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In the last few decades, a number of technological developments have advanced the spread of wearable sensors for the assessment of
humanmotion. These sensors have been also developed to assess athletes’ performance, providing useful guidelines for coaching, as
well as for injury prevention. The data from these sensors provides key performance outcomes as well as more detailed kinematic,
kinetic, and electromyographic data that provides insight into how the performance was obtained. From this perspective, inertial
sensors, force sensors, and electromyography appear to be the most appropriate wearable sensors to use. Several studies were
conducted to verify the feasibility of using wearable sensors for sport applications by using both commercially available and
customized sensors. The present study seeks to provide an overview of sport biomechanics applications found from recent
literature using wearable sensors, highlighting some information related to the used sensors and analysis methods. From the
literature review results, it appears that inertial sensors are the most widespread sensors for assessing athletes’ performance;
however, there still exist applications for force sensors and electromyography in this context. The main sport assessed in the
studies was running, even though the range of sports examined was quite high. The provided overview can be useful for
researchers, athletes, and coaches to understand the technologies currently available for sport performance assessment.

1. Introduction

Recent statistics showed that about 50% of the European
population performs a sport activity at least once a week
starting from 15 years old [1]. It is well known that sports,
or physical activities more generally, have a positive impact
on quality of life. Several studies demonstrated the benefits
in terms of life satisfaction, health, well-being, and educa-
tional and social participation [2, 3]. In addition, perhaps

due to the growing number of people who compete in a
wide variety of sports and recreational levels, the elite level
requirements are constantly increasing. Recent technologi-
cal developments have contributed to these increasing
competitive levels, with these devices used to monitor
sport training and competition performance, especially
from a sport biomechanics perspective. Sport biomechanics
represents the science that provides quantitative (and
sometimes qualitative) assessments of sport performance; in
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particular, the kinematics and kinetics of sport movements
[4]. Measuring and characterizing humanmovements during
sporting activities are nowadays a crucial aspect for coaching
programs in order to assess athletes’ performance, to
improve technique, and to prevent injuries [5–7]. In the past,
3D video analysis through optoelectronic systems repre-
sented the most widespread approach to analyse athlete
behaviour during training or competition. Unfortunately,
the 3D optoelectronic-based methodologies still have several
limitations for widespread use in sport, such as difficulties in
analysing human movement in outdoor environments, the
time spent and the skills needed for the subjects’ sensoriza-
tion and the limited calibration volume in which the analyses
can be performed [8]. The intrinsic limitations of using
reflective markers, i.e. indoor analysis and competences
required for the sensorization, have been overcome by
markerless systems or specific processing systems, such as
OpenSim or the use of artificial intelligence algorithms—for
example, the concurrent neural network [9, 10]. Nowadays,
sport biomechanics is, generally, performed by using wear-
able sensors that allow ensuring noninvasive data acquisition
during the execution of movements [11]. Furthermore, wear-
able sensors allow the sporting activity to be performed in the
natural environment, overcoming the environment limita-
tion of laboratory testing, such as the use of the optoelec-
tronic 3D system that is still considered the gold standard
for movement analysis [11, 12]. Among others, inertial
sensors [7, 13–49] force sensors [43, 50–70], and electromy-
ography probes [71–137] are widely used for objectively and
unobtrusively quantifying kinematics, kinetics, and muscle
activity during sporting activities. One promising direction
in wearable sensor use is real-time biofeedback systems
[138] that can offer concurrent augmented feedback infor-
mation to athletes and/or coaches [7, 139–142].

Although several systematic reviews already available
in literature demonstrated the reliability, validity, and utility
of inertial sensors for sport applications [8, 143, 144], an
overview on specific applications that can be implemented
by analysing kinematics, kinetics, muscle activity, and physi-
ological parameters through wearable sensors is missing.
From this perspective, we aimed to provide an overview on
applications of sport biomechanics that require the use of
wearable sensors, not only the inertial ones.

2. Materials and Methods

2.1. Search Strategy. Scopus, Web of Science, and PubMed
databases were used to perform the literature review. Only
studies that used wearable sensors for sport applications were
considered; in particular, three categories were selected
before the literature review: inertial sensors, force sensors,
and electromyographic units. The start and the end of the
literature review were July 2019 and November 2019, respec-
tively. The following base keywords were used for the search:
sports, wearable sensors, wearable devices, biomechanics, and
wireless. More specifically, as regards inertial sensors, the
following keywords were added: IMU, inertial sensors,
motion sensors, and wearable IMU. Concerning the force
measurements, force and pressure were used as additional

keywords. As regards electromyography applications, these
further keywords were used: EMG, motor module, muscle
coordination, muscle synergies, muscles, electromyography,
patterned control, activation patterns, locomotor primitives,
and modular organization. In order to avoid bias in the
search due to variations of root words, we also considered
wildcard symbols, such as hyphens or inverted commas.
The bibliography of the found studies was further checked
in order to include relevant works accidentally omitted from
the keyword-based research [11].

2.2. Inclusion Criteria. Studies were initially selected based on
the relevance of the title and abstract. Thus, studies had to
meet the following inclusion criteria: (i) only studies written
in English were considered for the successive analysis, (ii)
only studies published from 2010 onwards were included
in order to avoid adding in the review outdated technolo-
gies, and (iii) conference proceedings were deleted if the
same authors published also a journal paper regarding the
same topic.

2.3. Data Extraction.Only studies that passed all the previous
inclusion criteria were downloaded and managed through
the Mendeley Desktop system. Since the review aimed at
providing an overview of several wearable sensors used for
sports, the studies were firstly categorized based on the type
of wearable sensors used. The following information were
gathered from each paper: (i) the aims, (ii) the examined
sports, (iii) the kind of participants (e.g., inexperienced,
recreational, and elite), (iv) the experimental setup, (v) how
data was processed and analysed, and (vi) the results and
conclusions. Studies that did not involve human subjects
were automatically excluded.

2.4. Quality Assessment. The quality of each study was
assessed in terms of internal, statistical, and external validity
using the reported questionnaire [145]. All the authors were
asked to answer an 18-item checklist, which is an optimiza-
tion of similar ones used for reviews [146–150]. In particular,
the checklist (Table 1) allowed us to assess information on
internal (question numbers 1, 3, 4, 6, 7, 9, 12, 13, and 14),
statistical (question numbers 15, 16, 17, and 18), and external
(question numbers 2, 3, 5, 6, 8, 10, and 11) validity. The
authors assigned a positive (one point) or negative (zero
points) to each questionnaire item, and the final score was
calculated by summing the assigned points. A study was con-
sidered as “high-quality” if it reached a score equal or greater
than 11 (~61% of the maximum) in the evaluation of the
majority of authors [147, 149]. Among the articles identified
as “high-quality,” the authors selected a subset of papers that
would be more fully examined in Results and Discussions.
This selection was performed by considering only the studies
that achieved a quality score of at least 15, in order to include
studies in which the risk of bias was low.

For the sake of clarity, A.K. and A.U. performed the
review of the inertial sensors, C.U. and E.K. took care of
the force sensors, A.S. and J.T. performed the review of
the EMG sensors, and J.T., J.K., and S.R. supervised the
data quality assessment in order to avoid bias.
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3. Results and Discussions

3.1. Inertial Sensors. The use of inertial sensors and wearable
sensor devices in sports has boomed over the last decade.
This is demonstrated by a simple search on Scopus using
the keywords “sports” and “inertial sensors” that identified
a total of 37 articles published in January to May 2020, a
value that is identical to the number of articles found using
the same search terms over the period 2004-2009. Modern
inertial sensors are miniature low-power chips integrated
into wearable sensor devices or smart equipment. Today’s
inertial sensors predominantly fall into the group of micro-
electromechanical systems (MEMS) that are portable, minia-
ture, lightweight, inexpensive, and low power and generally

include any combination of accelerometer, gyroscope, and
magnetometer.

Inertial sensors are used for the measurement of static
and dynamic states of the athlete’s body. In the static state,
some of the most important parameters are spatial position,
orientation, posture, angles between body parts, etc. In the
dynamic state, additional important parameters may include
displacement, trajectory, velocity, linear acceleration, jerk
(change of acceleration), angular velocity, angular accelera-
tion, etc. While linear acceleration (accelerometer), angular
velocity (gyroscope), and orientation (magnetometer) can
all be measured directly, all other kinematic parameters must
be derived from one or more measured quantities. For exam-
ple, the velocity of a body is calculated by integrating its
acceleration over time and its rotation angle is calculated by
integrating its angular velocity over time. The measured
and the derived results can be affected by inaccuracies of
MEMS sensors. The discussion of this topic is not in the
scope of this paper, but some useful guidelines on the proper
use of MEMS inertial sensors can be found in [151–153].

The number of papers dealing with the use of inertial
sensors in sport is far too great to process; a simple search
in the SCOPUS database alone yielded over 1700 such
papers. We have narrowed it down, as described in the search
strategy in Section 2. The initial search, using the defined
search terms, yielded 162 papers. After the author, duplicate,
and language checks, 154 papers remained. After removing
the older conference papers and conference papers that were
later published in a journal, we have read the abstract of the
remaining 113 papers. We have then excluded all review
papers and articles concerning inertial, force, and EMG
sensors, human activity detection, and detection of human
states. From the remaining 64 papers, we excluded all general
and non-sport-specific papers, which left 42 papers for
thorough reading and analysis. The selection process is
shown in Figure 1.

After analysing the chosen papers, we describe the use of
inertial sensors based on the sport activity. More specifically,
Table 2 shows the distribution of the included studies based
on the specific sport.

Wearable sensor devices with integrated inertial sensors
can be used for measuring and evaluating practically any
activity in sport. Due to a large number of possible activities,
we discuss the use of inertial sensors on a few groups of
examples related to different sports.

Very frequent use of inertial sensors for various purposes
was found in walking and running actions. The cyclic nature
of such movements allows the use of a wide number of anal-
ysis techniques for the extraction of kinematic parameters or
other results of interest. Analysing walking was perhaps the
least difficult task within this group of actions, and there were
numerous studies in this area. Flores-Morales et al. [21] used
a mobile sensor device with six inertial sensors attached to
the lower extremities of subjects and analysed the acquired
data with the OpenSim system, which is open-source soft-
ware, to create and analyse dynamic simulations of move-
ment. An interesting approach, using the autocorrelation
function for the assessment of regularity of cyclic human
movements, including gait, was presented in [22]. A more

Table 1: Criteria for quality assessment of the internal validity (IV),
statistical validity (SV), and external validity (EV).

Criteria
Assessment
property

Aim of the work

(1)
Description of a specific, clearly stated
purpose

IV

(2)
The research question is scientifically
relevant

EV

Inclusion criteria (selection bias)

(3)
Description of inclusion and exclusion
criteria

IV-EV

(4)
Inclusion and exclusion criteria are the same
for all tested groups

IV

(5)
Inclusion and exclusion criteria reflect the
general population

EV

Data collection (performance bias)

(6)
Data collection is clearly described and
reliable

IV-EV

(7)
Same data collection method used for all the
athletes

IV

(8) The used setup is wearable EV

Data loss (attrition bias)

(9) Different data loss between groups IV

(10) Data loss < 20% EV

Outcome (detection bias)

(11) Outcomes allow tangible application EV

(12) Outcomes are the same for all the athletes IV

Data presentation

(13)
Frequencies of most important outcome
measures

IV

(14)
Presentation of the data is sufficient to assess
the adequacy of the analysis

IV

Statistical approach

(15) Appropriate statistical analysis techniques SV

(16) Clearly state the statistical test used SV

(17)
State and reference the analytical software
used

SV

(18) At least 10 subjects SV
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energetic version of walking gait is Nordic walking. Nordic
walking has been derived from snow skiing, whereby the
individual uses handheld poles using a coordination pattern
similar to cross-country skiing that requires substantially
more upper body muscular involvement than typical walking
movements. Derungs et al. [23] used 14 IMUs and regression

methods for the estimation of acquired skills and detection of
potential coordination mistakes in Nordic walking. The next
step is using inertial sensors occurring in running actions.
Since running is a more dynamic form of gait than walking,
the requirements for sensors are higher. The determination
of the foot strike pattern was the main idea in [24]. The
authors used accelerometers and gyroscopes to calculate the
stride length and determine the landing strategies at three
running speeds. Similarly, Zrenner and colleagues [25] com-
pared different statistical, DSP (Digital Signal Processing),
and deep learning algorithms used for calculating the velocity
and stride length in running using IMUs. Muniz-Pardos et al.
[26] aimed to evaluate the running economy and foot
mechanics in elite runners, which were determined through
the use of an inertial sensor worn on the foot of the runners.
The most dynamic action in this gait group is sprint. An
accelerometer positioned on the sprinters’ waist was used in
[27] for the assessment of sprint based on the regression
machine learning method. Mertens et al. [28] employed
sophisticated validation methods including laser pistols and
real-time kinematic GPS systems for the measurement of
the sprint velocity using only one IMU with an integrated
accelerometer and gyroscope.

Another group of activities, where inertial sensors can be
extremely beneficial, are racket and bat sports. A typical use
of IMU in such actions is on the hand/wrist/arm of the ath-
lete or integrated into the equipment. Wang and colleagues
[29] devised an Internet of Things (IoT) platform for use in
racket sports. They placed an IMU on the wrist of the athlete
and processed the acquired data through the machine

Database searching
n = 162

Records a�er duplicates
removed
n = 154

Inertial
sensors

Records screened
(excluded out-of-scope

journals)
n = 142

Records excluded:
(i) Conference papers before 2016

(ii) Conference papers later published in
journals n = 29

Full-text articles
assessed for eligibility

n = 113

Studies
included in

qualitative analysis
n = 42

(i) Papers dealing with rehabilitation
(ii) Reviews

(iii) Papers dealing with activity recognition
(iv) Medical applications n = 71

Records excluded:

Figure 1: Selection process of papers focused on inertial sensors. Blue block represents the identification step, yellow blocks the screening
step, red blocks the eligibility step, and green block the inclusion step.

Table 2: References of inertial sensor measurement based on
different analysed sports.

Sport/function Number of studies References

Gait 2 [21, 22]

Nordic walking 1 [23]

Running 3 [24–26]

Sprint 2 [27, 28]

Badminton 1 [29]

Table tennis 1 [30]

Tennis 3 [31–33]

Baseball 2 [34, 35]

Basketball 3 [37–39]

Volleyball 1 [36]

Rugby union 2 [154, 155]

Cross-country skiing 1 [40]

Roller skiing 1 [41]

Ski jumping 1 [42]

Alpine skiing 3 [43–45]

Swimming 2 [46, 47]
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learning methods. They performed skill assessments that
sought to differentiate between professional, subelite, and
amateur badminton players just from their stroke perfor-
mance. Similar approaches and methods were used in [30],
where authors devised a system with three IMUs attached
to the hand, wrist, and elbow of the athlete. The system
employed deep learning methods for providing useful infor-
mation to coaches in table tennis practice. Among racket
sports, tennis seems to be the most popular for using inertial
sensor systems. Yang et al. [31] used two IMU devices
attached to the wrist and the knee of the athlete to evaluate
the tennis serve performance through the support vector
machine method. Very similar goals were presented in [32],
where authors used three gyroscope sensors attached to the
hand, upper arm, and chest of the athlete. They used DSP,
statistical, and simulation methods for the assessment of
the first serve skill in tennis. Stroke detection and classifica-
tion were the main result of the paper [33]. The authors used
a wrist-worn IMU and decision tree machine learning
methods to detect and classify three most common tennis
strokes: forehand, backhand, and serve with 98.1% accuracy.
Human movement coordination assessment with the use of
three IMUs at the hip, wrist, and chest of the athlete was
presented in [34]. The authors evaluated the baseball swing
movement based on the template matching method and give
feedback to the athletes and coaches. Capturing fast athletic
biomechanics was the core of the work presented in [35],
whereby IMUs were positioned on the chest, upper arm,
wrist, hand, and waist to acquire high dynamic movements
with the combination of the multirange accelerometers and
gyroscopes. For the high-dynamic movements, the acceler-
ometers and gyroscopes with ±200 g

0
and ±20000°/s were

used, respectively. For the low-dynamic movements, the
accelerometers and gyroscopes with ±16 g

0
and ±1000°/s

were used, respectively. The result of their work was a wear-
able dual-range sensor platform that enabled an investigation
of high-level, very wide dynamic-range biomechanical
parameters describing the baseball swing.

Team sports are also very interesting for research but may
get complex because of the interactions, unpredictability, and
nonuniformity of athlete actions. Studies of the sport activi-
ties in group sports were mostly limited to isolated specific
movements of one athlete. Wang and colleagues [36] used
one IMU at the wrist of the athlete to assess the skill level
of a volleyball spiker. The recorded data was classified into
three levels: elite, subelite, and amateur volleyball players
with 94% accuracy. Basketball was also popular with
researchers; Ma et al. [37] and Meng et al. [38] used a
wrist-worn sensor to recognize and classify basketball move-
ments using support vector machine classification methods.
In [37], nine kinds of basic basketball movements, such as
stand, walk, run, jump, in situ dribble, dribble while walking,
dribble while running, set shot, and jump shot, were recog-
nized. Shankar et al. [39] described the mobile system that
enabled remote monitoring of shooting form of a basketball
player. One IMU was attached to the wrist of the athlete that
collects shooting data, and a heuristic classification method
was used to estimate the shooting performance according
to the efficiency calculated as the ratio of the shots made to

the total number of shots taken by the player in a given range
of flick velocities and loading angles. Results show that the
player’s shooting action improved and became more con-
sistent within his preferred trajectory over the course of
3 weeks of training with the device. With wider use of
machine learning algorithms in team sports, new possibil-
ities of detecting and identifying group events at training
and matches have become possible. Chambers and colleagues
[154, 155] have designed algorithms based on the random
forest for automatic detection of tackle, ruck, and scrum
events in rugby union. During the match play, they achieved
the classification accuracy of 79.4% (ruck), 81.0% (tackle),
and 93.6% (scrum).

The next group of activities is sports where athletes move
themselves with the aid of different equipment. We chose to
report a few studies within the group of skiing sports, where
athletes use different forms of skis to perform the desired
action. The authors of [40] used deep learning techniques
to analyse the data from 17 IMU devices attached to the
cross-country skier. The result was the classification of the
eight classical and skating style cross-country techniques
based on the data from 5 most relevant IMUs with the accu-
racy of 87.2% and 95.1% for the flat and natural course,
respectively. Ski jumping is an interesting winter sport disci-
pline from the perspective of measurement of kinetic and
kinematic parameters. Bessone et al. [42] used 11 IMUs to
determine the possible correlation between kinematics and
kinetics during landing. Analysis methods included DSP, sta-
tistics, and iSEN system software. The results can be used
during daily training, giving specific feedback on the ways
of reducing the vertical ground reaction force at landing.
The most complex and dynamic of the studied winter skiing
sports is alpine skiing. Analysis of motion of the lower
extremities during the carving technique is performed in
[43], where authors used 17 IMUs placed over the skier’s
body. The acquired data was processed and analysed by
DSP algorithms, motion analysis capture system, and multi-
scale computer simulation. Fasel et al. [44] used 6 IMUs to
capture the three-dimensional body and centre of mass kine-
matics of an alpine skier, with this IMU data augmented by a
differential GPS system giving the location of the skier’s
COM on the skiing slope. Yu and colleagues [45] studied
the potential of using IMU sensors for performance analysis
of alpine skiers. They used 16 IMUs to find the best location
of the sensor. The findings, based on the statistical analyses
and the hierarchical clustering methods, suggested that the
best location was the pelvis, as this may quite accurately
reflect the total body’s COM position.

From a number of implementation perspectives, the most
challenging activities for the application of inertial units are
water sports. For example, wearable sensor devices must be
waterproof; therefore, their design and construction are more
challenging and expensive. Also, radio signals do not pene-
trate water well; therefore, wireless communication with a
sensor device underwater is practically impossible. Wang
et al. [46] used one 9 degree-of-freedom IMU to capture
the posture of the human lumbar spine during swimming.
In order to quantify the spinal motion during swimming,
they used an orientation estimation algorithm and a human
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biomechanical model. Their sensor system collected the data
offline and transferred it wirelessly to the PC after swimming,
when the swimmer gets out of the water. Lecoutere and Puers
[47] used a low-power wireless sensor network and wearable
sensor device attached to the head of the swimmer to track
elite swimmers in real-time. Their wearable sensor device
uses gyroscope and accelerometer signals to calculate the
most important swimming parameters locally and sends
them to the PC at the times when the swimmer’s head is
out of the water. A similar approach was performed by Kos
and Umek [7], where one IMU with an accelerometer and
gyroscope was attached to the low back to acquire a number
of the most relevant swimming parameters for all four swim-
ming disciplines. Their sensor device recorded the swimming
data offline and transfers them to the PC after swimming
using a wired connection.

3.2. Force Measurement Devices. Forces acting on (or gener-
ated by) an athlete can provide valuable insight into their
likely performance and injury risk. Variables based on
stand-alone force measurements include centre of pressure
(CoP) [50], direction of the force as a proxy measure of
efficiency [51], and impact forces [52]. Combined with
kinematic measurements, force data have been used to
estimate mechanical power [53], joint kinetics [43, 54], and
muscle forces [55]. Analysing kinetics in the laboratory is
mostly done with force plates which are typically embedded
in the floor. This setup is however static and often does not
allow the kinetics to be assessed during the actual sporting
activity due to the inability to instrument the playing surface

with a sufficient number of force platforms. Measurements of
forces in sport applications therefore require wearable force
measurement devices or specifically instrumented surfaces
such as starting blocks in swimming or athletics which can
only provide data on the race start. The selection process
for paper inclusion is reported in Figure 2.

Table 3 shows the distribution of the included studies
based on the specific sport.

The literature on wearable force devices can roughly
be divided into studies that use commercially available
(off-the-shelf) pressure sensors and studies that use
custom-built devices. Articles were selected in which the
wearable systems were used in a setting that evaluated the
biomechanics of athletes.

Database searching
n = 779

Records a�er duplicates
removed
n = 660

Force
sensors

Records screened
(excluded out-of-scope

journal)
n = 140

(i) Conference papers before 2016

(ii) Conference papers later published in
journals n = 73

(i) Not sport environments
(ii) Papers without experimental tests
(iii) Tests with less than two athletes

n = 53

Full-text articles
assessed for eligibility

n = 67

Studies
included in

qualitative analysis
n = 14

Records excluded:

Records excluded:

Figure 2: Selection process of papers focused on force sensors. Blue block represents the identification step, yellow blocks the screening step,
red blocks the eligibility step, and green block the inclusion step.

Table 3: References of force measurement based on different
analysed sports.

Sport Number of studies References

Ice hockey 1 [50]

Baseball 1 [51]

Karate 1 [52]

Skiing 2 [43, 70]

Speed skating 3 [54, 60, 61]

Field hockey 1 [57]

Kayaking 3 [56, 62, 68]

Horse riding 1 [67]

Golf 1 [69]
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3.2.1. Commercially Available Systems. Pressure sensors are
commercially available measurement devices that can be
directly applied in an experimental sport setup. A list of com-
mercially available devices used in literature is reported in
Table 4. Pressure sensors convert physical pressure into an
electric current or voltage. To estimate force, the pressure is
multiplied by the area over which that pressure is applied.
The number of sensors (how much target area is covered by
the sensors) is therefore an important determinant for the
accuracy of the system. Apart from the number of sensors,
accuracy of the individual pressure sensors is determined
by resolution, hysteresis, repeatability, and linearity. In the
case of insoles, fit inside the shoes is important. In skating
and skiing, shoes are often tight fitting, custom made, and
thermoformed, which requires insoles that are customizable,
for example, with the option to cut them in the right shape. A
limitation of pressure sensors is that they measure the
pressure only in one direction. A major advantage of these
portable sensors is that they can be used in many different
environments and sports.

As regards the evaluation of the CoP, Buckeridge et al.
(2015) used insoles (Pedar X, Novel, Munich, Germany) to
determine the CoP and foot pressure in elite and recreational
ice hockey players in acceleration and steady-state forward
skating. Although the plantar forces measured by the insoles
were not different between elite and recreational athletes, a
finding consistent with speed skating studies [58, 59], the
CoP was different between the level of athletes. Elite players
had their CoP more to the forefoot compared to recreational
players during steady-state skating [50]. Although in this
study only forward skating was considered, this measure-
ment setup with insoles is applicable for the assessment of
other locomotive activities performed in ice hockey games.

As regards the evaluation of the joint kinetics, two studies
in literature used pressure insoles (Pedar X, Novel, Munich,
Germany) in combination with an MVNmotion capture suit
comprising 17 IMUs (Xsens, Enschede, The Netherlands) to
analyse joint kinetics in skiing [43] and short-track speed
skating [54]. Combining kinematics from the Xsens suit with
the measured plantar forces from the pressure insoles, an
inverse dynamics analysis was performed to obtain the joint
kinetics (intersegmental rigid body kinematics). Lee et al.
[43] showed that hip, knee, and ankle joint forces and
moments, calculated based on a standard inverse dynamics
analysis using the motion capture data and ground reaction
force, for middle-turn were higher compared to those for
short-turn in ski carving. Purevsuren et al. [54] concluded
that short-trackers have high internal rotational moments
when the knee is flexed. This conclusion might however not
be valid since pressure insoles can only estimate the force
component normal to the plantar surface and hence moment
(free moment) and force components parallel to the plantar
surface. Instead, forces in the horizontal plane are significant
in short-track speed skating [60]. Moreover, only straight
forward skating was incorporated in the analysis, whereas
most of the time skaters are either entering, exiting, or inside
a curve [60]. The researchers may have been limited in mea-
suring this part of the rink due to the high centrifugal forces
that disturb the IMU-based measurement systems [61].

Apart from inaccuracies in force measurement, IMU-based
(joint) kinematics are more inaccurate than optoelectronic
measurement systems, which are currently regarded as “gold
standard” [12]. In speed skating, a sensitivity analysis of joint
power estimation using an inverse dynamics model of a
speed skater showed that the model was most sensitive to
the COM position of the trunk and the lean and steer angle
of the skates (rotating the locally measured forces into a
global frame). A 5° inaccuracy of the skate’s steer angle,
which is likely to occur in IMU-based systems [61, 156],
resulted in approximatively 9.5% maximum error in the joint
power estimations compared to optoelectronic systems. It
should also be acknowledged that the inverse dynamics
approach, even in laboratory situations, has some limita-
tions relating to a variety of assumptions (e.g., use of rigid
body segments) that may result in errors of approximately
10–20%. The reliability and value of this combination of
systems for sport performance enhancement may still be
somewhat limited.

As regards contact forces, commercially available pres-
sure sensing components have also been integrated into
custom arrangements for force sensing in specific applica-
tions. Jennings et al. [57] created a linear array of individ-
ual force-resistive pressure sensors (Flexiforce, A201-25,
Tekscan) mounted to the head of a field hockey stick to
measure the forces and CoP between the ball and stick
during a goal shooting skill called a drag flick. The study
determined that force and location of the ball along the
stick were important for controlling the trajectory of the
ball during the drag flick, and the simple sensing array
was able to distinguish the skill level among athletes based
on consistency of the force patterns and decreasing overall
contact time [57].

An alternative to the insole systems discussed above,
shoes or footplates may be instrumented with a custom
arrangement of sensors. Sturm et al. [56, 62] mounted a rect-
angular array of individual force-resistive pressure sensors
(Flexiforce, A201-100, Tekscan) to measure foot force
transfer from kayaking athletes into the boat. In kayak racing,
foot force has an important effect on the whole-body
rhythm/movement pattern used to “kick” the boat forward,
and this is evident in the alternating push-pull force dis-
played within each foot and also by the 180° phase difference
in force timing between left and right feet.

3.2.2. Custom Systems. While pressure sensors are valuable
for assessing normal force distributions, they cannot measure
out-of-plane forces. Several studies have therefore con-
structed custom measurement devices to examine forces in
three dimensions. Constructions usually incorporate com-
mercially available load cells or strain gauges.

3.2.3. Instrumented Impact Plates. In the classic sense of a
wearable device, Saponara [52] developed a wireless instru-
mented plate designed to be worn within the athlete clothing
for measuring contact force during martial art sparring. The
system comprised a matrix of strain gauge sensors to sense
deformation of a thin aluminium plate under load from a
kick or punch. Depending on the specific sport usage, several
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plates could be worn on the chest, shoulders, legs, and arms
and linked by a microcontroller (HX711, Sparkfun) and
Bluetooth to a single data acquisition program. They tested
their system with a broad range of karate athletes, measuring
contact time and force of strikes. The authors defined two
performance metrics (kick-strength-to-weight ratio (KSWR)
and punch-strength-to-weight ratio (PSWR)) and gave feed-
back to athletes using a grading scale from poor to excellent.
The authors found a correlation between system measure-
ments, effectiveness of leg/arm movement, and athlete skill
level (i.e., years of experience). The authors suggest that the
coordinative skill of the more experienced athletes allows
them to more efficiently utilise the kinetic link principle,
thereby ensuring a greater transfer force through the kinetic
chain to the feet and hands when performing kicks and
punches [52].

3.2.4. Instrumented Speed Skates. Although skates had been
instrumented prior to 2010 using strain gauges [63–66],
van der Kruk et al. built the first wireless instrumented speed
skates for short-track (fixed blade) [60] and long-track
(klapskates) [58] speed skating. The instrumentation is
located in the bridge (klapskates) and cups (fixed blade) of
the skates, each consisting of a sandwich construction that
clasps piezoelectric three-component force sensors (Kistler
9602, Kistler Group, Winterthur, Switzerland). This allows
measurement of the lateral and normal forces on the skates.
The output of the sensor is logged on a SD card and sent over
Bluetooth via a data logger that is attached to the skates. The
instrumented short-track skates were used in the routine
training of Olympic athletes. Within this homogenous group,
higher-ranked male skaters tended to have a CoP more to the
rear of the blade and lower lateral forces for several phases
(curve, leaving the curve, and entering the straight) of skating
[60]. Females showed a trend towards applying higher body
weight normalised lateral forces than males, while skating
at lower velocities, which is suggested to reflect body weight,
muscular strength, and/or motor control differences between
females and males while skating on the same blades [60].
Since lateral forces and the CoP determine the heading
(steering) of the skate, this seems to be an important perfor-
mance indicator that can be tracked with these wearable force
platforms. Limitations for the current design of these skates
are the additional weight, and, in the case of the instrumented
short-track skate, the slight height difference may alter the
feel and performance of the typical movement.

3.2.5. Instrumented Saddle. Analogous to [43, 54], Walker
et al. [67] combined 5 IMUs (Xsens, Enschede, The
Netherlands) to record gross body movement with axial
load cells mounted within the stirrups of a horse racing
saddle, underneath the jockey’s feet. They compared the
kinematics and kinetics of jockeys while galloping on a
riding simulator with actual horse racing. The authors found
that stirrup force amplitudes on real horses were more than
twice those recorded on the simulator and were asymmetric,
with higher peak forces applied to the stirrup opposite the
horse’s lead leg while the jockey’s pelvis displaced laterally
away from the lead leg, suggesting that jockeys use their legs

and hips to isolate their centre of mass and dampen the
effects of the horse’s movement [67].

3.2.6. Instrumented Baseball. Often in ball sports, a strictly
wearable device does not provide all the information of
interest. This is especially true in ball throwing sports, like
baseball, where a pitcher’s choice of pitch type dictates finger
position around the ball and effects the forces imparted by
the fingers onto the baseball and the resulting trajectory of
a pitch [51]. Kinoshita et al. (2017) embedded a triaxial load
cell (USL06-H5-500N-C, Tec Gihan Co., Kyoto, Japan) in a
Japanese league regulation baseball and recorded timing
and amplitude of finger forces during fastball pitches. The
embedded transducer was wired by a quick release mecha-
nism to a data logger worn on the athlete’s wrist, such that
the connection would detach when the ball left the pitcher’s
hand [51]. The authors found that all fingers generated a
peak force amplitude 37-43ms before ball release, while the
index and middle fingers displayed bimodal force patterns
with an additional peak 6-7ms before ball release. Peak ball
reaction force exceeded 80% of maximum finger strength,
and there was a linear relationship of peak force with ball
velocity. Because of space limitations within the ball, they
were unable to record all finger forces simultaneously.
Instead, the hand was carefully repositioned between tri-
als such that the appropriate finger of interest would
overlay the force sensor. This does however introduce the
possibility of crosstalk, which the authors acknowledge as a
study limitation.

3.2.7. Instrumented Paddles. In kayaking, the athlete’s paddle
acts effectively as an extension of their arm for force genera-
tion. Providing feedback to athletes and coaches about the
magnitude and shape of paddle force-time curves at different
paces can have implications for performance and training.
Two research groups [56, 68] independently developed
paddle-mounted force systems where the shaft was instru-
mented with two sensor nodes, each comprising strain
gauges (HBM, Darmstadt, Germany) in a Wheatstone bridge
configuration. The FPaddle system developed by Gomes et al.
[68] used 2 strain gauges directly bonded to the carbon fibre
composite paddle with nodes located 80 cm from each blade
tip, while Sturm et al. [56, 62] created a self-contained system
with 4 strain gauges bonded to a cantilever beam and held in
place on the paddle by a clamp mechanism. Gomes et al. [68]
showed that on-water force-time profiles change in magni-
tude and shape with the increased stroke rate, with higher
mean paddle force more strongly correlated with increased
kayak velocity than peak paddle force. The authors also
reported an efficiencymetric—the ratio of mean force to peak
force—which reflected shape changes in the force-time pro-
files and related this to stroke impulse (i.e., the integral of
the force-time profile).

3.2.8. Future Implications. In addition to limitations of data
transfer bandwidth and sampling rate, studies utilising
customised external equipment still indicate that the ecolog-
ical validity of these studies is still not perfect. Specifically,
athletes were still aware of the additional weight in the
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equipment and concerned that this may lead to performance
reductions, meaning the implementation of these tools in
competition scenarios may not be currently advisable.
Jennings et al. [57] noted that additional instrumentation
mounted to the field hockey stick may effect ball contact
and trajectory. Kinoshita et al. [51] quantified the decline
in ball velocity (11% of self-reported max speed) as a
function of the added load cell weight, which as a result
could not be used in a regulation match. The authors
also discussed concerns about impact forces of the ball
against a bat or catcher’s mitt and the potential for fatally
compromising the instrumentation. Lastly, as with all on-
water, ice, or snow-oriented sensor packages, waterproofing
electronics is necessary but can be expensive and heavy,
and if the sealing was to become compromised, also poten-
tially hazardous [56, 60, 68].

3.3. Surface Electromyography. The applications of surface
electromyography (sEMG) in sport science have become
increasingly common and diversified in the last decade
[157]. Possibly also thanks to the advent of wireless systems,
sEMG is nowadays largely used not only as a descriptive tool
but also in quantitative studies as well. Bipolar (i.e., employ-
ing a set of two electrodes) setups are popular in sport science
to record noninvasively the summation of action potentials
over the skin, giving as output an analogue signal that
describes the electric potential difference (voltage) detected
between the two electrodes [157]. Through specific postpro-
cessing procedures, such as rectification and filtering of the
signal, researchers can use multimuscle sEMG recordings to

describe and/or quantify coordinated activations orches-
trated by the central nervous system (CNS) to produce and
control movement [71–137]. Of the 67 studies considered
in this section, around half followed classic approaches for
the analysis of sEMG [71–74, 76–115], leading to the compu-
tation of amplitude, timing, and frequency parameters.
Another 31 adopted the muscle synergy framework to ana-
lyse the data [75, 116–136]. The selection process for the
paper inclusion is shown in Figure 3.

3.3.1. Amplitude, Timing, and Frequency Content of sEMG.
The most common approach to the analysis of sEMG signals
is the assessment of the maximum or mean amplitude of the
envelope, with or without normalisation to the maximum
voluntary contraction [71–74, 76–87, 89–95, 97–106]. The
analysis of timing is also common in sport science, with usual
approaches ranging from the detection of the onset and offset
of sEMG activity and global and local maxima detection to
examination of the entire time course using statistical para-
metric mapping [72–74, 76–79, 81, 83, 89–93, 96, 100, 102].
Other advanced approaches include the analysis of the
signal’s frequency content, especially for fatigue estimation
[79, 106], classification of sEMG patterns through k-means
clustering or support vector machines [82, 88], and nonlinear
analysis of the signals using the Lyapunov exponents [102].
The majority of the studies included the recordings of less
than nine muscles [72, 73, 77–85, 87, 91–95, 98–106, 158],
while only a few considered a number between nine
and 16 [74, 76, 86, 88, 90, 96] or bigger than 16 [71, 97].
Most of the studies considered muscles of the lower limb

Database searching
n = 223

Records a�er duplicates
removed
n = 223

EMG
sensors

Records screened
(excluded out-of-scope

journals)
n = 223

Full-text articles
assessed for eligibility

n = 223

Studies
included in

qualitative analysis
n = 67

Records excluded:
(i) Not sport environments

(ii) Papers without experimental tests
(iii) Not focused on EMG n = 153

Figure 3: Selection process of papers focused on EMG sensors. Blue block represents the identification step, yellow blocks the screening step,
red blocks the eligibility step, and green block the inclusion step.
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[71–73, 77, 78, 81, 83–85, 89, 90, 92, 93, 95, 96, 98, 104, 106,
115], with the remaining focussing on the trunk and/or
upper limb [74, 76, 80, 82, 87, 94, 100, 102, 103, 106] or both
the upper and lower body [79, 86, 88, 91, 97, 99, 101]. Bilat-
eral recordings (involving the left and right hand side of the
same muscles) were less common [71, 74, 77, 82, 86, 88, 90,
97, 98, 101] than ipsilateral [72, 73, 76, 78–81, 83–85, 87,
89, 91–96, 99, 100].

3.3.2. Muscle Synergies. The concept of muscle synergies is
based on the fact that the CNS must constantly deal with
an overabundant number of degrees of freedom [159]. Based
on the seminal work of Bernstein [159], Bizzi and colleagues
proposed that the CNS might simplify the production and
control of movement by activating muscles in groups rather
than individually, in common patterns called synergies
[160]. Even though a direct experimental proof for this the-
ory is currently missing, muscle synergies are increasingly
being used in sport science to either speculate on the physio-
logical meaning of coordinated muscle activation patterns or
present multimuscle sEMG recordings in a compact way.
Muscle synergies are in fact obtained by the factorisation of
sEMG signals, a numerical procedure that allows for the
reduction of dimensionality of big data sets through decom-
position techniques such as nonnegative matrix factorisation
(NMF), principal component analysis (PCA), independent
component analysis, and factor analysis [116, 127, 161]. All
of these methods reduce sEMG time series to a set of motor
modules (time-invariant muscle weights), which describe
the relative contribution of single muscles within a specific
synergy and a set of motor primitives (time-dependent coef-
ficients), representing the common activation patterns. Stud-
ies on the reliability of muscle synergy extraction in relation
to sport activities are scarce but nevertheless present in the
considered literature [108, 116, 127, 128]. The most common
family of algorithms used to reduce the dimensionality of the
data was NMF [107, 108, 110–114, 116–125, 127–133, 135–
137], with a few studies also using PCA to extract synergistic
muscle activations [75, 109, 126, 134]. The total number of
muscle activities recorded varied heavily across the consid-

ered studies. We found a range in the number of muscles
recorded across these studies, including one to eight [108,
109, 124, 126, 131, 133], between nine and 16 [75, 107,
110–114, 116, 119, 121–123, 125, 128, 130, 132, 134–137],
and between 16 and 25 muscles [117, 118, 120, 127, 129].
Bilateral recordings were less common [107, 108, 117, 119,
129] than ipsilateral [75, 109-114, 116, 118, 120–128, , 128,
130–137]. Most of the studies considered muscles of the
lower limb [75, 108, 109, 112–114, 116, 119, 123, 124, 126,
130, 133, 136], even though almost as many muscles are
included from the trunk and/or upper limb as well [110,
111, 117, 118, 120, 125, 127–129, 131, 132, 134]. Only three
studies focused exclusively on the upper body [107, 135, 137].

3.3.3. Sport Application with EMG. The studies considered
analysed a rather broad spectrum of sport activities
(Table 5). The most represented activity was running,
although this was assessed in a variety of conditions includ-
ing overground or on treadmill, shod or barefoot, level or
incline, at different speeds, and on even or uneven surfaces
[83, 84, 89, 90, 92, 93, 95, 96, 111, 113, 116, 118, 123, 126,
127, 129, 130, 133, 136]. A lot of attention was also given to
resistance training or weightlifting [78, 80, 81, 85, 86, 94,
97, 102, 103, 105, 108, 125, 128] and to cycling or handcy-
cling [71–76, 104, 109, 112, 114, 119, 124]. Swimming is also
getting increasing interest in recent years [82, 87, 91, 106,
131] as are ball sports such as softball, baseball, or cricket
[98–101]. We found that less attention was given to sports
such as rowing [120, 134], golf [88, 117], rugby or American
football [77, 137], cross-country skiing [79], gymnastics
[135], ice hockey [132], pole vaulting [107], and skateboard-
ing [115]. Among those studies, it is interesting to notice how
the use of sEMG to quantify injury risk or recovery is still
very limited [81, 88, 90, 104].

There is, however, a new branch of sport science that
employs perturbations as either the pivotal component of
training interventions or the mean to investigate the
responses of the CNS in balance-challenging conditions.
Perturbation has to be intended as a change of movement,
as reported in the Oxford dictionary. Perturbations can be

Table 5: References of electromyography applications based on different analysed sports.

Sport Number of studies References

Running 19 [83, 84, 89, 90, 92, 93, 95, 96, 111, 113, 116, 118, 123, 126, 127, 129, 130, 133, 136]

Resistance training or weightlifting 13 [78, 80, 81, 85, 86, 94, 97, 102, 103, 105, 108, 125, 128]

Cycling or handcycling 12 [71–76, 104, 109, 112, 114, 119, 124]

Swimming 5 [82, 87, 91, 106, 131]

Softball, baseball, or cricket 4 [98–101]

Rowing 2 [120, 134]

Golf 2 [88, 117]

Rugby or American football 2 [77, 137]

Cross-country skiing 1 [79]

Gymnastics 1 [135]

Ice hockey 1 [132]

Pole vaulting 1 [107]

Skateboarding 1 [115]
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used to uncover motor control processes that under unper-
turbed circumstances would not be available for observation
[162]. Of the six studies that dealt with perturbations, four
have been published after March 2017, indicating an
increasing interest in the topic by the sport science com-
munity [97, 102, 103, 110, 121, 136]. A brief review of
those six works is presented in the following lines. Kohler
and colleagues calculated the average root mean square
(RMS) of the sEMG signal recorded from eight ipsilateral
muscles of the upper limb and trunk while lifting stable
(barbell) and unstable (dumbbell) loads on stable (bench)
and unstable (Swiss ball) surfaces in a seated overhead
shoulder press [103]. They found the highest RMS values
of the triceps brachii sEMG activity when lifting the stable
load on a stable surface, while the lowest values were asso-
ciated with lifting of unstable loads on an unstable surface.
Based on those observations, the authors concluded that
training interventions centred on lifting overhead unstable
loads and/or surfaces might not benefit the development
of core muscle strength. A similar conclusion was also
drawn in another study that reported no significant corre-
lation between three measures of core muscle strength and
the difference in dumbbell overhead shoulder press strength
when assessed on a stable bench compared to an unstable
Swiss ball [163]. In a similar fashion, Nairn and colleagues
analysed the amplitude of the linear envelope of the sEMG
signals recorded from 12 bilateral muscles of the trunk and
lower limbs during a squat exercise while lifting stable
(Olympic bar) and unstable (water-filled cylinder, only on a
stable surface) loads on stable (solid ground) and unstable
(BOSU ball) surfaces [97]. The authors found that unstable
loads on stable surfaces reduced the activation of the erector
spinae but increased the activation of the abdominal external
oblique compared to stable loads. However, lifting stable
loads on unstable surfaces increased the activation of more
distal muscles, such as gastrocnemius medialis, biceps femoris,
and vastus medialis. The conclusion from this study was that
altering the stability of the support surface and/or the stabil-
ity of the load to be lifted can have differing effects on the
muscle activity of the agonist compared to stabiliser muscles.
Lawrence and colleagues set out to investigate the stability of
sEMG signals recorded from eight bilateral muscles of the
trunk and upper limbs during bench press involving stable
(standard barbell) and unstable (flexible barbell with loads
suspended by elastic bands) loads [102]. The authors calcu-
lated the Lyapunov exponents of the sEMG signals but did
not specify if they computed the short- or long-term expo-
nents. They concluded that unstable loads were managed
by reducing the instability of sEMG signals (i.e., lower Lyapu-
nov exponents). de Brito Silva et al. extracted synergies from
the muscle activity of 12 lower limb muscles recorded during
single-leg landing from a lateral jump on a stable surface
[121]. Then, they proceeded to train the participants on an
unstable surface (wobble board) three times a week for four
weeks and assessed the effects of training on muscle syner-
gies. The authors reported a modified modular organisation
of muscle activation patterns after wobble board training,
but no changes in the number of muscle synergies. Specifi-
cally, the landing strategy switched to a separation of the

relative contribution of the plantarflexors (gastrocnemius
medialis and gastrocnemius lateralis) from the dorsiflexors
and mediolateral stabilisers (tibialis anterior and peroneus
longus, respectively). Moreover, the relative contribution of
secondary muscles within each motor module decreased.
The authors concluded that wobble board training modifies
the modular organisation of landing redistributing the rela-
tive contribution of muscle groups in a function-specific
way. Oliveira and colleagues analysed the influence of
perturbations (translation of support surface) on the modu-
lar organisation of direction changes during running [110].
The setup consisted in recording the sEMG activity of 16
ipsilateral muscles of the lower limb and trunk during 90°

side-step cutting manoeuvres while running with and with-
out translation of the solid support surface at contact. The
results showed no differences in the number of muscle syner-
gies and minor effects of perturbations on motor modules,
while motor primitives underwent stronger modifications.
The authors concluded that the timing properties of motor
primitives were likely influenced by sensory input and
descending command integration. Santuz et al. investigated
the effects of terrain morphology on the modular organisa-
tion of running [136]. The experimental setup consisted of
a standard and an uneven-surface treadmill, on which the
participants ran while the sEMG activity of 13 ipsilateral
muscles of the lower limb was recorded. Similar to the studies
of de Brito Silva et al. and Oliveira et al., the authors found
that the number of muscle synergies was not affected by the
uneven surface. Moreover, the changes in the motor modules
due to the challenging terrain were subtle. The changes in the
motor primitives, however, were visible in the weight accep-
tance and propulsion synergies. Specifically, the primitives of
those two synergies were significantly wider in the uneven
surface as compared to the even surface condition. The
authors concluded that the widening might be a strategy
adopted by the CNS to make chronologically adjacent prim-
itives overlap. This would increase the robustness (i.e., ability
to cope with errors) of the motor output when locomotion is
challenged by external perturbations.

Taken together, these results show that perturbations can
be used to study those motor control processes that under
unperturbed circumstances would not be available for obser-
vation. This allows for a better understanding of a complex
system such as the CNS not only from a basic research point
of view but also from an applied research perspective as well.
The studies mentioned above highlight the specific role of the
perturbation type and location in modulating the activity of
determined muscle groups [97, 103, 121] and how activation
patterns are modulated by the CNS in challenging settings
[102, 110, 136]. Perturbation-based studies and training
interventions are becoming ever more popular, and
researchers as well as coaches will likely benefit, in the near
future, from a wider body of literature.

4. Conclusions

The assessment of motor performance in sports is becoming
more and more important due to the high level of competi-
tion and financial rewards among athletes. Wearable sensors
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have the potential to provide key data relating to training and
competitive performance. Among other sensor options,
inertial sensors are the most widespread, even though force
measurement systems and electromyography allow further
information on the kinetics, and associated muscle activity
levels can provide additional insight into the motor
behaviours of athletes. From the analyses, it should be also
underlined that some methodologies, for example, the com-
putation of joint moments from the pressure insoles, need
to be validated before they are more commonly used in the
field of sport biomechanics to ensure that such data is meth-
odologically solid, meets the metrological requirements
(accuracy, reliability, and repeatability), and is meaningful
for the field of sport biomechanics. The outcomes of this
literature review provide sport scientists (including bio-
mechanists), coaches, and athletes an overview on sport
biomechanics applications that required the use of wear-
able sensors.
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