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Broken translational symmetry at edges of
high-temperature superconductors
P. Holmvall 1, A.B. Vorontsov 2, M. Fogelström 1 & T. Löfwander 1

Flat bands of zero-energy states at the edges of quantum materials have a topological origin.

However, their presence is energetically unfavorable. If there is a mechanism to shift the band

to finite energies, a phase transition can occur. Here we study high-temperature super-

conductors hosting flat bands of midgap Andreev surface states. In a second-order phase

transition at roughly a fifth of the superconducting transition temperature, time-reversal

symmetry and continuous translational symmetry along the edge are spontaneously broken.

In an external magnetic field, only translational symmetry is broken. We identify the order

parameter as the superfluid momentum ps, that forms a planar vector field with defects,

including edge sources and sinks. The critical points of the vector field satisfy a generalized

Poincaré-Hopf theorem, relating the sum of Poincaré indices to the Euler characteristic of the

system.
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S
uperconducting devices are often experimentally realized as
thin-film circuits or hybrid structures operating in the
mesoscopic regime1–4. At this length scale, where the size of

the circuit elements becomes comparable with the super-
conducting coherence length, the nature of the superconducting
state may be dictated by various finite-size or surface/interface
effects5. This holds true in particular for unconventional super-
conductors, such as the high-temperature superconductors with
an order parameter of dx2�y2 symmetry that changes the sign
around the Fermi surface. Scattering at surfaces, or defects, leads
to substantial pair breaking and formation of Andreev states with
energies within the superconducting gap6,7. Today, the material
control of high-temperature superconducting films is sufficiently
good that many advanced superconducting devices can work at
elevated temperatures8,9. This raises the question how the specific
surface physics of d-wave superconductors influences devices.

From a theory point of view, the physics at specular pair-
breaking surfaces of d-wave superconductors is rich and inter-
esting. The reason is the formation of zero-energy (midgap)
Andreev states due to the sign change of the d-wave order
parameter for quasiparticles scattered at the surface6,7,10. In
modern terms, there is a flat band of spin-degenerate zero-energy
surface states as a function of the parallel component of the
momentum, p||, which is a good quantum number for a specular
surface. A topological invariant has been identified11,12, that
guarantees the flat band for a time-reversal symmetric super-
conducting order parameter and p|| conserved. However, the large
spectral weight of these states exactly at zero energy (i.e., at the
Fermi energy) is energetically unfavorable. Different scenarios
have been proposed, within which there is a low-temperature
instability and a phase transition into a time-reversal symmetry-
broken phase where the flat band is split to finite energies, thus
lowering the free energy of the system. One scenario is the pre-
sence of a subdominant pairing interaction and appearance of
another order parameter component π/2 out of phase with the
dominant one13–15, for instance a subdominant s-wave resulting
in an order parameter combination Δd+ iΔs. The phase transition
is driven by a split of the flat band of Andreev states to ±Δs. The
split Andreev states carry current along the surface, which results
in a magnetic field that is screened from the bulk. In a second
scenario, exchange interactions drive a ferromagnetic transition at
the edge where the flat Andreev band is instead spin split16,17. A
third scenario involves spontaneous appearance of super-
currents18–20 that Doppler shifts the Andreev states and thereby
lowers the free energy. Here the electrons couple to the electro-
magnetic gauge field A(R), and this mechanism was first con-
sidered theoretically for a translationally invariant edge. In this
case, the transition is a result of the interplay of weakly Doppler
shifted surface bound states, decaying away from the surface on
the scale of the superconducting coherence length ξ0, and weak
diamagnetic screening currents, decaying on the scale of the
penetration depth λ. The resulting transition temperature is very
low, of order T* ~ (ξ0/λ)Tc, where Tc is the d-wave super-
conducting transition temperature. Later, the transition tem-
perature was shown to be enhanced in a film geometry21–25

where two parallel pair-breaking edges are separated by a distance
of the order of a few coherence lengths. The suppression of the
order parameter between the pair-breaking edges can be viewed
as an effective Zeeman field that splits the Andreev states and
enhances the transition temperature. The mechanism does not
involve subdominant channels or coupling to magnetic field, but
depends on film thickness D, and the transition temperature
decays rapidly with increasing thickness as T* ~ (ξ0/D)Tc.

In this paper, we consider a peculiar scenario26,27 where
spontaneous supercurrents also break translational symmetry
along the edge. This scenario too does not rely on any additional

interaction term in the Hamiltonian. Instead, as we will discuss
below, it relies on the development of a texture in the gradient of
the d-wave order parameter phase χ, or more precisely in the
gauge invariant superfluid momentum

psðRÞ ¼
�h

2
∇χðRÞ � e

c
AðRÞ; ð1Þ

where ħ is Planck’s constant, e the charge of the electron, and c
the speed of light. This superfluid momentum spontaneously
takes the form of a planar vector field with a chain of sources and
sinks along the boundary and saddle points in the interior, see
Fig. 1. The vector field is illustrated by arrows showing the local
unit vectors p̂sðRÞ, while the color scale illustrates the magnitude
ps(R). An interior critical point at R0 is characterized by a
Poincaré index defined as28,29

I ¼ 1

2π

I

Γ

dθ; ð2Þ

where θ= arctan(psy/psx) is the angle of p̂sðRÞ on the Jordan
curve Γ encircling R0. Internal sources and sinks have I=+1,
while saddle points have I=−1. Although the special points on
the boundary have to be treated with care, there is a sum rule
(Eq. (3)) for the Poincaré indices, as we will discuss below. We
identify the ps vector field as the order parameter of the
symmetry-broken phase, motivated by the fact that the free
energy is lowered by a large split of the flat band of Andreev states
by a Doppler shift vF · ps, where vF is the Fermi velocity. This free
energy gain is maximized by maximizing the magnitude of ps,
which is achieved by the peculiar vector field in Fig. 1. The bal-
ance of the Doppler shift gain and the energy cost in setting up
the vector field with critical points where30 ∇ × ps ≠ 0 and the
splay patterns between them leads to a high T* ≈ 0.18Tc. The
inhomogeneous vector field induces a chain of loop-currents at
the edge circulating clockwise and anti-clockwise. The induced
magnetic fluxes of each loop are a fraction of the flux quantum
and form a chain of fluxes with alternating signs along the edge.
Here we clarify the structure of the order parameter of the
symmetry-broken phase, i.e., ps, and study the thermodynamics
of this phase under the influence of an external magnetic field,
explicitly breaking time-reversal symmetry.

Results
Translational symmetry breaking in a magnetic field. In Fig. 2,
we show the influence of a rather weak external magnetic field, B
= 0.5Bg1, applied to the d-wave superconducting grain with pair-
breaking edges for varying temperature near the phase transition
temperature T*. The scale Bg1=Φ0/A corresponds to one flux
quantum threading the grain area A, see the Methods section.
The left and right columns show the currents and the magnetic
field densities, respectively, induced in response to the applied
field. To be concrete, we discuss a few selected sets of model
parameters, as listed in Table 1. First, for T > T* (parameter set I),
the expected diamagnetic response of the condensate in the inner
part of the grain is present, see Fig. 2a, e. On the other hand,
midgap quasiparticle Andreev surface states respond para-
magnetically. This situation is well established theoretically and
experimentally through measurements of the competition
between the diamagnetic and paramagnetic responses seen as a
low-temperature up-turn in the penetration depth18,31,32. Upon
lowering the temperature to T≳ T* (parameter set II), see Fig. 2b,
f, the paramagnetic response at the edge becomes locally sup-
pressed and enhanced, forming a sequence of local minima and
maxima in the induced currents and fields. The bulk response is,
on the other hand, relatively unaffected. Finally, as T < T*

(parameter set III), see Fig. 2c, g, the regions of minimum current
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turns into regions with reversed currents. The resulting loop
currents with clock-wise and anti-clockwise circulations induce
magnetic fluxes along the surface with opposite signs between
neighboring fluxes. The situation for T < T* in an external mag-
netic field can be compared with the one in zero magnetic field26

displayed in Fig. 2d, h. In the presence of the magnetic field, there
is an imbalance between positive and negative fluxes, while in
zero external magnetic field, the total induced flux integrated over
the grain area is zero.

Topology of the superfluid momentum vector field. Let us
quantify the symmetry-broken phase in a magnetic field by
plotting the superfluid momentum defined in Eq. (1), see Fig. 3.
For T≳ T* (parameter set II), the amplitude of ps varies along the
edge (coordinate x), see Fig. 3a, reflecting the varying para-
magnetic response in Fig. 2b, f. For T < T* (parameter set III), the
sources and sinks have appeared pairwise together with a saddle
point, see Fig. 3b. The left defects in the figure are not well
developed because of the proximity to the corner. Finally, in
Fig. 3c, we show the vector field at a lower temperature when the
chain of sources, sinks, and saddle points are well established and

the magnitude of ps is large, much larger than in the interior part
of the grain still experiencing diamagnetism. In a magnetic field,
the vector field far from the surface has a preferred direction
reflecting the diamagnetic response of the interior grain. This
shifts the sources and sinks along the surface, as compared with
the regular chain for zero field in Fig. 1, and moves the saddle
points to the surface region.

The superflow pattern of sources, sinks, and saddle points
satisfy a certain sum rule related to the topology of the sample.
This relation also ties the special points of the ps field on the edge
of the sample with critical points in its bulk. The generalized
Poincaré-Hopf theorem for manifolds with boundaries33,34

connects the properties of a vector field v inside a manifold M,
and on its boundary ∂M, with the Euler characteristic of the
manifold χ(M). Using the formulation presented in ref. 34, we
write

IndMðvÞ þ
1

2
Ind∂�MðvjjÞ � Ind∂þMðvjjÞ
h i

¼ χðMÞ; ð3Þ

where IndM(v) is the total Poincaré index of critical points of the
field v internal to M, Ind∂±M

ðvjjÞ is the total Poincaré index of
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Fig. 1 Superfluid momentum as a vector field. The superfluid momentum ps forms a non-trivial planar vector field with a regular chain of sources and sinks

along the edge, thereby breaking local continuous translational symmetry along the edge. Several critical points, including saddle points, sources, and sinks,

are formed in the interior. The Poincaré indices of the critical points add up to fulfill the generalized Poincaré-Hopf theorem in Eq. (3). The magnetic field is

zero, Bext= 0, while the temperature is T= 0.1Tc. Since T is well below T
*, the splay patterns are rather stiff, leading to triangular shapes near the edges.

The stiffness is clear from the magnitude variation shown in color scale. The inset shows one period of the edge structure
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critical points of the tangent vector v|| || ∂M on the boundary. The
theorem applies when the boundary ∂M does not go through any
critical points of v. Boundary indices where field points inside

(∂
−
M) / outside (∂+M) of M, come with positive/negative signs.

In Supplementary Note 1, we demonstrate in detail how the sum
rule works for the vector field in Fig. 1, redrawn as a streamline
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Fig. 2 Spontaneously formed currents and induced magnetic field. a–d Total current magnitude and e–h induced magnetic flux density for different

temperatures and external fields (see annotations). Lines and arrows have been added to illustrate the flow of the currents
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plot in Supplementary Fig. 2. We also provide other examples of
grain geometries in Supplementary Figs. 3–10. We utilize the sum
rule as a tool to verify that the calculations are correct.

In a magnetic field, as in Fig. 3, a motif with one edge source,
one edge sink, and one saddle point annihilate at T*. In the same
fashion, increasing the magnetic field strength, the motif gets
smaller as the defects are forced toward each other to match the
superflow in the bulk. However, the magnitude of ps near the
surface due to Meissner screening of the bulk is not large enough
to force an annihilation of the motifs. The broken symmetry
phase therefore survives the application of an external magnetic
field within the whole Meissner state, b∈ [0, 1].

For higher fields, when Abrikosov vortices start to enter the
grain, the problem quickly becomes complicated by the interplay
of the Abrikosov vortex lattice formation and finite grain size
effects. The free energy landscape is very flat and it is possible to
find multiple metastable configurations. For a variety of grain
sizes and magnetic field strengths, we have established coex-
istence of Abrikosov vortices and the spontaneously formed edge

loop currents35. We therefore conclude that the edge loop-current
phase established for T < T* should survive into the mixed state,
but a complete investigation of the geometry-dependent phase
diagram for large fields is beyond the scope of this paper.

Induced currents and magnetic fields. Let us investigate further
how the currents and magnetic fields are induced at T*. As we
have seen, the paramagnetic response and the spontaneously
appearing edge loop currents compete, as they both lead to shifts
of midgap Andreev states. As the temperature is lowered, the
strength of the paramagnetic response increases slowly and lin-
early, while the strength of the loop currents increases highly
non-linearly. This is illustrated in Fig. 4, by plotting the area-
averaged current magnitude

j ¼ 1

A

Z
d2R jðRÞj j; ð4Þ

as a function of temperature for the cases when Bext= 0 (solid
line), Bext= 0.5Bg1 (dashed line), and for comparison also for a
system without pair-breaking edges having only a diamagnetic
response at Bext= 0.5Bg1 (dash-dotted line). The paramagnetic
response is fully suppressed at low temperatures T < T*. Such a
sudden disappearance of the paramagnetic response at a tem-
perature T* should be experimentally measurable, for example in
the penetration depth or by using nano-squids36,37.

We show in Fig. 5a the total induced magnetic flux through the
grain

Φind ¼
Z

d2RBindðRÞ; ð5Þ
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Fig. 3 Superfluid momentum for varying temperature. a The superfluid momentum induced in an external magnetic field of Bext= 0.5Bg1 for a temperature

slightly above the transition temperature T* reflects the paramagnetic response. b At the phase transition, source–sink–saddle-point motifs appear and

separate along the edge breaking translational invariance along the edge coordinate x. c For lower temperature, the magnitude ps
�� �� grows large. Note that

different color scales are used in the subfigures in order to enhance visibility

Table 1 Sets of parameters used for presenting results

Set Temperature External magnetic field

(I) T= 0.182Tc > T* Bext= 0.5Bg1
(II) T= 0.176Tc≳ T* Bext= 0.5Bg1
(III) T= 0.17Tc < T* Bext= 0.5Bg1
(IV) T= 0.17Tc < T* Bext= 0

The field scale Bg1=Φ0/A corresponds to an external magnetic flux through the grain area

exactly equal to one flux quantum

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04531-y ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2190 |DOI: 10.1038/s41467-018-04531-y |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


and in Fig. 5b the area-averaged order parameter magnitude

Δd ¼
1

A

Z
d2R ΔdðRÞj j; ð6Þ

both as functions of temperature for different values of Bext. The
figures also show results for a d-wave grain without pair-breaking
edges at Bext= 0.5Bg1 (dash-dotted line). For better visibility, the
latter results have been scaled by a factor 0.4 and 0.9 in (a) and
(b), respectively. Two different trends are distinguishable in the
observables for T < T* and T > T*, separated by a “kink”. The
induced magnetic flux through the grain area decreases as T
decreases down to T* due to the increasing paramagnetic
response that competes with the diamagnetic one. At T*, the
inhomogeneous edge state appear and starts competing with the
paramagnetic response. Thus, the total magnetic flux increases
again. At the same time, the order parameter is partially healed.

Phase transition and thermodynamics. The sudden changes
with a discontinuity in the derivative as a function of temperature
of the total induced current, the magnetic flux, as well as the
order parameter (Figs. 4 and 5) indicate that there is a phase
transition occurring at the temperature T*. In zero external
magnetic field, there is a second-order phase transition at T*,
where both time-reversal symmetry and continuous translational
symmetry along the edge are spontaneously broken26. Let us now
investigate the thermodynamics in an external magnetic field
already explicitly breaking time-reversal symmetry.

In Fig. 6a, we plot the free energy difference between the
superconducting and normal states ΩS−ΩN, defined in Eq. (29),
for external field B= 0.5Bg1 (red dashed line) and for zero field
(solid black line). For comparison, we show the free energy
difference for a purely real order parameter in zero field (gray fine
line), i.e., without the symmetry breaking edge loop currents. For
T < T*, this solution is not the global minimum of the free energy,
and we therefore refer to it as a metastable state. To enhance the
visibility of the differences in free energy between the possible
solutions, we show in Fig. 6b the free energy difference with
respect to the metastable state, i.e., ΩS−Ωms. The small slope in
the red dashed line at T > T* in Fig. 6b is caused by the shift of
midgap Andreev states due to the paramagnetic response, which
increases as T decreases. The phase transition temperature T* for
the second-order phase transition can be identified with the
“knee” in the entropy difference defined in Eq. (31), see Fig. 6c, d.
Since time-reversal symmetry is already explicitly broken by the
external magnetic field, the phase transition signals breaking of
local continuous translational symmetry and establishment of the
vector field ps with the chain of defects along the edge, as shown
in Fig. 3. The magnitude of the order parameter follows the
expected scaling law for second-order phase transitions, ps(T)∝
(1− T/T*)β with β= 1/2, as shown in the inset of Fig. 6d.
However, the temperature range within which the scaling law
holds is very limited and non-linear terms play an important role
for lower temperatures T < T*.

The knee in the entropy leads to a jump in the specific heat, as
shown in Fig. 6e, f. The heat capacity is expressed in units of the
heat capacity jump at the normal-superconducting phase
transition at Tc for a bulk d-wave system

ΔCd ¼
2α

3
Ak2BTcNF; ð7Þ

where α= 8π2/[7ζ(3)], with ζ being the Riemann-zeta function.
The jump in heat capacity at the phase transition is an edge-to-
area effect, and grows linearly as the sample becomes smaller. The
jump is roughly 4.5% of ΔCd for the mesoscopic A ¼ 60 ´ 60ξ20
grain considered here, and grows as the size of the grain is
reduced. The phase transition temperature T* is extracted as a
function of Bext as the midpoint temperature of the jump in the
specific heat. Figure 7 shows a phase diagram where the T*,
extracted in this way from the specific heat, is plotted versus
external field strength (crosses). We compare this with T*

extracted as the minimum (the “kink”, see Fig. 5a) in the induced
flux. The small lowering of T* with increased Bext is caused by the
competing paramagnetic response.

From the above, it is clear that the phase with edge loop
currents shows extreme robustness against an external magnetic
field in the whole Meissner region (Bext ≤ Bg1). The magnitude of
the spontaneously formed superfluid momentum ps at the edge
grows non-linearly to be very large for T < T*, fueled by the
lowering of the free energy by Doppler shifts of the flat band of
Andreev surface states. The corresponding correction to ps, due
to the process of screening of the external magnetic field, is in
comparison small. Thereby, T* is not dramatically shifted in a
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magnetic field and the symmetry-broken phase below T* is
robust.

Discussion
Which of the scenarios outlined in the introduction wins will
ultimately depend on the material properties of a specific high-
temperature superconducting sample, or the material properties
of other candidate d-wave superconductors, e.g., FeSe38. In the
scenario studied here, the resulting transition temperature is high,
T* ~ 0.18Tc. It means that the interaction terms in the

Hamiltonian for the other scenarios would have to be sufficiently
large in order to compete. It is even possible that one or another
scenario wins in different parts of the material’s phase diagram16.

We note that the phase transition at T* means that the initially
topologically protected flat band of zero energy surface states is
shifted away from the Fermi energy. Such fragility of topologically
protected states has been studied recently e.g., for topological
insulators39 supporting the quantum spin-Hall state. In that case,
an edge reconstruction due to Coulomb interactions leads to
breaking of time-reversal symmetry. In the d-wave super-
conductor case, although the bulk Hamiltonian still maintains
required symmetries, a local instability at the surface violates
these symmetries spontaneously and moves the flat band of
bound states to finite energies. The spontaneously broken trans-
lational symmetry allows for a larger shift from zero energy and a
high T*.

From an experimental point of view, the surface physics of d-
wave superconductors is complicated by, for instance, surface
roughness, inhomogeneous stoichiometry, and presence of
impurities. The formation of a band of Andreev states centered at
zero energy is well established by numerous tunneling experi-
ments, in agreement with the expectation for d-wave symmetry of
the order parameter, as reviewed in refs. 6,7. One consistent
experimental result is that the band is typically quite broad, with a
width that saturates at low temperature. On the other hand, the
establishment of a time-reversal symmetry breaking phase
remains under discussion, see for instance refs. 40,41. Several
tunneling experiments on YBCO42–44 show a split of the zero-
bias conductance peak, while others do not45,46. Other probes
indicating time-reversal symmetry breaking include thermal
conductivity47, Coulomb blockade in nanoscale islands5, and
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STM tunneling at grain boundaries in FeSe38. As we argued in
refs. 26,27 within the scenario with spontaneous loop currents, the
split of the Andreev band might be difficult to resolve in a tun-
neling experiment because of the broken translational symmetry
along the edge and associated variations in the superflow field.
This leads to a smearing effect for tunnel contacts with an area
larger than the coherence length and an expected wide, largely
temperature-independent, peak centered at zero energy. In fact,
this would be consistent with most tunneling experiments.

With an eye to inspire a new generation of experiments, we
have presented results for the interplay between an external
magnetic field, that induces screening supercurrents, and the
phase transition at T* into a state with the spontaneous loop
currents at the edges. We have shown that the phase should be
quantified in terms of its order parameter, the vector field ps(R),
which contains edge sources and sinks, as well as saddle points.
At all these critical points, ∇ × ps ≠ 0. The ps vector field drives
the loop currents with opposite circulations in neighboring loops.
The loop-current strength increases highly non-linearly, sup-
pressing the paramagnetic response present for T > T*. As the
strength of the external magnetic field increases, the size of the
Doppler shift due to the paramagnetic response grows linearly.
Therefore, T* decreases slightly as the magnitude of the external
field increases. The influence of the external field, and in parti-
cular the sudden disappearance of the paramagnetic response,
leads to observables which we argue should be visible in experi-
ment. For example the “kink” in the total induced flux at T*. The
magnetic fluxes induced by the loop currents should be directly
observable with recently developed scanning probes36,37, and the
sudden disappearance of the paramagnetic response should be
observable with nano-SQUIDS and possibly in penetration-depth
experiments. Furthermore, the large jump in heat capacity at the
phase transition should be observable with nanocalorimetry48.

The identification of the order parameter ps(R), with its
topological textures, leads to similarities with other systems,
including general relativity33, fluid dynamics49, liquid crystals50,
and superfluid 3He51. An interesting difference is that in those
systems, there is typically a transition in a preexisting vector field
to a state with topological textures. Here, instead, we have a
singlet d-wave superconductor that spontaneously establishes
ps(R) with topological textures different than the traditional
Abrikosov vortices.

Methods
Model and grain geometry. Our aim is to investigate the ground state of clean
mesoscopic d-wave superconducting grains in an external magnetic field applied
perpendicular to the crystal ab-plane, as shown in Fig. 8. As a typical geometry, we
consider a square grain with side lengths D= 60ξ0, where ξ0= ħvF/(2πkBTc) is the
zero-temperature superconducting coherence length. Here, vF is the normal state
Fermi velocity, and kB the Boltzmann constant. The sides of the system are
assumed to be misaligned by a 45° rotation with respect to the crystal ab-axes,
inducing maximal pair-breaking at the edges.

The external field is directed perpendicular to the xy-plane,

Bext ¼ �Bextbzjjbc: ð8Þ

We shall consider rather small external fields, and will use a field scale Bg1=
Φ0/A, corresponding to one flux quantum threading the grain of area A=D2

=

60ξ0 × 60ξ0. The flux quantum Φ0= hc/(2|e|) is given in Gaussian CGS units. The
field Bg1 is larger than the lower critical field Bc1 / Φ0=λ

2
0 , where vortices can enter

a macroscopically large superconductor, since the grain side length is smaller than
the penetration depth. We assume that λ0= 100ξ0, relevant for YBCO. The upper
critical field Bc2 / Φ0=ξ

2
0 is much larger than any field we include in this study. To

be precise, we parameterize the field strength as

Bext ¼ bBg1;Bg1 �
Φ0

A ; ð9Þ

and we will consider b∈ [0, 1].

Quasiclassical theory. We utilize the quasiclassical theory of superconductivity52–54,
which is a theory based on a separation of scales55–58. For instance, the atomic scale is
assumed small compared with the superconducting coherence length, �h=pF � ξ0 .
This separation of scales makes it possible to systematically expand all quantities in
small parameters such as ħ/pFξ0, Δ/ϵF , and kBTc/ϵF , where Δ is the superconducting
order parameter, pF is the Fermi momentum, and ϵF is the Fermi energy. In equili-
brium, the central object of the theory is the quasiclassical Green’s function
ĝðpF;R; zÞ, which is a function of quasiparticle momentum on the Fermi surface pF,
the quasiparticle center-of-mass coordinate R, and the quasiparticle energy z. The
latter is real z= ϵ+ i0+ with an infinitesimal imaginary part i0+ for the retarded
Green’s function, or an imaginary Matsubara energy z= iϵn = iπkBT(2n+ 1) in the
Matsubara technique (n is an integer). To keep the notation compact, the dependence
on the parameters pF, R, and z will often not be written out. The hat on ĝ denotes
Nambu (electron-hole) space

ĝ ¼
g f

�~f ~g

� �
; ð10Þ

where g and f are the quasiparticle and pair propagators, respectively. The tilde
operation denotes particle-hole conjugation

~αðpF;R; zÞ ¼ α�ð�pF;R;�z�Þ: ð11Þ

The quasiclassical Green’s function is parameterized in terms of two scalar coherence
functions, γ(pF, R; z) and ~γ(pF, R; z), as

59–65

ĝ ¼ � iπ

1þ γ~γ

1� γ~γ 2γ

2~γ �1þ γ~γ

� �
: ð12Þ

Note that with this parameterization, the Green’s function is automatically normalized
to ĝ2 ¼ �π21̂. The coherence functions obey two Riccati equations:

ði�hvF � ∇þ 2z þ 2
e

c
vF � AÞγ ¼ �~Δγ2 � Δ; ð13Þ

ði�hvF � ∇� 2z � 2
e

c
vF � AÞ~γ ¼ �Δ~γ2 � ~Δ; ð14Þ

where A is the vector potential. These first-order non-linear differential equations are
solved by integration along straight (ballistic) quasiparticle trajectories. Quantum
coherence is retained along these trajectories, but not between neighboring trajec-
tories. A clean superconducting grain in vacuum is assumed by imposing the
boundary condition of perfect specular reflection of quasiparticles along the edges of
the system.

The superconducting order parameter is assumed to have pure d-wave
symmetry

ΔðpF;RÞ ¼ ΔdðRÞηdðθÞ; ð15Þ

where θ is the angle between the Fermi momentum pF and the crystal ba-axis, and
ηd(θ) is the d-wave basis function:

ηdðθÞ ¼
ffiffiffi
2

p
cosð2θÞ; ð16Þ
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fulfilling the normalization condition
Z

dθ

2π
ηdðθÞ
�� ��2 ¼ 1: ð17Þ

The order parameter amplitude satisfies the gap equation

ΔdðRÞ ¼ λdNFkBT
X

ϵnj j�Ωc

Z
dθ

2π
η�dðθÞf ðpF ;R; ϵnÞ; ð18Þ

where λd is the pairing interaction, NF is the density of states at the Fermi level in
the normal state, and Ωc is a cutoff energy. The pairing interaction and the cutoff
energy are eliminated in favor of the superconducting transition temperature Tc
(see for example ref. 66) as

1

λdNF

¼ ln
T

Tc

þ
X

n�0

1

nþ 1
2

: ð19Þ

The above equations are solved self-consistently with respect to γ, ~γ, and Δd. As
an initial guess, we assume a homogenous superconductor with a small modulation
of the phase. The coherence functions on the boundaries have to be updated in
each iteration, taking into account the specular boundary condition. The starting
guess is the local homogeneous solution. After several iterations, the information of
the initial guess for the coherence functions is lost67.

We choose an electromagnetic gauge where the vector potential has the form

AextðRÞ ¼
1

2
Bext ´R: ð20Þ

The total vector potential A(R), that enters Eqs. (13) and (14), is given by Aext(R)
and the field Aind(R) induced by the currents j(R) in the superconductor (Eq. (27)
below):

AðRÞ ¼ AextðRÞ þ AindðRÞ: ð21Þ

The vector potential Aind(R) should be solved from Ampère’s circuit law

∇ ´∇ ´AindðRÞ ¼
4π

c
jðRÞ ; ð22Þ

with appropriate boundary conditions for the induced field inside and outside the
sample. To take the full electrodynamics into account, Aind(R) also needs to be
computed self-consistently in each iteration. However, the strength of the
electrodynamic back-coupling scales as κ−2, where κ ≡ λ0/ξ0 is the dimensionless
Ginzburg-Landau parameter. The electrodynamic back-coupling is therefore a very
small effect for type II superconductors (typically κ−1 ≈ 10−2 for the cuprates). We
have verified through fully self-consistent calculations that for grains with side
lengths D < λ, as we limit ourselves to in this paper, it is always safe to neglect this
back-coupling. For large system sizes, D 	 λ, back-coupling would ensure proper
Meissner screening on the length scale λ in the interior for b < 1 and the
establishment of a proper Abrikosov vortex lattice with inter-vortex distances of
order λ for moderate fields b > 1, corresponding to field strengths of order Hc1.
Since the spontaneous fields appearing below T* are located within a small distance
of order ξ0 � λ from the boundary, the effect of back-coupling is small also in
these cases. Only in very high fields, approaching Hc2, where inter-vortex distances
become of order ξ0 may we expect a serious effect on T*, but this is beyond the
scope of this paper.

The induced magnetic flux density is computed as

Bind ¼ ∇ ´Aind: ð23Þ

We consider a layered superconductor with many weakly, for our purposes
negligibly, coupled layers stacked in the c-axis direction. This ensures translational
invariance in that direction. Therefore, we neglect the problem of the field
distribution around the superconductor and focus on the field induced at the ab-
plane where we have simply Bind= Bindbz.

Gauge transformation. Once the Green’s function and the order parameter have
been determined self-consistently, we can perform a gauge transformation in order
to make the order parameter a real quantity and in the process extract the
superfluid momentum ps. This can be illustrated by transforming the Riccati
equation in Eq. (13). To begin with, the self-consistently obtained order parameter
is complex, i.e.,

ΔðpF;RÞ ¼ ΔdðRÞj jηdðθÞeiχðRÞ: ð24Þ

We make the ansatz

γðpF;R; zÞ ¼ γ0ðpF;R; zÞeiχðRÞ; ð25Þ

and put that into the Riccati equation. We obtain

i�hvF � ∇þ 2ðz � vF � psÞ½ 
γ0 ¼ � Δdj jηdðγ20 þ 1Þ; ð26Þ

where ps is defined in Eq. (1).

Observables. The current density is computed within the Matsubara technique
through the formula

jðRÞ ¼ 2πeNFkBT
X

ϵn

Z
dθ

2π
vFgðpF;R; ϵnÞ: ð27Þ

In the results section, we shall show this current density in units of the depairing
current

jd � 4π ej jkBTcNFvF: ð28Þ

The free-energy difference between the superconducting and the normal states
is calculated with the Eilenberger free-energy functional52

ΩSðB;TÞ � ΩNðB;TÞ ¼
R
dR BindðRÞ2

8π þ ΔdðRÞj j2NF ln
T
Tc

n

þ2πNFkBT
P
ϵn>0

ΔdðRÞj j2
ϵn

þ iIðR; ϵnÞ
h i)

;
ð29Þ

IðR; ϵnÞ ¼
Z

dθ

2π
~ΔðpF;RÞγðpF;R; ϵnÞ � ΔðpF;RÞ~γðpF;R; ϵnÞ
� �

: ð30Þ

We have verified that this form of the free energy gives the same results as the
Luttinger-Ward functional26,55,64. The entropy and specific heat capacity are
obtained from the thermodynamic definitions

S ¼ � ∂Ω

∂T
; ð31Þ

C ¼ T
∂S

∂T
¼ �T

∂
2Ω

∂T2
: ð32Þ

Data availability. All relevant data are available from the authors.
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