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Abstract

Background

Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syn-

drome; its genetic basis has recently been established. Its characteristic features include

typically-unprovoked episodes of hemiplegia and other transient or more persistent neuro-

logical abnormalities.

Methods

We used transcranial magnetic stimulation to assess the effect of the condition on motor

cortex neurophysiology both during and between attacks of hemiplegia. Nine people with

alternating hemiplegia of childhood were recruited; eight were successfully tested using

transcranial magnetic stimulation to study motor cortex excitability, using single and paired

pulse paradigms. For comparison, data from ten people with epilepsy but not alternating

hemiplegia, and ten healthy controls, were used.

Results

One person with alternating hemiplegia tested during the onset of a hemiplegic attack

showed progressively diminishing motor cortex excitability until no response could be

evoked; a second person tested during a prolonged bilateral hemiplegic attack showed

unusually low excitability. Three people tested between attacks showed asymptomatic vari-

ation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intra-

cortical inhibitory and excitatory circuits, gave results similar to controls.
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Conclusions

We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people

with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctua-

tions underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we

detected may be useful as a biomarker for disease activity.

Introduction

Alternating hemiplegia of childhood (AHC) is a rare, severe neurodevelopmental disease with

characteristic transient and unpredictable episodes of hemiplegia or tetraplegia. The designa-

tion is misleading; although it presents during childhood, affected children continue to mani-

fest symptoms and signs of the condition into adulthood. The condition is also associated with

other paroxysmal disturbances such as epileptic seizures, tonic or dystonic spells, abnormal eye

movements, dyspnoea and transient autonomic dysfunction [1,2]. Symptoms typically improve

following sleep. We have recently demonstrated dynamic alterations in the ECG, unrelated to

hemiplegic episodes or epileptic seizures, suggesting paroxysmal electrophysiological dysfunc-

tion affecting heart as well as brain in AHC [3]. There is typically also permanent neurological

dysfunction, including developmental delay, intellectual difficulties, and in some cases move-

ment disorder (for instance choreoathetosis, dystonia or ataxia). Epileptic seizures occur in

18%-50% of those with AHC [1,2,4,5]. Disease prevalence is estimated at 1:1,000,000, which

may be an underestimate caused by variability in clinical presentation, lack of awareness of the

condition, and frequent misdiagnosis as epilepsy or cerebral palsy [6]. A recent Danish study

suggested a prevalence of 1:100,000 [7].

Standard neuroimaging is typically normal in AHC [2,1,8,9], although abnormalities such

as non-specific cerebral atrophy, vermian atrophy, hippocampal sclerosis and cortical dysplasia

have been reported [9]. Single-photon emission computed tomography (SPECT) scanning

shows ictal cerebral hypoperfusion [8,10].

Mutations in the ATP1A3 gene, encoding Na+,K+-ATPase α3, account for around 80% of

cases [5,11–14]; most are de novo. The encoded protein, the α3 subunit of Na+K+ATPase, is

expressed widely in neuronal and cardiac tissue, contributing to trans-membrane sodium and

potassium ion gradients, which are vital for cellular excitability [15].

The mutations causing AHC do not seem to affect gene expression, but instead modify pro-

tein function [5,16]. AHC-causing ATP1A3mutations cluster in particular gene regions, lead-

ing to speculation that a specific change in protein function causes the condition. Conversely,

mutations causing rapid-onset dystonia parkinsonism, an allelic condition caused by ATP1A3

mutations, do not cluster in particular gene regions. The specific mutation present may influ-

ence disease severity [12,14,16,17].

Various approaches have been employed to understand the effects of AHC-causing

ATP1A3mutations on the function of the protein and on cells and model organisms. Cell-

based assays show a reduction in ADP production [5], and a reduction in transmembrane cur-

rent [18], both implying reduced activity of the Na+,K+ ATPase transport mechanism. Struc-

tural modelling of mutant proteins has also suggested that mutations causing AHC may lead to

impaired Na+ and K+ transport [19]. In vitro and in silico modelling suggest that the most

common AHC-causing mutations cause loss of forward cycling and dominant negativity, and

that loss of proton transport may be correlated with disease severity [20].

Mutations in ATP1A3 have been studied in animal models including mice, drosophila and

zebrafish, and lead to varying degrees of neurological impairment including seizures and

motor abnormalities. Some animal models exhibit a pathological response to stress, including
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seizures and balance problems (mice) and paralysis (drosophila) [16]. One mouse model with

heterozygous mutation (Atp1a3Myk/+) demonstrates frontal hypometabolism, as well as

reduced thalamocortical connectivity [21]. A novel knock-in mouse model carrying the most

common heterozygous mutation causing AHC (p.D801N) was reported recently; this mouse

displays many of the clinical features of AHC, and hippocampal slices show increased excitabil-

ity in response to electrical stimulation [22].

Despite this progress, it is still not known how ATP1A3mutations cause the clinical pheno-

type of AHC and in particular the hemiplegic attacks. The clinical pattern of weakness, the res-

olution of symptoms during sleep, the other neurological manifestations of the condition, the

expression of the causative gene and SPECT studies together point to a central mechanism for

the hemiplegic attacks, with motor cortex a possible substrate.

Transcranial Magnetic Stimulation (TMS) can be used non-invasively to stimulate motor

cortex, triggering a motor evoked potential (MEP) in a contralateral target muscle. The ease of

activation of motor cortex is a measure of cortical excitability, while paired pulse paradigms

test inhibitory and excitatory intracortical circuitry [23].

We used TMS to probe the mechanisms of hemiplegic attacks in people with AHC, and

hypothesised that TMS would detect fluctuations in motor cortical excitability not seen in

controls.

Methods

The study was approved by National Research Ethics Service Committee London–Camden

and Islington. TMS parameters were within the current safety guidelines [24]. Written

informed consent was obtained. In people with mild learning difficulties, an approved adapted

information sheet and consent form were used. In those lacking capacity, a relative was asked

to provide assent. A safety questionnaire was completed for each participant.

Over a two year period, nine people with AHC were recruited from outpatient clinics, refer-

rals and the Alternating Hemiplegia of Childhood UK support group. Eight were successfully

tested, one was unable to cooperate. Ten healthy control subjects, on no medication, were

recruited from a local database of volunteers. Ten consecutive people with epilepsy, on anti-

epileptic medication, were recruited from clinic as further controls; none had a convulsive sei-

zure in the 48 hours preceding or following testing. Intellectual difficulties were categorized as

severe, moderate, mild, borderline or none according to ICD-10 guidelines [25]. Where formal

neuropsychometry was unavailable, the degree of intellectual difficulties was assessed by a cli-

nician blinded to the study outcome.

TMS was performed using two Magstim 2002 stimulators connected using a Bistim module,

with a D70 alpha coil (Magstim,Whitland, UK), controlled by Micro 1401 hardware and Signal

software (Cambridge Electronic Design, Cambridge, UK). EMG data were recorded from the

contralateral adductor pollicis brevis (APB) muscle using surface electrodes, amplified using a

Cambridge Electronic Design 1902 EMG amplifier, filtered using a 20Hz to 1kHz bandpass fil-

ter and 50Hz notch filter, and digitised at 2kHz for offline analysis.

Motor cortex was identified initially using skull landmarks. The motor hot-spot for the APB

muscle, defined as the point on the scalp where stimulation produced the largest and most con-

sistent EMG response, was identified. The hot-spot was marked on a tight-fitting cap to ensure

a consistent site of stimulation. Where possible, the site was also marked using an ANT Visor

neuronavigation system (ANT Neuro, Enschede, Netherlands); this included all controls and

three out of five people with AHC who tolerated full testing. Data for each subject were col-

lected during one sitting, in which the marked cap was not moved; only one subject was tested

on two separate occasions, as outlined in the results section.
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MEP was defined as the discrete EMG response seen in the target muscle 20-30ms after a

TMS stimulus applied to the motor hot-spot. MEP amplitude was measured peak-to-peak and

MEP latency was defined as the time interval between the TMS pulse and the first deviation of

greater than three times the amplitude of the greatest fluctuation in the baseline resting EMG

during 50ms prior to the stimulus.

These paradigms were used:

1. Resting Motor Threshold (rMT)

With the subject relaxed, stimulation intensity was increased from 40% total machine out-

put in 2% increments until a reliable EMG response was obtained. The intensity was then

decreased in 1% increments until rMT was found, defined as the minimum TMS stimulus

intensity required to give a peak-to-peak EMG amplitude of 0.1mV or greater in at least 5

out of 10 trials from the relaxed target muscle. rMT is a correlate of motor cortex excitabil-

ity, with a low rMT corresponding to high excitability and vice versa [23].

2. Stimulus response curve

EMG responses were measured with a range of TMS intensities (80%, 90%, 100%, 110%,

120% of rMT). Ten trials were performed at each intensity, in a randomised order. Average

EMG amplitudes were plotted against stimulus size. This provides a more robust measure

of neuronal excitability, using a wider range of stimulus intensities [23].

3. Short interval intracortical inhibition (SICI) and Intracortical Faciliation (ICF)

A subthreshold conditioning stimulus (80% rMT) was followed by a suprathreshold test

stimulus (110% rMT) with an inter-stimulus interval of 2ms (SICI) and 10ms (ICF). Single,

unconditioned pulses were used as a control paradigm. Ten trials of each paradigm were

performed and averaged (a total of 20 paired pulses and 10 single pulses). The conditioned

EMG amplitude is normalised to the unconditioned EMG amplitude, and is typically

reduced in SICI and increased in ICF. SICI is mediated by GABAA-ergic intracortical cir-

cuits [26], while ICF is mediated by glutamatergic intracortical circuits, along with a possible

reduction in GABA-ergic inhibition [23].

4. Long interval intracortical inhibition (LICI)

A supra-threshold conditioning pulse (110% rMT) was followed by a supra-threshold test

pulse (110% rMT) with an inter-stimulus interval of 100ms; ten trials were performed. The

EMG response to the test pulse was normalised to that generated by the conditioning stimu-

lus; the conditioned response is typically reduced. This inhibition is mediated by GABAB-

ergic intracortical circuits [23].

Stimulus-response curves were generated at two time points (Time 1 and Time 2). The stim-

ulus-response curve for all was measured immediately after the motor threshold had been

determined, and this was taken as Time 1. If a change in excitability was later detected, the

stimulus-response curve was repeated and this was taken as Time 2. If no change was detected,

the stimulus-response curve was repeated at the end of the testing session (an interval of 30

minutes), and this was taken as Time 2.

The mean total number of pulses administered to collect a full data-set in a single hemi-

sphere was 318 (range 302–328). Subjects were required to sit still and remain alert with their

eyes open, with the target muscle relaxed. Cooperation was confirmed by investigator observa-

tion and by EMGmonitoring.

Statistical analysis
Results for cases and controls were compared using unpaired t-tests (rMT, SICI, ICF, LICI).
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Where one individual was tested at two time-points, these results were compared using

paired t-tests (MEP size, MEP latency). For stimulus response curves, a multivariate ANOVA

was used to adjust for multiple comparisons. P values of 0.05 or lower were interpreted as sta-

tistically significant. All analysis was performed using IBM SPSS Statistics (Version 22.0,

Armonk, NY).

Results

Subjects
Nine adults with a clinical diagnosis of AHC (A1-A9) underwent TMS. Five tolerated TMS

well enough for a complete dataset to be collected (two both hemispheres, three single hemi-

sphere); one (A2) was initially tested using a clinical protocol, before also later undergoing

TMS using our research protocol on a separate occasion. Three further people with AHC only

tolerated testing of rMT, as they found testing uncomfortable and did not wish to continue.

One person with more severe intellectual difficulties did not tolerate any interpretable testing.

Eight of the nine had known ATP1A3mutations; one had a clinical diagnosis of AHC but no

mutation was identified with whole genome sequencing (see Table 1). Ten consecutive people

with treated epilepsy but not AHC (C1-C10) and ten healthy subjects on no medication (C11-

20) were recruited as controls.

Table 1. Age, sex, mutation (subjects with AHC only), epilepsy diagnosis (epilepsy control subjects only), TMS paradigms tested, medication at
time of testing and degree of intellectual difficulties for all subjects.

Subjects with AHC

Subject number Sex, Age ATP1A3 mutation Testing Performed Medication at time of testing (mg/day) Intellectual Difficulties

A1 M, 18 c.2401G>A rMT None Mild*

A2 F, 27 c.2431T>C rMT, SRC, SICI, ICF, LICI TPM 150, PHT 125, BAC 30, FLN 15 Mild*

A3 F, 31 None detected rMT, SRC, SICI, ICF, LICI ZNS 150, FLN 40, PZT 1, BAC 100, None

A4 F, 36 c.2839G>A rMT, SRC, SICI, ICF, LICI BAC 10 Mild

A5 M, 19 c.2314A>C rMT TPM 75, FLN 10, PZT 1, OMP 20 Mild

A6 F, 35 c.2318A>G rMT, SRC, SICI, ICF, LICI FLN 7.5 Mild

A7 F, 18 c.2839G>A rMT None Mild*

A8 M, 18 c.1072G>A Testing impossible PHT 300, VPA 1400 Severe*

A9 F, 33 c.1010T>G rMT, SRC, SICI, ICF, LICI LTG 400, PGB 200, AZM 200 None

Control subjects with epilepsy

Subject number Sex, Age Epilepsy Diagnosis Testing Performed Medication at time of testing (mg/day) Intellectual Difficulties

C1 M, 18 Focal Symptomatic rMT, SRC, SICI, ICF, LICI VPA 1000, PGB 400 None

C2 F, 28 ADNFLE rMT, SRC, SICI, ICF, LICI OXC 900, PER 10, PGB 225 None

C3 M, 50 Focal Cryptogenic rMT, SRC, SICI, ICF, LICI PHT 200, LCM 200 None

C4 F, 61 Focal Cryptogenic rMT, SRC, SICI, ICF, LICI PHT 400, LCM 600 None

C5 F, 47 Genetic Generalised rMT, SRC, SICI, ICF, LICI LTG 300, CLB 10 ZNS 200 None

C6 M, 44 Unclassified rMT, SRC, SICI, ICF, LICI LCM 400, OXC 1200 PER 2 None

C7 F, 27 Genetic Generalised rMT, SRC, SICI, ICF, LICI PHT 475, LMT 300 None

C8 M, 32 Genetic Generalised rMT, SRC, SICI, ICF, LICI VPA 2600, TPM 100, CLB 40 None

C9 M, 29 Focal Cryptogenic rMT, SRC, SICI, ICF, LICI LTG 100, CBZ 1200, PER 12, LEV 3000 None

C10 F, 21 Focal Cryptogenic rMT, SRC, SICI, ICF, LICI LEV 1500 None

Healthy control subjects

Subject number Sex, Age Epilepsy Diagnosis Testing Performed Medication at time of testing (mg/day) Intellectual Difficulties

C11 F,34 N/A rMT, SRC, SICI, ICF, LICI None None

(Continued)
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Table 1 shows their demographic information, genetic diagnosis (for those with AHC), epi-

lepsy diagnosis (for epilepsy controls), medication at time of testing and degree of intellectual

difficulties. There were no significant differences in age or proportions of males to females

between the AHC group and either control group (age: unpaired, two-tailed t-test, P = 0.09

(AHC vs epilepsy controls), P = 0.07 (AHC vs healthy controls); sex: Fisher’s exact test P = 0.65

(AHC vs epilepsy controls), P = 0.37 (AHC vs healthy controls). Intellectual difficulties are

common in AHC, and this is reflected in our population. Those with AHC were taking a mean

of 2.1 medications each, while epilepsy controls were taking a mean of 2.5 medications each

(see Table 1); there was no significant difference (unpaired, two-tailed t-test, P = 0.53).

TMS during hemiplegic attacks
A1 was tested during a prolonged hemiplegic attack. Onset of left sided weakness occurred five

days prior to testing, with partial resolution by the day of testing; mild ongoing weakness was

Table 1. (Continued)

C12 F, 36 N/A rMT, SRC, SICI, ICF, LICI None None

C13 M, 35 N/A rMT, SRC, SICI, ICF, LICI None None

C14 F, 30 N/A rMT, SRC, SICI, ICF, LICI None None

C15 M, 32 N/A rMT, SRC, SICI, ICF, LICI None None

C16 M, 42 N/A rMT, SRC, SICI, ICF, LICI None None

C17 M, 27 N/A rMT, SRC, SICI, ICF, LICI None None

C18 F, 30 N/A rMT, SRC, SICI, ICF, LICI None None

C19 M, 29 N/A rMT, SRC, SICI, ICF, LICI None None

C20 M, 23 N/A rMT, SRC, SICI, ICF, LICI None None

* indicates neuropsychometry assessment unavailable, intellectual difficulties assessed by clinician blinded to study outcome.

Abbreviations

rMT = motor threshold

SRC = stimulus-response curve

SICI = short interval intracortical inhibition

ICF = intracortical facilitation

LICI = long interval intracortical inhibition

TPM = topiramate

PHT = phenytoin

BAC = baclofen

FLN = flunarizine

PZT = pizotifen

ZNS = zonisamide

VPA = valproate

LTG = lamotrigine

PGB = pregabalin

AZM = acetazolamide

OMP = omeprazole

LTD = loratidine

OXC = oxcarbazepine

PER = perampanel

LCM = lacosamide

CLB = clobazam

LEV = levetiracetam

ADNFLE = autosomal dominant nocturnal frontal lobe epilepsy.

doi:10.1371/journal.pone.0151667.t001
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evident on examination. Right-sided symptoms had occurred for two days prior to testing and

had not resolved, with moderate weakness evident at the time of testing. His legs were mildly

affected and he was able to walk. No motor response could be obtained at intensities of up to

80% maximum stimulator output on either side. Higher strengths were not tolerated and he

declined further testing with TMS when well. rMT above 80% is rare in the general population;

in a study of rMT in 141 healthy people, using the same model TMS machine (but a different

coil), two people (1.4%) had rMT over 80% [27]. A1 was not taking any medication at all at the

time of testing.

A2 experienced an acute bilateral hemiplegic attack during her first TMS testing session. At

the time, she was experiencing frequent (daily) brief bilateral attacks; her mother, who was

present during testing, confirmed this attack was typical. During stimulation with an intensity

of 130% rMT, motor responses gradually decreased over a one-minute period, until no

response could be obtained. Testing was repeated five minutes later, following recovery, using

the same stimulus intensity; no similar decrement in MEPs was found. These data are shown

in Fig 1. MEP latency showed greater variability during the onset of hemiplegic symptoms

compared to after recovery, although average latency was similar (see Fig 1).

TMS between hemiplegic attacks
rMT was measured in seven people with AHC without hemiplegic symptoms, or any other par-

oxysmal episodes, at the time of testing. Average rMT was 53% of maximum machine output,

standard deviation (SD) 8.2%, range 38–64% (see Fig 2). This rMT is lower than the average

rMT in our healthy control group (61%, range 37–82%), although the difference was not statis-

tically significant (unpaired, two-tailed t-test P = 0.15). Controls with epilepsy had a signifi-

cantly higher average rMT of 69% (SD 10.0%), (unpaired, two-tailed t-test P = 0.002), implying

higher cortical excitability in the AHC group between hemiplegic attacks compared to people

with epilepsy on treatment.

There was no significant difference between cases and controls in SICI, ICF or LICI, see Fig

2 (unpaired two-tailed t-tests: AHC vs epilepsy controls—SICI, P = 0.46; ICF, P = 0.70; LICI,

P = 0.13; AHC vs healthy controls—SICI, P = 0.09; ICF, P = 0.75; LICI, P = 0.06).

Three out of five people with AHC who tolerated full testing (subjects A2, A3, A4) showed a

discrete increase or decrease in MEP amplitudes at some point during a single testing session,

without any hemiplegic symptoms, and without any change in stimulus size or other experi-

mental conditions. Fig 3 compares ten traces recorded at the start of testing (labelled “Time 1”)

with ten traces recorded after an interval (labelled “Time 2”), with a change in cortical excit-

ability detected.

The change in amplitude was statistically significant in all three as shown in Table 2.

Between Time 1 and Time 2, subjects were sitting relaxed in the testing room, undergoing TMS

testing with other paradigms.

Individual A2 also showed a statistically significant change in MEP latency from Time 1 to

Time 2, shown in Fig 3 (Time 1, mean 22.97ms, SD 0.47ms; Time 2, mean 21.67ms, SD

1.02ms; two-tailed unpaired t-test, p<0.001). Subjects A3 and A4 did not show any change in

latency. No change in excitability or latency was seen in two other participants with AHC who

tolerated full testing, or in any controls.

Time 1 and Time 2 were less than 30 minutes apart. There was no accompanying clinical

correlate, and none of these people experienced paroxysmal hemiplegic symptoms during test-

ing; the bilateral hemiplegic attack in A2 occurred during an earlier testing session. A2 exhib-

ited some dystonic posturing of the left arm between Time 1 and Time 2; recordings were

taken from the left adductor pollicis brevis muscle. There was no significant change in pre-
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stimulus muscle activation between Time 1 and Time 2 (50ms pre-stimulus EMG quantified

using a root mean squared model, compared using unpaired, 2-tailed t-tests). The site of stimu-

lation was marked on a tight fitting latex cap that was not moved between testing sessions. In

A3 and A4, the position of the coil was also confirmed using neuronavigation. There was no

change in TMS stimulus intensity. All subjects were awake and responsive during testing, with

their eyes open.

Stimulus-response curves showed significant changes from Time 1 to Time 2 in A2 (only

right hemisphere tested, P<0.001), A3 (right hemisphere P = 0.02, left hemisphere P<0.001)

and A4 (right hemisphere P = 0.004, left hemisphere no significant change). The stimulus-

response curves are illustrated in Fig 4. A3 and A4 had both hemispheres tested during the

same testing session; in A3 a significant change in cortical excitability was evident in both

hemispheres while in A4, a change was only seen in one hemisphere. Both increases and

decreases in excitability were seen, in different participants.

Testing was performed in ten epilepsy controls and ten healthy controls using an identical

experimental paradigm. None of them showed a significant change in cortical excitability dur-

ing the testing period. Stimulus-response curves and P values for epilepsy controls are shown

in Fig 5, and for healthy controls in Fig 6.

Fig 1. Motor Evoked Potentials during the onset of a hemiplegic attack.Consecutive MEPs during the onset of a hemiplegic attack (left panel) and
following recovery, five minutes after the attack (right panel), in subject A2. Arrows represent latency of individual MEPs, dashed line represents average
latency. During the onset of the attack (left panel), latency was variable, and amplitude decreased until no MEP was seen. Following recovery (right panel),
amplitude and latency were stable. Stimulus strength was 130%rMT for all trials, which were performed at 5 second intervals.

doi:10.1371/journal.pone.0151667.g001

Fig 2. Mean results for restingmotor threshold and paired pulse paradigms.Mean results for resting motor threshold (rMT), short interval intracortical
inhibition (SICI), intracortical facilitation (ICF) and long interval intracortical inhibition (LICI) for people with alternating hemiplegia of childhood (AHC) and
control subjects. There was a significant difference only in rMT (indicated by *, P = 0.002). Error bars show standard error.

doi:10.1371/journal.pone.0151667.g002
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Discussion

Our key finding is the fluctuation in cortical excitability seen in people with AHC, but not in

controls. The fluctuation appears to affect the size and latency of MEP for a given stimulus

strength and was seen in three of five people with AHC who tolerated full testing, but none of

our 20 controls. This instability was most marked during the onset of a hemiplegic attack, but

was also present without any obvious clinical correlate in asymptomatic individuals. No such

fluctuation has been reported in TMS studies across several neurological conditions; for exam-

ple, Parkinson’s disease [28], multiple sclerosis [29] and epilepsy [30]. The findings seem

Fig 3. Variability in Motor Evoked Potentials in people with AHC. Each row shows two graphs of overlaid traces of 10 individual MEPs, performed using
the same parameters, in the same subject, at different times during the same testing session. A change in MEP amplitude can be seen. In subject A2, there is
also a change in MEP latency (average latency marked with an arrow).

doi:10.1371/journal.pone.0151667.g003

Table 2. Intra-individual variation in motor evoked potential amplitudes in people with AHC.

Time 1 Time 2

Subject Mean Amplitude (mV) SD Mean Amplitude (mV) SD P value (2-tailed unpaired t-test)

A2 0.238 0.086 0.405 0.139 0.002

A3 0.137 0.065 0.053 0.024 0.008

A4 0.401 0.084 0.709 0.424 0.024

Mean amplitudes and standard deviation (SD) of MEPs at Time 1 and Time 2. Responses are to stimulation at 110% rMT. P values are for a two-tailed

unpaired t-test comparing MEP sizes at Time 1 and Time 2. Note that in this small sample there is no consistent pattern such that rMT is always bigger at

either Time 1 or Time 2.

doi:10.1371/journal.pone.0151667.t002
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Fig 4. Variability in stimulus-response curves in people with AHC. Each graph shows two stimulus-response curves from the same subject, during the
same testing session, demonstrating a change in cortical excitability. Subject 2 only tolerated testing of Right Motor Cortex, Subjects 3 and 4 were tested on
both sides. P values given in the Fig were calculated using multivariate ANOVA comparing MEP size at Time 1 and Time 2, across stimulation intensities.
Error bars show standard error.

doi:10.1371/journal.pone.0151667.g004
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unique to AHC and may constitute an electrophysiological correlate of paretic or plegic

attacks.

Two subjects were tested during a bilateral hemiplegic attack: no MEPs could be recorded in

either. In A2, a brief bilateral hemiplegic attack occurred during testing, preceded and followed

by a period of normal cortical excitability. A decline in cortical excitability during the onset of

the attack was recorded, with consecutive MEPs falling in amplitude and fluctuating in latency

until no MEP could be elicited, in parallel with the clinical development of a bilateral hemiple-

gic attack. Subject A2 was experiencing frequent brief bilateral hemiplegic attacks around the

time of testing, and her mother (who was present) confirmed that the attack was typical. Her

hemiplegic attacks do not affect alertness or level of consciousness.

A1 was tested only during a prolonged bilateral hemiplegic attack; he declined further test-

ing when his symptoms had improved. During his attack, despite stimulation of both hemi-

spheres up to the maximum tolerated (80% of total) stimulator output, no MEPs could be

recorded. None of the other participants with AHC had an rMT above 60%. Taken together,

these findings demonstrate low motor cortex excitability during hemiplegic episodes.

Three individuals with AHC showed variation in cortical excitability, without any simulta-

neous hemiplegic symptoms, as demonstrated by a change in MEP size and latency, and a shift

in the stimulus-response curve. The stimulus-response curve is a commonly tested TMS

parameter. Its stability in individuals is well documented, even when people are tested on dif-

ferent days [31,32]. Fluctuations of this nature during a single testing session have not been

previously reported and we have not encountered similar results despite significant experience

in the field.

Between attacks, people with AHC had rMT lower than our healthy volunteers, despite sev-

eral of our participants with AHC taking medication known to increase rMT. This difference

did not reach statistical significance, but is in the same direction as animal data suggesting

increased cortical excitability in AHC [22]. Our disease controls, on a similar number of medi-

cations, had a significantly higher average rMT than the AHC group. We note, however, that

medication in the two groups does not match exactly; more disease controls were taking

sodium channel blockers, which are known to increase rMT, and this may account for the dif-

ference observed. Further investigation would require a larger dataset, and ideally would

include TMS testing of people with AHC on no medication.

Results of paired pulse testing and cortical silent period were similar to controls, suggesting

that intracortical excitatory and inhibitory function is relatively unaffected by AHC. Subtle

abnormalities in these circuits might not be detected by our paradigms.

Some dynamic factors affect cortical excitability. Pre-activation of the target muscle

increases excitability but this possibility was excluded by evaluation of the EMG traces. Mental

imagery relating to movement of the target muscle can also reduce motor threshold [33], but

no mental imagery of movement was encouraged. Participants might conceivably become

increasingly relaxed as they acclimatised to testing. These factors should have applied equally

to controls.

Accidentally changing position of the TMS coil during an experiment would affect the stim-

ulus-response curve. An unintended change in position would move away from the motor hot-

spot, which should reduce MEP size. An increase (as seen in A2 and A4) could only be

generated if the motor hotspot had originally been identified incorrectly, and the coil was then

Fig 5. Stimulus-response curves for ten control subjects with epilepsy, but not AHC. Each graph shows two stimulus-response curves from the same
subject, during the same testing session, demonstrating no significant change in cortical excitability. P values were calculated using multivariate ANOVA
comparing MEP size at Time 1 and Time 2, across stimulation intensities. Error bars show standard error.

doi:10.1371/journal.pone.0151667.g005
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accidentally moved to a better stimulation site. The position of the coil was marked on a tight-

fitting cap that was kept in place throughout testing. By comparison, many have reported TMS

experiments in the same people performed on different days, which requires the motor hot-

spot to be newly identified for each test. Few of these other reported experiments used neuro-

navigation and the same spot may not have been selected when the repeat experiments were

performed in those studies. Nonetheless, those experiments achieved reliable data, and were

sensitive enough to detect small changes in cortical excitability, such as those caused by a single

dose of an anti-epileptic drug [34]. In two participants in whom we recorded a change in excit-

ability, neuronavigation confirmed that there had been no change in position of the coil. Con-

trols were tested under exactly the same conditions, and no similar change was seen. People

with AHC and controls were all tested by experienced TMS operators (WMS, GS, DH, MD).

Of three participants in whom fluctuating excitability was recorded, two had proven muta-

tions in ATP1A3 (A2, A4). No mutation was found in A3 (tested previously with whole

genome sequencing); around 20% of people with a clinical diagnosis of AHC have no detected

mutation in ATP1A3 [5]. An unknown second gene may lead to the same clinical and neuro-

physiological phenotype. Alternatively, some mutations affecting ATP1A3may be missed

using current techniques.

Two people with AHC and known ATP1A3mutations, in whom full testing was possible,

did not show fluctuating cortical excitability. Both these participants live independently and

are at the mild end of the AHC spectrum. However, more data would be required to establish

any possible link between neurophysiology and phenotype or mutation type in humans. An

effect of ATP1A3mutation type on physiology has recently been demonstrated in Xenopus

oocytes [20].

Our work has limitations. Inevitably in such a rare condition numbers are small. Only two

subjects could be tested during hemiplegic episodes. Among those with AHC, not all were able

to tolerate full testing. Severe intellectual difficulties may limit participation in TMS research

and the subject we recruited with severe intellectual difficulties (A8) could not be tested;

excluding such people may introduce selection bias. Several further individuals with AHC had

intellectual and behavioural difficulties; some found TMS uncomfortable and did not complete

testing. Those with mild intellectual difficulties who tolerated testing cooperated well. Fluctuat-

ing cortical excitability was seen in those with and without intellectual difficulties.

Some participants were taking neurologically-active medication (see Table 1). Our epilepsy

controls were also taking medication; their MEPs and stimulus-response curves do not show

similar variability (see Fig 5). Inevitably, the drugs taken by the AHC group and controls do

not match exactly; for instance, flunarizine is used in AHC but not used in epilepsy. One partic-

ipant in whom we measured a fluctuation was only taking baclofen, a drug known not to affect

MT or MEP size [34]. No similar fluctuations during a single TMS testing session have been

reported in extensive TMS data from healthy subjects given anti-epileptic and other drugs [34].

Participant A1 was on no medication when tested during a hemiplegic attack; medication

effects cannot explain his low cortical excitability, and neither can they explain the transiently

reduced cortical excitability seen in A2 during a hemiplegic episode.

rMT and the stimulus-response curve are complex and compound measures that rely on

the entire motor pathway to be functioning. There is evidence that hemiplegic attacks in AHC

have a central mechanism, but changes at any point from the motor cortex down to the

Fig 6. Stimulus-response curves for ten healthy control subjects. Each graph shows two stimulus-response curves from the same subject, during the
same testing session, demonstrating no significant change in cortical excitability. P values were calculated using multivariate ANOVA comparing MEP size at
Time 1 and Time 2, across stimulation intensities. Error bars show standard error.

doi:10.1371/journal.pone.0151667.g006
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muscles themselves could affect the recordings. ATP1A3 is expressed in the cortex but also in

other brain regions, the spinal cord, motor nerves and muscle [35,36]. A recent study of

somatosensory evoked potentials in people with AHC suggested possible disinhibition in the

somatosensory system [4]. This phenomenon also appeared to show dynamic fluctuations, par-

ticularly during hemiplegic attacks. A recent knock-in mouse model with clinical features

closely mimicking AHC showed both increased neuronal excitability (possibly predisposing to

seizures) and increased predisposition to cortical spreading depression, which was suggested as

a possible mechanism for hemiplegic attacks [22]. We recently showed abnormalities in the

ECG in AHC, with characteristics suggesting defective repolarisation reserve: the abnormalities

were dynamic, increasing in prevalence with age, but also changing over time, and even beat-

to-beat, in the same individual [3]. We propose that AHC is characterised by sub-clinical

dynamic instability in excitable tissues, which can become clinically manifest as hemiplegic epi-

sodes and occasionally dysfunction in other affected tissues. This hypothesis is testable in some

existing models, and further work will be needed to explore how these dynamic fluctuations

are caused by the mutant ATP1A3 protein.

Conclusions

This study used TMS to study motor cortex excitability in people with AHC. Low excitability

was found during hemiplegic attacks. Between attacks, cortical excitability showed asymptom-

atic fluctuations, not seen in controls. We hypothesize that the asymptomatic excitability

changes we observed were due to altered function of the ATP1A3 mutant protein, and that

larger fluctuations, either spontaneous or triggered by external factors, cause hemiplegic

attacks. It is possible that the observed fluctuation might act as a biomarker for disease activity,

providing information as a surrogate for hemiplegic attacks that occur on a much longer time

scale. Such a biomarker might be of value, for example, for trials of novel treatments for AHC.
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