, their ratio is
Knt/Knr=1.5 (d/h)2

This amounts to a factor of 200 1000 for tubes of 
common diameters (where the parameter h=0.8 0.9 Å, 
based on ab initio calculations [10]). Another measure 
of stiffness, commonly used in polymer physics for 
describing the average shape of a molecular chain 
exposed to equilibrium thermodynamic fl uctuations 
at temperature T, is the persistence length lp=K/kbT [13, 
14] (where kb is the Boltzmann constant). The value 
of lp is thus almost three orders of magnitude smaller 
for a ribbon than for an equivalent nanotube. This 
factor makes a qualitative difference in the behavior. 
For a typical single wall nanotube lp~100 μm [14, 
15], which means that such a tube having length 
L~1 μm remains essentially straight, since lp>>L. On 
the other hand, its “unzipped” ribbon form must 
undergo large thermal fluctuations (and may loop 
into coils), if not supported in some way, since lp=10

100 nm<<L. Direct simulations 
at different temperatures show 
this behavior clearly (Fig. 1). A 
typical single walled nanotube 
configuration, for example (6,0), 
remains nearly straight even at 
T=700 K, whereas the shape of 
a ribbon is fully random at this 
temperature, changing both axial 
and planar orientations from end 
to end with no correlation. As the 
temperature is lowered to T=300 
K, the ribbon fluctuations are 
reduced, as shown in Fig. 1 (the 
straight nanotube is not shown). As 
the annealing progresses to T=0 K, 
thermal fl uctuations vanish and the 
structures should reach the ground 

state, expected to be a flat ribbon-strip. Instead, 
the energy minimization leads to systematic non-
planarity (Fig. 1, T=0 K), where two possibilities are 
observed: occasionally, a periodic saddle-shape chain, 
and most interestingly a systematic spontaneous 
twist into a “double helix” formed by the tube edges.

The origin of such twist is non-fluctuative, 
and should be discussed. The high flexibility of 
nanoribbons makes them rather sensitive not only 
to external forces (thermal or other types) but also 
to possible internal stress. Unlike the uniform 
cylinder of a nanotube wall, graphene nanoribbon 
(GNR) is distinctly heterogeneous, with the atomic 
arrangement at the edges very different from that 
within the regular sp2-network of carbon. Any edge 
carries an extra energyγ, and the values calculated by 
ab initio methods areγz=1.53 eV/Å=3.77 eV per atom 
for a zigzag edge, andγa=1.24 eV/Å=2.65 eV/atom for 
an armchair edge. (Interestingly, the values computed 
using the classical Tersoff Brenner potential are 
rather close.) The higher value ofγz compared withγa 
has a simple physicochemical explanation: a zigzag 
edge contains essentially unreconstructed dangling 
bonds (separated by about 2.46 Å from each other), 
while in the armchair case the proximity of the edge 
atoms permits the reconstruction of the dangling 
bonds, to form a triple bond C≡C , with an 
accordingly reduced energy. This edge energy plays a 

Figure 1    Representative configurations of graphene nanoribbons (GNRs) from MD 
simulations at different temperatures, T. At T=700 K, two samples of 13-AGNRs and one of a 
(6,0) nanotube, for comparison, are shown. At T=300 K, two samples of 7-AGNRs are shown. 
Ground state confi gurations, at T=0 K, of the GNRs display a saddle-shape chain (bottom) 
and periodic twist confi gurations
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role in defi ning the preferred faceting at equilibrium, 
but has no explicit force manifestation which could 
cause any deformation.

Another consequence of the disrupted lattice is the 
edge stress: near the boundary, the preferred bond 
lengths at the edge and the angles between them 
are different from the “bulk” values in the graphene 
interior. The overall effect is a non-zero edge stress 
(force) fe>0, which expands the edge relative to the 
rest of the ribbon. This peculiar “epitaxial stress” 
present at any crystal surface has little consequence 
for a bulk solid. In contrast, the edge forces can make 
highly fl exible GNRs unstable in their fl at geometry 
and result in non planar ground state confi gurations.

We have performed simulations and analysis 
of such instabilities and the emerging deviations 
from planarity, which are important not only from 
a mechanical-structural point of view, but may also 
affect the electronic and magnetic properties. It is also 
clear that if a shape transformation occurs as a result 
of edge forces, it can be signifi cantly altered by any 
edge-chemistry, either irreversible functionalization 
or reversible binding, which can provide a basis for 
chemical sensing techniques.

Upon cooling of narrow GNRs for annealing into 
the ground state, they do not fl atten fully but display 
a distinct twist, with the pitchλt on the order of 10 
nm, depending on the ribbon width (Fig. 2 (a)). Due 
to the large length scale of the effects, the simulations 
can only be performed with a classical interatomic 
potential, and the so-called multibody Tersoff Brenner 
potential [16, 17] is a common choice: not only it 
describes reasonably well the elastic deformations 
but, being fitted to variety of hydrocarbon structures, 
it should also be reasonably accurate in quantitative 
description of the edge, important for the present study. 
For geometrical optimization, we use an annealing 
method, as described in the Ref. [18]. Temperature 
decrease is carried out according to the following 
equation: Ti+1=εTi, withε=0.64. In this case, cooling 
of the structure from T=700 K to 0 K takes ~1000 MD 
steps (each step is ~10 13 s, with 50 steps performed 
at every temperature in order to reach an equilibrium 
confi guration).

One significant parameter is of course the 
magnitude (and the sign) of the edge forces, fa and 

fz for the armchair and zigzag edges, respectively. 
Since the net force on each atom in the equilibrium 
configuration is zero, the edge force cannot be 
simply extracted from the fully relaxed structure. 
In order to reveal its value, we have added artifi cial 
compensating forces f ' between the pairs of atoms 
along the edge, and tuned their values in order to 
bring the fully relaxed GNR or graphene sheet to 
exactly planar geometry, which is an indication that 
the total edge force has vanished i.e., f '+ fe=0, that is 
fe= f '. This procedure gives the effective values for 
the internal edge stresses as fa=2.04 eV/Å and fz=1.64 
eV/Å. Of course more precise values of the edge 
forces can be obtained with ab initio methods, but 
the necessary simulation of sufficiently large free 
standing clusters is unaffordable and, fortunately, 
unnecessary. We see that the edge forces in the 

Figure 2    (a) Different twist-pitches for ribbons of different widths, 
hereλt=10.9 nm (w=0.75 nm) andλt=16.1 nm (w=1.50 nm). (b) 
Atomistic details of geometry at the relaxed edge, bond lengths 
b12=1.39 Å, b23=1.46 Å, b34=1.44 Å, and angleα=124.5° for the 
armchair edge. For the zigzag edge, b56=1.43 Å andβ=129.5°. (c) 
The twist/torsionτdependence on the ribbon width (w) displays 
bifurcation and vanishes at about w=15 Å

（a）

（b）

（c）
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Tersoff Brenner model are reasonably close (and, 
importantly, have the same sign) to the recently DFT-
computed values, fa=2.64 eV/Å and fz=2.25 eV/Å [19]. 
Microscopically, the edge relaxation manifests itself 
as both changes in the bond lengths, and even more 
in the angles, and the measured values are shown 
in Fig. 2(b) (for a very narrow strip, where edge 
relaxation is least obstructed by the bulk resistance).

The effective intrinsic force tends to increase the 
edge length L (which is equivalent to the edge being 
under compression), so that the energy reduction 
over the ribbon is f · ∆L. Such edge extension relative 
to the midline of the ribbon can be geometrically 
achieved by twisting, when the orientation angleφof 
the cross section (a width line, w) changes along the 
ribbon at a rate dφ/dz≡τ=2π/λt, whereλt is a pitch. For 
a torsional stiffness Q of the ribbon (using the shell 
model, we note that Q≈1.6Dw), such a twist increases 
the elastic energy by approximately 1/2Qτ2, and the 
balance of these two contributions determines the 
twist magnitude or the pitch of the emerging double 
helix, as shown in Figs. 1 and 2(a).

Figure 2(a) shows two examples of fully relaxed 
nanoribbons of similar orientations but different 
widths ,  7 AGNR and 13 AGNR [20] .  Their 
spontaneous twisting is unambiguous and the pitch 
is different in the two cases. We note again that the 
twist is obviously due to the internal forces at the 
edges, since we could fully eliminate the torsion by 
adding artifi cial compensation forces (f ', between the 
atomic pairs) along the edges. Next, we performed 
a number of simulations on a sequence of ribbons, 
in order to fi nd out how the twist changes with the 
ribbon width, w. The results are plotted in Fig. 2(c) 
and show a further unexpected feature. While the 
observed twist decrease with increasing width is 
anticipated (we initially expected a dependence of a 
kindτ∝1/w, so that the torsion gradually decreases 
as the wider and wider ribbon eventually becomes 
a flat graphene sheet), we see here a bifurcation 
at about w=15 Å. At w<15 Å the twist decreases 
monotonically with w, roughly asτ≈0.21/nm + 0.31/

w (hereτ is in radian/nm). For w>15 Å, the twist 
disappears rapidly and the overall cross section 
orientation remains unchanged along the ribbon.

This loss of the overall torsion does not however 

lead to a perfectly flat structure. Instead, as further 
analysis shows, the edge relaxation caused by the 
intrinsic forces switches from a “global” twist to 
another, localized type of ripples along the edges. 
Figures 3(a) and 3(b) show two examples of wider 
ribbons, 39-AGNR and 21-ZGNR. In both cases the 
graphene plane does not change its overall direction, 
that is the twistτ=0. Elastic distortion from planarity 
is however quite obvious and consists of ripple waves 
along each edge individually. The ripple pattern are 
independent between the edges, as become clear 
for wider ribbons or sheets. To test this further, Fig. 
3(b) shows the equilibrium shape of a large square 
sheet, with the edges at 90° having different types 
(zigzag and armchair). All edges display similar 
periodic ripples, but quantitatively the wavelength is 
different for armchair and zigzag edges, according to 
the different magnitudes of their edge forces: λa=39 
Å and λz=49 Å. To better explore the origin of this 
periodic ripple frill, we take advantage of our ability 
in simulations to arbitrarily vary the edge force (by 
adding the artificial force-couples f ' between the 
edge atoms). Then we directly measure the periodλ 
of the ripple and plot it as a function of total force 
f=(fe + f '), or of the inverse force value, 1/f. The data in 
Fig. 3(c) follow very clearly a straight line, showing 
thatλ∝1/f. This agrees very well with the linear 
stability analysis, which is simple for the case of very 
wide ribbons (w→∞) when the system has only two 

Figure 3    (a) The twist of GNRs disappears for wider ribbons (here 
zigzag in dark red and armchair in dark blue) and is replaced by the 
near-edge undulations; (b) a large pristine graphene sheet in equilibrium 
displays a near-edge “frills” pattern; (c) the computed periodλof the 
edge-ripple is plotted as a function of inverse edge force, 1/f

（a）

（b）

（c）
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phenomenological parameters (edge force f and the 
fl exural rigidity of a sheet D), reduced from the three-
parametric case of a narrow ribbon (f, D, and w). 
Noting that the flexural rigidity has dimensionality 
of energy, one immediately concludes that there is 
only one possible combination yielding length, D/f. 
Therefore the period of the edge undulations must 
beλ∝D/f, which is confirmed by the data points 
in Fig. 3(c). Standard linear stability analysis (with 
respect to sinusoidal edge undulations) allows one to 
deriveλ≈4π2D/f, which is close to the value obtained 
from simulations not only in functional dependence 
but also in magnitude.

Other evidence of the pristine edge being the cause 
of the elastic instability of GNRs can be mentioned. 
Upon passivation of the edge with H atoms (or 
possibly self-passivation [21]), all the above structures 
relax into perfectly planar geometry, Fig. 4. This is 
obviously due to restoration of the sp2 hybridization 
of the edge C atoms, which eliminates the mismatch 
strain and consequently the edge force. Moreover, if

in a less common but rather artificial situation
only one edge is H-passivated, while the opposite 
remains in its pristine state, then a thin ribbon twists 
in a different way: the H-passivated edge needs no 
length extension and therefore remains nearly straight 
(along the axis) while the extension of the pristine 
edge causes it to spiral around, as shown in Fig. 4(a).

While describing the thermal fl uctuations of GNRs 
(Fig. 1), and possible non-thermal warping caused by 
the edge forces, we should point out that such free 
unsupported ribbons can differ considerably from 
what experimentalists often deal with. If a GNR is 
placed on a substrate, the van der Waals forces would 
most likely prevent it from twisting or edge warping. 
This does not, however, diminish the importance of 
understanding the instabilities and behavior of ideal 
free-standing GNRs, discussed here.

Remarkable compliance of GNRs, as extreme 
soft membranes, can further be illustrated with a 
particular structure where a 180° twist is sealed into 
a closed ring topology-the well known Möbius strip 
[22]. At high temperature the strip undergoes large 
undulations and random rotations. More peculiar is 
its behavior at very low T < 100 K, when essentially 
only one type of motion persists: the twisted region 

does not stay still but continuously glides around. 
It should be noted that the ring does not actually 
rotate as a whole, and all its constituent atoms are 
not displaced in a circumferential direction. Instead 
they move normal to the ribbon, while the soliton-
like wave propagates through the energy-degenerate 
positions around the ring (Figs. 4(b) and 4(c)).

In conclusion, we report how the disruption of 
the aromatic network of bonds at the pristine edge 
of planar graphene causes its global mechanical 
instability. The mismatch of the edge “preferred” 
lengths  tends to  expand i t ,  which formally 
corresponds to extension forces in a tangential 
direct ion,  and causes buckling instabil i ty—
from the unstable equilibrium plane into another 
configuration. Most interesting appears to be the 
spontaneous twist which dominates for more narrow 
ribbons (w < 1.6 nm), with a greater torsion for more 
slender GNRs,τ≈0.21/nm + 0.31/w. For wider ribbons 
or sheets, the twist abruptly vanishes and instability 
is reduced to ripples localized near the edges, with 
the wavelengthλ~20 30 nm. Upon edge passivation 
with H, these instabilities disappear, as the edge force 

Figure 4    (a) A ribbon passivated on one side with H essentially 
twists around this edge (whose length remains unchanged), while 
the opposite edge follows a helical path in order to allow for its 
elongation; (b) a ribbon passivated on two sides with H remains fully 
fl at, indicating that the edge forces have vanished; (c) a Möbius strip 
simulated at high temperature displays random dynamics, but at very 
low temperatures (T=100 K) only one mode dominates soliton-like 
gliding of the twist-location, as shown by arrows

（a）

（b）

（c）
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is eliminated. Other functional groups can cause 
different degrees of deformation.

After submission of this work, a related study [23] 
has appeared, with somewhat similar observations. 
We notice however that the edge forces we report are 
greater for armchair than for zigzag rim, in accord 
with ab initio calculations, while in Ref. [23] the order 
seems to be reversed, with the stress being greater for 
zigzag than for armchair.
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