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Abstract

Using spot and futures price data from the German EEX Power market, we test the adequacy of
various one-factor and two-factor models for electricity spot prices. The models are compared along
two different dimensions: (1) We assess their ability to explain the major data characteristics and (2)
the forecasting accuracy for expected future spot prices is analyzed. We find that the regime-switch-
ing models clearly outperform its competitors in almost all respects. The best results are obtained
using a two-regime model with a Gaussian distribution in the spike regime. Furthermore, for short
and medium-term periods our results underpin the frequently stated hypothesis that electricity
futures quotes are consistently greater than the expected future spot, a situation which is denoted
as contango.
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1. Introduction

The last decade has witnessed radical changes in the structure of many power markets
in the world. Electricity markets are being transformed from a highly regulated govern-
ment controlled system into deregulated local markets. Energy exchanges like the Euro-
pean Energy Exchange (EEX) in Germany have been established as competitive
wholesale markets where electricity spot prices as well as futures and forward contracts
are traded. As pointed out by Pilipovic (1997), electricity trading has transformed from
a primarily technical business, to one in which the product is treated quite the same
way as any other commodity. However, one has to bear in mind that electricity is a very
unique commodity that cannot be economically stored, while end user demand shows
strong seasonality. Further, effects like power plant outages or imperfect transmission grid
reliability may have extreme effects on electricity prices.

Since electricity markets switched from virtually fixed and regulated prices to the intro-
duction of competitive pricing, both consumers as producers are exposed to significantly
greater risks (for a detailed discussion see e.g. Kaminski, 1999). The typical characteristics
of electricity spot prices have been studied by various authors (e.g., Pilipovic, 1997; Clew-
low and Strickland, 2000) and include seasonality, mean-reverting behavior, high volatil-
ities, and the occurrence of jumps and spikes. While stock market returns usually display
daily standard deviations in the range of 1–2%, it is not uncommon for electricity price
changes to have daily standard deviations of up to 40% (e.g., Mugele et al., 2005). As a
consequence, for the modeling of electricity prices and the valuation of electricity deriva-
tives, one has to adjust developed for financial or alternative commodity markets.

In recent years, a variety of models has been suggested to capture the above mentioned
characteristics of electricity prices. The first critical step in defining a model for electricity
prices consists of finding an appropriate description of the seasonal pattern. Bhanot
(2000) uses dummy variables or piece-wise constant functions (see also Lucia and Schwartz,
2002; Mugele et al., 2005), an approximation by sinusoidal functions is applied by Pilipovic
(1997) and Weron et al. (2004a), whereas Simonsen (2003) and Weron et al. (2004b) approx-
imate the underlying periodical structure by a wavelet decomposition. The description of
the remaining stochastic component is the second critical ingredient. Clewlow and Strick-
land (2000), Johnson and Barz (1999) and Eydeland and Geman (2000) suggest the use of
jump diffusion models to account for the observed spikes. Kholodnyi (2004) models spikes
as non-Markovian stochastic processes allowing for self-reversing jumps. Escribano et al.
(2002) propagates the use of GARCH models to account for the volatility clustering.
Finally, regime switching models have gained high popularity in modeling electricity prices.
Initially suggested in the context of electricity markets by Huisman and Mahieu (2003), a
variety of model extensions has been introduced in recent years (among others e.g. Huisman
and De Jong, 2003; Weron et al., 2004a; Bierbrauer et al., 2004; Haldrup and Nielsen, 2004).

Our goal is to conduct a detailed and broad empirical analysis by examining the explan-
atory power and the goodness-of-fit of various different electricity price models. In partic-
ular, we consider the jump-diffusion model of Kluge (2004), the non-linear mean-reverting
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model suggested in Barlow (2002) and certain different specifications of regime-switching
models. As data source we have chosen the German EEX power market that shows a
steady increase both in number and volume of traded products since its opening in
1999. Our results indicate that all models achieve a similar accuracy in forecasting the con-
ditional mean, however, regime-switching models have more explanatory power with
respect to the extreme observations. The analysis of the predictive power leads to an intu-
itive test about the presence of contango. Given a market quote for the futures price and a
consistent estimate for the expected future spot allows us to determine consistent estimates
for the futures premium paid in electricity market. Our results are in accord with the find-
ings of Longstaff and Wang (2004) and Botterud et al. (2002) who report a significant posi-
tive premium (which translates into a negative market price of risk).

The remainder of the article is organized as follows. Section 2 summarizes the stylized
facts about spot electricity prices. Different models for electricity spot prices are treated in
Section 3, Section 4 presents the empirical results and Section 5 concludes.
2. Stylized facts of electricity markets

From an economic point of view, electricity is a non-storable good which causes
demand and supply to be balanced on a knife-edge. Relatively small changes in load or
generation can cause large changes in price and all in a matter of hours. The special char-
acteristics of electricity spot prices will be briefly summarized in this section.
2.1. Seasonality

Due to the real time balancing needs of electricity supply and demand and an exoge-
nously given cyclical demand, resulting electricity prices are very cyclical as well. The sea-
sonal component in electricity prices is more pronounced than in any other commodity
and several different seasonal patterns can be found in electricity prices during the course
of a day, week and year. They mainly arise due to changing level of business activities or
climate conditions, such as temperature or the number of daylight hours. In some coun-
tries also the supply side shows seasonal variations in output. Hydro units, for example,
are heavily dependent on precipitation and snow melting, which varies from season to sea-
son. Thus, the seasonal fluctuations in demand and supply translate into the seasonal
behavior of spot electricity prices.
2.2. Volatility

Another stylized fact of electricity spot prices is the unusually high volatility of the that
is unprecedented in any other financial or other commodity markets. It is not unusual to
observe annualized volatilities of more than 1000% on hourly spot prices. The high vola-
tility can be traced back to storage, capacity and transmission problems and the need for
markets to be balanced in real time. Inventories cannot be used to smooth price fluctua-
tions. Temporary demand and supply imbalances in the market are difficult to correct in
the short-term. As a result price movements in electricity markets are more extreme than in
other commodity markets.
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2.3. Mean reversion

Besides seasonality, electricity spot prices – as well as other commodity prices – are in
general regarded to be mean reverting, (e.g. Schwartz, 1997). The form of mean reversion
observed in electricity markets is a critical difference to most other financial markets. Inter-
est rate markets, for instance, exhibit mean reversion in a weak form – the actual rate of
reversion appears to be related to economic cycles and is therefore slow. In electricity mar-
kets, however, the rate of reversion is very strong, what can be explained by the markets
fundamentals. When there is an increase in demand generation assets with higher marginal
costs will enter the market on the supply side, pushing prices higher. When demand returns
to normal levels, these generations assets with relatively high marginal costs will be turned
off and prices will fall. This rational operating policy for the employment of generation
assets supports the assumption of mean reversion in electricity spot prices. Further, the
determinants of demand like weather and climate are cyclical as well.
2.4. Jumps and spikes

In addition to mean reversion and strong seasonality, spot electricity prices exhibit
infrequent, but large spikes or jumps. Price jumps tend to occur due to sudden outages
or failures in the power grid and lead to a large increase in prices in a very short amount
of time. From a modeling point of view, price jumps are unpredictable discontinuities in
the price process. Spikes, however are typically interpreted as the result of a sudden
increase in demand and when demand reaches the limit of available capacity, the electricity
prices exhibit positive price spikes. In periods of lower demand, electricity prices fall. Due
to the operating cost or constraints of generators, who cannot adjust to the new demand
level, also negative price spikes can occur. From a modeling point of view, price spikes are
short time intervals where the price process exhibits a non-Markovian behavior and where
prices increase or decrease significantly in a continuous way. The typical explanation for
these phenomena is a highly non-linear supply-demand curve in combination with the
non-storability of electricity.
3. Spot price models for electricity prices

From the stylized facts presented in the previous section, we conclude that one cannot
simply rely on models developed for financial or other commodity markets when modeling
electricity prices or pricing electricity derivatives. The following subsections provide a brief
overview of the most popular approaches suggested in the literature so far – including
mean-reverting diffusions, jump-diffusions and regime-switching models. Following the lit-
erature (e.g., Pilipovic, 1997; Lucia and Schwartz, 2002), we assume – unless otherwise sta-
ted – that the models discussed below describe the stochastic component of the log-price
process after applying an appropriate demeaning procedure. More precisely, if St denotes
the spot price at time t, then we discuss stochastic models for (Yt)tP0, with

Y t ¼ log St � ft; t P 0; ð1Þ
where ft is a deterministic function describing the seasonal pattern. The estimation of ft

will be further discussed in Section 4.
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3.1. Mean-reversion models

One of the first models that has been examined in the context of electricity markets is
the classical Vasiček-process. Lucia and Schwartz (2002) assume

dY t ¼ aðl� Y tÞdt þ rdW t; t P 0; ð2Þ
where (Yt)tP0 represents the deseasonalized log-price process, (Wt)tP0 a standard Brown-
ian motion, and a, l and r are real constants. This process offers analytical tractability and
straight-forward parameter estimation. A main drawback of model specification (2) is its
lack to explain the observed price spikes.

A probabilistically related approach – although quite different from the underlying
motivation – has been developed in Barlow (2002). By making certain assumptions on
the functional form of the supply and demand curve, the author derives a non-linear Orn-
stein–Uhlenbeck process as appropriate model for electricity prices. In electricity markets,
the price St at time t is determined by equating supply u = u(t,St) and demand d = d(t,St) –
both a function of time and the current price St. Barlow (2002) assumes that the supply is
independent of time (u(t,St) = g(St)) whereas the demand d(t,St) = Dt can be modeled by a
mean-reverting stochastic process (Dt)tP0 which is independent of the current price level
St. Choosing g to be the Box–Cox-transformation, the author shows that the resulting
model for the spot price process can be expressed as

St ¼
ð1þ bX tÞ

1
b; b 6¼ 0;

expðX tÞ; b ¼ 0;

(
t P 0 ð3Þ

where b denotes a real parameter. The process (Xt)tP0 is a function of the demand process
(Dt)tP0 and assumed to have the following dynamic:

dX t ¼ aðl� X tÞdt þ rdW t; t P 0: ð4Þ
As we are not concerned with fitting demand data, the exact relationship between D and X

is of no further importance. The behavior of the process depends crucially on the values of
the parameter b. For b = 0, we obtain the classical mean-reverting specification for the
log-prices whereas for b = 1 the spot price itself follows a mean-reverting diffusion. In gen-
eral, the non-linear transform is designed to help explaining the observed price jumps and
the smaller the values for b, the more pronounced the jumps will be.

3.2. Stochastic models with jumps

Early publications on models for electricity prices with a jump component include Deng
(1999), Johnson and Barz (1999), Bhanot (2000), Clewlow and Strickland (2000), Knittel
and Roberts (2001). All these models are typically based on a jump-diffusion as in Merton
(1976). Thus, the process describing the stochastic part (Yt)tP0 of the deseasonalized log-
price process equals

dY t ¼ aðl� Y tÞdt þ rdW t þ qdNt; t P 0; ð5Þ
where (Wt)tP0 is a standard Brownian motion and (Nt)tP0 a homogeneous Poisson process
with intensity k. The jump size q is often assumed to be normally distributed with mean m
and variance s2. Once a jump has been triggered by the jump part, the mean-reversion part
is responsible to force the price to fall back to its normal level. However, due to the
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short-term lived nature of jumps or spikes in electricity prices this may be not fast enough
and leads to an erroneous specification of the true mean-reverting process. Hence, recent
publications suggest to capture the fast mean-reverting behavior of the jumps by consid-
ering two different mean-reversion rates for the normal and the jump part. Kluge (2004)
suggests the following specification for (Yt)tP0:

Y t ¼ X t þ Zt; t P 0; ð6Þ
where the dynamics of the two processes X and Z are described by a mean-reverting dif-
fusion dXt = a(l � Yt)dt + rdWt and mean-reverting jump-process dZt = �bZt dt +
qdNt where a, l, r and b are real parameters. The interpretation for (Wt)tP0, (Nt)tP0

and q remains the same as before.

3.3. Regime-switching models

Regime-switching models have been introduced in various different contexts by Quandt
(1958), Goldfeld and Quandt (1973) and Hamilton (1989, 1994). The underlying idea is to
model the observed stochastic behavior of a specific time series by two separate phases or
regimes with different underlying processes. In our context, this means, that a sudden jump
in electricity prices could be considered as a change to another regime. The switching
mechanism is typically assumed to be governed by a time-homogeneous hidden Markov
chain with k 2 N different possible states representing the k different regimes. For the ease
of exposition we restrict our description of regime-switching models to the discrete time
case.

3.3.1. Regime-switching models with two independent states
The regime-switching model with two independent states distinguishes between a base

regime (Rt = 1) and a spike regime (Rt = 2), where (Rt)t2I represents a time-homogeneous
hidden Markov chain. The observable stochastic process ðY tÞt2N – again the reader may
think of the stochastic component of the deseasonalized log-price process for electricity –
is now represented in the form Y t ¼ Y t;Rt ; t 2 N where the processes ðY t;1Þt2N and ðY t;2Þt2N
are assumed to be independent from each other and also independent from ðRtÞt2N. Yt

equals Yt,i given that the current regime at time t equals i, i.e. given Rt = i. The transition
matrix P of the hidden Markov chain R contains the conditional probabilities pij of
switching from regime i at time t to regime j at time t + 1:

P ¼ ðpijÞi;j¼1;2 ¼ ðP ðRtþ1 ¼ j j Rt ¼ iÞÞi;j¼1;2 ¼
p11 1� p11

1� p22 p22

� �
: ð7Þ

The probability of being in state j at time t + m starting from state i at time t can be ex-
pressed as

ðPðRtþm ¼ j j Rt ¼ iÞÞi;j¼1;2 ¼ ðP0Þ
m � ei; ð8Þ

where P 0 denotes the transpose of P and ei denotes the ith column of the 2 · 2 identity
matrix.

Our remaining task is to specify the two stochastic processes Yt,1 and Yt,2. Considering
the typical behavior of electricity spot prices described in the previous section, it seems rea-
sonable to assume a mean-reverting process for the ‘‘base regime’’ (Rt = 1). The ‘‘spike
regime’’ (Rt = 2) is more difficult to handle. A typical path will admit huge jumps from
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time to time but after the jump the path will come back to a normal level rather. This sug-
gests that the series does usually not show consecutive observations from the ‘spike
regime’, but rather a number of single isolated observations. As a result, the intertemporal
dependence of the process St,2 is virtually unobservable. Therefore, the process St,2

describing the spike regime is modeled by independent and identically distributed realiza-
tions of a probability distribution F. The Gaussian (Huisman and De Jong, 2003), lognor-
mal (Weron et al., 2004a) and Pareto (Bierbrauer et al., 2004) distribution have been
suggested in the literature as appropriate candidates for F, but other distributions for
modeling the spike regime are possible, too.2

In summary, we are considering the following two stochastic processes:

Y t;1 ¼ cþ /Y t�1;1 þ �t; t 2 N ð9Þ

for the base regime and

Y t;2�iid F ; t 2 N ð10Þ

for the spike regime. The innovations �t in Eq. (9) are assumed to be iid centered normal, /
and c denote real constants and F is the chosen distribution function for the spike regime.
Note that process (9) is the discrete version of a standard Vasiček model.

It has also been suggested to force the process directly back into the base regime after a
jump into the spike regime has occurred. From a modeling perspective, this translates into
considering the basic regime switching model with two independent states as specified in
Eqs. (9) and (10) with the following restricted transition matrix:

Pr ¼ ðpijÞi;j¼1;2 ¼ ðP ðRtþ1 ¼ j j Rt ¼ iÞÞi;j¼1;2 ¼
p11 1� p11

1 0

� �
: ð11Þ

This model will be denoted as two independent regime-switching model with single jumps.
3.4. A regime-switching model with three states

Huisman and Mahieu (2003) propose a regime-switching model with three possible
regimes. The idea behind this specification differs explicitly from the previously described
two-state models. The authors identify three possible regimes: (1) the ‘base regime’
(Rt = 1) modeling the ‘normal’ electricity price dynamics, (2) an ‘initial jump
regime’ (Rt = 2) for a sudden increase or decrease in price, and (3) a ‘reversing jump
regime’ (Rt = 3) describing how prices move back to the normal regime after the initial
jump has occurred. Obviously, the underlying idea implies that the initial jump regime
is immediately followed by the reversing regime and then moves back to the base regime,
such that p23 = p31 = 1 and p13 = 0. The process will be described by a mean-reverting pro-
cess in the base regime, a random walk in the initial and reversing jump regime where the
direction of the innovation processes in the initial and reversing jump regime are opposed.
We have
2 When choosing the distribution for the spike regime, one should keep in mind that one is actually modeling
the log-spot prices and therefore a heavy-tailed distribution might lead to an infinite mean for the price process
itself. This in turn might create problems for derivative pricing.
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Y t ¼
/Y t�1 þ cþ �t; t 2 N Rt ¼ 1 ðbaseÞ;
Y t�1 þ nt Rt ¼ 2 ðinitial jumpÞ;
Y t�1 � nt Rt ¼ 3 ðreverse jumpÞ

8><>: t 2 N; ð12Þ

where �t �iid Nð0; r2Þ represent the innovations of the base regime and nt�
iid Nðm; s2Þ the inno-

vations of the jump regimes. Obviously, the normal distribution in the initial and reversing
jump regime could be replaced by alternative distributional assumptions.

The reader may notice that according to specification (12), the price processes in the
different regime are no longer independent. In contrast to the two-regime models, the
three-regime model does not allow for consecutive spikes or to remain at a different price
level for two or more periods after a jump.
4. Empirical results

4.1. Data description

For our empirical analysis we use daily average spot prices from the European Electric-
ity Exchange (EEX) in Leipzig. At the EEX, the spot market is a day-ahead market and
the spot is an hourly contract with physical delivery on the next day. The 24 hourly spot
prices are determined in a daily auction. Products range from predetermined hourly blocks
for each of the 24 h of a day to special contracts for base load, peak load and weekend
contracts (see EEX, 2004, for more details). The futures market offers derivative products
that do not comprise physical settlement of electricity during the delivery period, but are
primarily used as hedging instrument against market uncertainties. The underlying of the
futures contract is the so-called Phelix Index (Physical Electricity Index) that is calculated
from spot market prices on a daily basis. Depending on the corresponding products on the
spot market, the index distinguishes between base load and peak load. The Phelix base day

price is an equally weighted average of all 24 hourly spot prices for that particular day.
The Phelix base month price is the mean of all Phelix base day prices of that month. These
arithmetic averages over a specific period are the reference prices in all cash-settlement cal-
culations at expiration of derivative contracts. EEX currently offers futures both on Phelix
Base and Peak Index with different delivery periods of one month, three months and
one year. The delivery period specifies the Phelix index that serves as underlying. For
example, in the case of a Phelix base month futures with maturity December 2005, the ref-
erence price at maturity is the value of the Phelix base month index in December 2005 (see
Fig. 1).

Our data comprises three years of Phelix base day prices from October 1, 2000 to Sep-
tember 30, 2003 totaling 1095 observations and a set of futures quotes from the last day of
our price sample, i.e. of September 30, 2003. The dynamic of the spot and spot log-prices is
visualized in Fig. 2. A summary statistics of the raw spot price data set and related series is
presented in Table 1. The data display all the properties which we previously summarized
in Section 2. Prices range between 3.12 and 240.26€. The minimum was reached on May 1,
2003, an official holiday, and the maximum on a cold December day in 2001. The standard
deviation of daily logarithmic price changes equals 37.0% which translates into an annu-
alized volatility of 707%. The spot prices admit a kurtosis of over 100 and a skewness of
7.5 implying a heavy-tailed and right skewed price distribution.
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Fig. 1. Top panel: Spot prices of the Phelix base (day) index from October 1, 2000 to September 30, 2003. Bottom

panel: Spot log-prices for the same period.
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4.2. Deseasonalizing the data

As previously mentioned we assume that the observed log-spot price logSt is a sum of a
deterministic component ft and a stochastic component Yt (see Eq. (1)). For the determin-
istic seasonal component ft sinusoidal (Pilipovic, 1997; Weron et al., 2004a), constant
piece-wise functions (Pindyck, 1999; Knittel and Roberts, 2001; Huisman and De Jong,
2003; Haldrup and Nielsen, 2004), a combination of both methods (Lucia and Schwartz,
2002; De Jong, 2005; Kosater and Mosler, 2006) have been suggested in the literature.
Alternative approaches by Simonsen (2003) and Weron et al. (2004b) approximate the
underlying periodical structure using a wavelet decomposition. We pursue a hybrid
approach of constant piece-wise functions and a sinusoidal cycle to capture long-term sea-
sonal effects. Hence, we specify dummy variables for daily and monthly effects, a trend
component and an additional sinusoidal component with one-year cycle:

f ðtÞ ¼ aþ b � t þ d � Dday þ m � Dmon þ c � sin ðt þ sÞ 2p
365

� �
; ð13Þ

where a, b, c and s are all constant parameters. Note that initially for each day
(day = 1, . . . , 7) and month (mon = 1, . . . , 12) a dummy variable Dday, Dmon was used.
Hereby d and m denote the corresponding parameter vector. In a first step, the function
f(t) was calibrated via numerical optimization using non-linear least squares regression
in Matlab. The initial results roughly validated general assumptions about intra-week
and intra-year price patterns for power markets (e.g. Pindyck, 1999): Prices are higher
at the beginning of the week reaching their peak on Tuesday and then, from the middle
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Table 1
Summary statistics for the daily system price data, the log-prices, the price changes and the log-price changes and
other related time series prior to removing any deterministic or seasonal components

Series N Mean Median Min Max Std Dev Skew Kurt

Phelix base

Pt 1095 24.496 22.950 3.120 240.26 12.83 7.538 102.58
lnPt 1095 3.118 3.133 1.138 5.48 0.39 �0.005 4.08
Pt � Pt�1 1094 0.025 �1.125 �131.36 214.75 12.762 4.065 108.40
lnPt � lnPt�1 1094 0.001 �0.05 �1.96 2.369 0.370 0.881 4.41
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of the week, they constantly decline to reach their lowest level over the weekend. A similar
cycle can be observed during the year: Prices usually tend to be higher during the cold win-
ter months and are somewhat lower during the rest of the year. However, while in Eq. (13)
parameters for the constant, trend and sinusoidal cycle are significantly different from
zero, for daily and monthly effects only a fraction of the parameters were significant.
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Furthermore, the residuals show asymmetry and excess kurtosis that may be due to a
number of extreme outliers and autocorrelation in the data.

We further investigated the influence of outliers or large price jumps on the estimation
of the seasonal component. For this purpose, following Clewlow and Strickland (2000) we
use a recursive filter to identify price jumps in the sample distribution of daily log-returns.
The filter consists of an iterative procedure that is repeated until no more jumps can be
identified: In the first step we calculate the sample standard deviation ŝ of the log-returns
before we identify returns beyond a certain range – measured in multiples of ŝ – and iden-
tify these as extreme returns. Clewlow and Strickland (2000) suggest three standard devi-
ation as the limit. Returns within that limit are treated as ‘normal’ price returns, while the
other returns are identified as outliers. We replace the outliers in the log-spot prices by the
median of all prices having the same weekday and month as the outlier. Then the next iter-
ation is performed. The procedure stops after five iterations. Fitting the model (13) to the
series which has been adjusted for outliers yields better results. The residuals are nearly
symmetric and show substantially less kurtosis than before replacement of the outliers.
Starting with a model including all possible independent variables, in a backwards step-
wise regression non-significant variables were excluded from the model, remaining with
a model including only significant variables (see Table 2): the constant, trend and sinusoi-
dal cycle, dummy variables for Tuesday, Wednesday, Thursday, Saturday and Sunday as
well as for the months February, April, October and November.

Note that with respect to the mean-reverting nature of the electricity prices, a joint esti-
mation of the deterministic component and parameters of the stochastic model may be
favorable. However, following the literature on spot price modeling of electricity prices
(e.g. Ethier and Mount, 1998; Huisman and Mahieu, 2003; Haldrup and Nielsen, 2004;
Weron et al., 2004a) there seems to be a preference for adjusting the data for seasonal
effects before the stochastic component is estimated. Furthermore, since our main focus
is on comparison of the performance of different stochastic models, it appears to be more
adequate to use the same deseasonalized time series as input for all models. The deseason-
alized log-price (the stochastic component) Yt was obtained by subtracting ft from the ori-
ginal log-spot price series. All stochastic processes estimated in the next subsection are
considered as models for Yt.

4.3. Models and estimation methodology

Among the models we consider for the stochastic component of the deseaonalized log-
prices Yt, are the classical mean-reverting diffusion (see Eq. (2)), the non-linear OU model
of Barlow (2002) as specified in Eq. (3), the jump-diffusion model as specified in Eq. (5)
and the special jump-diffusion of Kluge (2004) (see Eq. (6)). Furthermore, we consider
Table 2

Parameter estimates for the non-linear least-square regression after detection and adjustment for outliers

Parameter estimate

a b c s dtue dwed dthu dsat dsun dfeb dapr djun doct dnov

Deseasonalization

3.0493 0.0003 �0.1463 �140.39 0.0897 0.1027 0.0912 �0.2448 �0.5270 0.0802 0.0900 0.1079 �0.1921 �0.1172

(0.02) ** (0.01) (5.00) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
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four variants of the two-regime model as specified in Eqs. (9) and (10),3 and in addition the
three-regime model as given by Eq. (12). As discussed in the introduction, all these models
have been propagated in the literature as appropriate for modeling electricity spot prices
and it will be interesting to see the results of a comparative study. In summary, we have

(1) Model MR: Mean-reverting diffusion.
(2) Model B: Non-linear Ornstein–Uhlenbeck (Barlow).
(3) Model JD: Merton’s jump-diffusion with a normal jump distribution with mean m

and variance s2.
(4) Model K: Kluge’s electricity price model with a normal jump distribution with mean

m and variance s2.
(5) Model N: F is the distribution function of a normal distribution with mean m and

variance s2.
(6) Model LN: F is the distribution function of a lognormal distribution where the

underlying normal distribution has mean m and variance s2.
(7) Model E: F ¼ 1� e�

x
m equals the distribution function of an exponential distribution

with mean m.
(8) Model SJ: Single jump version of Model N with p21 = 1.
(9) Model 3R: 3 regime model.

For estimation purposes, all models will be considered in discretized form. The mean-
reversion process (Model MR) is then equivalent to a Gaussian AR(1) process:

Y t ¼ cþ /Y t�1 þ �t; t ¼ 2; 3; . . . ; �t �iid Nð0; r2Þ; ð14Þ

where the relation between the AR(1) parameters and the original parameters is given by
the equations c = a Æ l and / = 1 � a. The non-linear OU model (Model B) can be esti-
mated by a two step procedure. Given a value for the non-linearity parameter b, the trans-
formed prices follow a classical mean-reverting OU process and using Eq. (14) likelihood
values can be obtained as a function of b. These likelihood values now have to be maxi-
mized with respect to b.

The estimation of Kluge’s electricity price model is not straightforward. Due to the
unobservability of the two processes X and Z and the fact that jumps have a lasting effect
on subsequent prices due to the autoregressive structure of the jump process, Kluge sug-
gests an iterative filtering procedure. Starting with an initial guess for the model parame-
ters it is possible to identify jumps with the help of a 3-r rule. Once a jump is identified the
subsequent log-prices can be cleaned from the jump effect and one can search for the next
jump. After all jumps have been eliminated, new process parameters can be estimated from
the cleaned series and the jump size information. The classical jump-diffusion (Model JD)
will be considered as a restricted version of Model K where both speeds of mean reversion
take the same value: a = b. The estimation can now be performed using the algorithm
described for Model K.

The first three variants of the two-regime model differ only by the distributional
assumption F for the spike regime as specified in Eq. (10) and all regime-switching models
3 The models E and LN lead to infinite mean price processes and are listed for pure comparison purposes. They
are inappropriate for pricing derivatives.
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use a mean-reverting process for the base regime as given in Eq. (14). Given a series
y1, . . . ,yT of realizations from the observable stochastic process ðY tÞt2N with Y t ¼ St;Rt ,
the parameter estimation can be performed using the EM algorithm introduced by Demp-
ster et al. (1977).
4.4. Estimation results

The following paragraphs discuss the estimation results for the various different models,
we have discussed above. Standard errors are given for all estimates in parentheses below
and are calculated via estimation of the White robust covariance matrix by means of finite
difference approximations for the second derivative of the log-likelihood function.

The estimation results for the mean-reversion and jump models are reported in Tables 3
and 4.

Comparing the results we find that the speed of mean reversion a = 1 � / and the inno-
vation variance r2 are remarkably lower for the jump-diffusion models (Models JD, K)
than for the mean-reverting models (Models MR, B) (see Table 4). The reason is simply
that the jump models separate extreme prices from the normal prices while the mean-
reverting models do not. We proceed with reporting the estimation results for the
regime-switching models. The model and distribution parameter estimates for the five dif-
ferent variants are reported in Table 5 Panel (a)–(c) and Table 6 Panel (a) and (b).

We start our discussion of the estimation results with Models N, LN and E, initially
suggested by Huisman and Mahieu (2003). All three variants of the basic model with
two independent regimes yield reasonable parameter estimates with comparably small
standard errors. The parameter estimates for the AR(1) process in the base regime are con-
sistent throughout the three different variants. The estimated probability of being in the
base regime equals approximately 90% for model N and LN and approximately 97%
for model E. At the same time, model E estimates a significantly higher variance in the
spike regime (7.7) than models N and LN (0.76 and 0.43) which can obviously be
explained by the fact that the exponential distribution has only one degree of freedom
to fit the mean and the variance of the spike regime whereas the normal and lognormal
distribution offer the flexibility of two separate parameters. For all three variants, the esti-
mated variance in the spike regime is significantly higher than the one in the base regime –
the factors range from 12 for model N to 150 for model E. As a summary, we can state
Table 3
Estimation results for Barlow’s model

Model Parameter

b c / r

Model MR 0 2.05 0.373 0.238
(0.02) (0.05) (0.02)

Model B 0.088 3.500 0.375 0.310
(0.01) (0.08) (0.03) (0.02)

Model MR reports the estimation results, when the non-linearity parameter b is restricted to zero, in which case
Model B reduces to a standard mean-reverting diffusion for the log-price process. Model B contains the esti-
mation results when b is estimated.
The speed of mean reversion a equals a = 1 � / and the long-term mean equals l = c/a.



Table 4
Estimation results for Kluge’s model

Model Parameter

c / r w k m s

Model JD 1.525 0.501 0.224 0.020 �0.051 0.574
(0.10) (0.03) (0.01) (0.01) (0.12) (0.12)

Model K 1.369 0.551 0.210 0.257 0.024 �0.075 0.579
(0.09) (0.03) (0.01) (0.06) (0.01) (0.11) (0.10)

Model JD reports the estimation results for the restricted Model K which equals a classical jump-diffusion (Model
JD). The row ‘‘Model K’’ contains the estimation for Kluge’s electricity price model.
The speed of mean reversion a equals a = 1 � / and the long-term mean equals l = c/a. k is the intensity of the
Poisson process and the jump distribution is normal with mean m and variance s2. b = 1 � w equals the speed of
mean reversion for the mean-reverting jump process in model K.

Table 5
Parameter estimates and basic statistics for the basic model with two independent regimes

Regime Parameter estimates Statistics

c / r m s pii P(R = i) E(Yt,i) V(Yt,i)

Panel (a): Model N

Base 1.105 0.639 0.145 – – 0.953 0.891 3.065 0.036
(i = 1) (0.17) (0.06) (0.01) (0.01)
Spike – – – 2.916 0.658 0.618 0.109 2.916 0.433
(i = 2) (0.10) (0.10) (0.06)

Panel (b): Model LN

Base 1.081 0.647 0.150 – – 0.960 0.913 3.065 0.038
(i = 1) (0.24) (0.08) (0.01) (0.01)
Spike – – – 1.016 0.296 0.587 0.087 2.886 0.763
(i = 2) (0.04) (0.05) (0.10)

Parameter estimates Statistics

c / r m pii P(R = i) E(Yt,i) V(Yt,i)

Panel (c): Model E

Base 1.142 0.627 0.173 – 0.982 0.966 3.058 0.049
(i = 1) (0.68) (0.22) (0.02) (0.01)
Spike – – – 2.783 0.481 0.034 2.783 7.745
(i = 2) (0.14) (0.07)

Standard errors are given in parenthesis.
Panel (a): Estimation results for a two-state regime-switching model with Gaussian distribution in the spike
regime (Model N).
Panel (b): Estimation results for the two-state regime-switching model with a lognormal distribution in the spike
regime (Model LN).
Panel (c): Estimation results of the two-state regime-switching model with an exponential distribution in the
spike regime (Model E).
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that the basic model with two independent regimes seems to be a promising candidate for
capturing the specific features in the dynamic of electricity prices. From this preliminary
analysis, it seems advisable to use at least a two parameter distribution family to model
the spike regime. The estimation results for the two-state model with single jumps (Model
SJ) are different. Since the process has to switch back to the base regime after a spike has



Table 6
Parameter estimates and basic statistics for model SJ and 3R

Regime Parameter estimates Statistics

c / r m s pii P(R = i) E(Yt,i) V(Yt,i)

Panel (a): Model SJ

Base 1.360 0.555 0.169 – – 0.943 0.946 3.057 0.041
(i = 1) (0.10) (0.03) (0.01) (0.02)
Spike – – – 2.898 0.814 0.054 2.898 0.663
(i = 2) (0.11) (0.12)

Parameter estimates Statistics

c / r mi si pii P(R = i) E(Yt,i)

Panel (b): Model 3R

Base 1.251 0.590 0.155 – – 0.939 0.891 3.053
(i = 1) (0.19) (0.06) (0.02) (0.02)
Initial jump – – – 0.249 0.404 0.055 3.302
(i = 2) (0.11) (0.06)
Reverse jump – – – �0.249 0.404 0.055 3.053
(i = 3) (0.11) (0.06)

Standard errors are given in parenthesis.
Panel (a): Estimation results of the two-state regime-switching model with single jumps (Model SJ). The spike
regime uses a normal distribution.
Panel (b): Estimation results of a three-state regime-switching model with Gaussian jumps (Model 3R).
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occurred the probability of being in the spike regime is halved from 10.9% to 5.4%. As a
compensation, the variance of the spike regime increases by about 50% to 0.66.

Finally, we examine the estimation results of the three-state regime switching model
(Model 3R) proposed by Huisman and Mahieu (2003). We see that the estimates for
the AR(1)-process describing the base regime do not significantly differ from the two-state
models with normal spikes or single jumps. The probability of being in one of the two
jump regimes is 5.5% and the mean jump size is 0.249. The table does not contain the var-
iance for the base and spike regime as the model is not stationary due to the random walk
hypothesis for the spike regime. The conceptual difference between the different specifica-
tions for the spike regime are visualized in Fig. 2. The graph shows the series of deseason-
alized log-prices and the probability of being in the spike regime for the Models N, 3R,
and SJ.

Comparing the parameter estimates of the regime-switching models with those for the
mean-reverting and jump-diffusion models, we clearly see some of the differences between
these modeling approaches. Regime switching models have the power of two independent
processes to model the price dynamics separately, jump-diffusion models distinguish
between jumps and ‘normal’ electricity prices as well. Consequently, estimates of
a = 1 � / are normally lower for the regime switching (base regime) and the jump-diffu-
sion model, that means the speed of adjustment should be highest for the pure mean-
reverting model. This is because the simple mean-reverting model has to pull prices back
to the normal level after extreme values have occurred whereas in the regime-switching
models these spikes are modeled by the spike regime and thus do not influence the param-
eters in the mean-reverting process of the base regime.
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4.5. Model performance measures

We now want to investigate which of the estimated models provides the best fit to the
data. Model SJ is nested into Model N, Model JD is nested into model K, and Model MR
is nested into model B. In all three cases the null-hypothesis of the restricted model can be
rejected at the 1% level using a likelihood ratio test. For model evaluation, we report log-
likelihood values and information criteria such as the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC) for the remaining models (Table 7).

From this preliminary analysis it seems that the regime-switching models perform bet-
ter than their competitors. In detail, we find that according to the chosen parsimony model
criteria the regime-switching model with two independent regimes and a normal distribu-
tion for spike regime outperforms the other models – a result which we expected from our
analysis of the parameter estimates. In order to assess the model performance between
these remaining non-nested models, we perform pairwise likelihood-ratio tests, for non-
nested models as suggested in Vuong (1989). The tests show that model B is worse than
all other models under consideration at the 1% level. Similarly, model K is worse than
all regime-switching models at the 1% level and model E is worse than the remaining
regime-switching models at the 1% level. Finally, the test is unable to separate between
models N, LN and 3R at the 5% level. This shows, that the regime-switching models with
two independent states and a flexible distribution in the spike regime (at least two para-
meters) and the three state regime-switching model outperform all its competitors based
on the likelihood ratio test for non-nested models.

4.6. Forecasting performance

After examining the goodness-of-fit of the estimated models, it may also be of particu-
lar interest to investigate their out-of-sample or forecasting performance. Therefore, this
section provides forecasting results for a one-year out-of-sample period. Based on the esti-
mated model parameters from the previous section, we provide one-day-ahead interval
and density forecasts for EEX spot prices. Interval forecasts may be especially relevant
for risk management purposes where one is rather interested in predicting intervals for
future price movements than simply point estimates.

The estimation window that is used to determine the model parameters is the same as
in the in-sample analysis from October 1, 2000 to September 30, 2003 totaling 1095
Table 7
Number of parameters k, log-likelihood, Akaike information criterion (AIC), and Bayesian information criterion
(BIC) for the estimated models

Model k L(h) AIC BIC

Barlow (B) 4 25.1 �42.1 �22.1
Kluge (K) 7 184.0 �354.0 �319.0

Regime switching

Normal spikes (N) 7 407.9 �801.8 �766.8
Lognormal spikes (LN) 7 392.0 �769.9 �734.9
Exponential spikes (E) 6 301.2 �590.4 �560.4
Three regimes (3R) 6 386.1 �760.2 �730.2

Log-likelihood values for the regime-switching models are calculated with probabilities from the smoothed
inferences.
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observations. The verification window for evaluation of the out-of-sample forecasts com-
prises daily data from October 1, 2003 to September 30, 2004 including 366 observations.
Due to the poor in-sample results in comparison to their competitors, we excluded the
mean-reversion type model Barlow (B) as well as the regime switching model with expo-
nential spikes (E) from the analysis. Recall that model JD is nested into model Kluge
(K) and was rejected at the 1% level by the likelihood ratio test in the previous section.
Hence, the analysis was restricted to the model K, and the three regime switching models
N, LN and 3R.

Given the estimated model parameters and an observation yt from the verification sam-
ple, we are able to calculate a model dependent confidence interval for the next observa-
tion yt+1. Following Christoffersen (1998) and Christoffersen and Diebold (2000), we
evaluated the quality of the interval forecasts by comparing the nominal coverage of
the models to the true coverage. Since comparing the nominal and true coverage may
be sensitive to the choice of the confidence level a, we decided to investigate the coverage
for four different values of a. Thus, for each of the models we calculated confidence inter-
vals (CI) [cl,t,a,cu,t,a] and determined the actual percentage of exceedances of the 50%, 90%,
95% and 99% two sided day-ahead CI. If the model implied interval forecasts were accu-
rate then the percentage of exceedances should be approximately 50%, 10%, 5% and 1%,
respectively.

With a total number of 366 days the expected number of observations beyond the 50%
confidence intervals would be approximately 183, respectively 37 for the 90%, 18 for the
95% and 4 for the 99% confidence interval. Table 8 reports the actual number of excee-
dances. For the 50% CI we find that the number of exceedances is below the expected frac-
tion for all models. However, while for the model ‘Kluge’ less than 30% of exceedances
could be observed, the regime-switching models provide results between 43.17% and
46.17% being much closer to the expected fraction of 50% exceedances. Obviously, for
the 50% confidence level, forecasted intervals provided by the model ’Kluge’ are too wide.
Similar results can be found for other confidence levels: only 2.19% exceedances are
observed for the 90%, respectively 1.37% for the 95% and 0.27% for the 99% confidence
intervals. We conclude that the one-day-ahead interval forecasts of the model K are overly
conservative for any of the considered confidence levels.
Table 8
Number of observations and fraction of exceedances (xt 62 [cl,t,cu,t]) for 50%, 90%, 95% and 99% confidence levels

Model 50% CI 90% CI

# Exc. Fraction (%) # Exc. Fraction (%)

Kluge (K) 108 29.51 8 2.19
RS normal spikes (N) 158 43.17 26 7.12
RS lognormal spikes (LN) 169 46.17 22 6.83
RS three regimes (3R) 160 43.72 25 6.85

95% CI 99% CI

# Exc. Fraction (%) # Exc. Fraction (%)

Kluge (K) 5 1.37 1 0.27
RS normal spikes (N) 11 3.01 4 1.09
RS lognormal spikes (LN) 7 1.91 2 0.55
RS three regimes (3R) 10 2.73 5 1.37
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Clearly better results are obtained for the regime-switching models where the nominal
coverage for different confidence levels is much closer to the theoretical coverage. The best
performance – in terms of being closest to the theoretical number of exceedances – is given
by the model with a Gaussian distribution for the spike regime: we observe a fraction of
7.12% exceedances for the 90% CI, respectively 3.01% for the 95% and 1.09% for the 99%
confidence level. Results for the other two-regime switching models LN and 3R are only
slightly worse. In total the regime-switching models seem to give intervals somewhat too
wide for the 50%, 90% and 95% confidence level while for the 99% CI the models N and
3R only fail to predict the extreme price jumps. For the more heavy-tailed lognormal dis-
tribution intervals at the 99% level are more conservative and only two exceedances are
observed for the out-of-sample period.

Overall, the results confirm the superior fit of the regime-switching models to the data in
comparison to a stochastic model with jump like the model ‘Kluge’. Further, the best
results are obtained once more for the two-regime model N with a Gaussian distribution
in the spike regime. Despite the good performance of the regime-switching models, confi-
dence intervals are slightly too wide. This may be due to the fact that in comparison to the
estimation period during the out-of-sample period from October 1, 2003 to September 30,
2004 spot prices generally exhibited lower volatility and less price spikes could be
observed.

4.7. A distributional test

Note that due to the special behavior of electricity spot prices, stylized facts suggest that
the spikes are rather unpredictable. Furthermore, tests being based on confidence intervals
may be unstable in the sense that they are sensitive to the choice of the confidence level a.
Therefore, one should additionally apply tests investigating the complete density forecast
instead of a number of quantiles only. To test for the appropriateness of the predicted dis-
tribution, we perform a distribution test proposed by Crnkovic and Drachman (1996). The
test utilizes the information on the entire distribution and is based on the following
methodology.

Assume that we are interested in the distribution of the spot price yt+1, t > 0, which is
being forecasted at time t. Let further the probability density of yt+1 be f (yt+1) and the
associated distribution function be F ðytþ1Þ ¼

R ytþ1

�1 f ðxÞdx. To conduct the test, we deter-
mine bF ðytþ1Þ using the parameter estimates from the in-sample period and the observa-
tions ys, s = 0, . . . , t. Rosenblatt (1952) shows that if bF is the correct loss distribution,
the transformation utþ1 ¼

R ytþ1

�1 f̂ ðxÞdx ¼ bF ðytþ1Þ is independent and identically distributed
uniformly on [0, 1]. The method can be applied to test for violations of either independence
or uniformity. To test for uniformity, Crnkovic and Drachman (1996) suggest using the
Kuiper statistic that is based on the distance between the empirical and the theoretical
cumulative distribution function of the uniform distribution. Table 9 reports test results
based on the modified Kuiper test statistic in Stephens (1970) for the considered models
and the out-of-sample forecasting period from October 1, 2003 to September 30, 2004.
Fig. 3 shows a plots of the probability integral transforms of the one-day-ahead forecasts
for the model ‘Kluge’ and the regime-switching model N.

We obtain similar results as in Section 4.6 with respect to interval forecasts: again the
model K gives the worst results, indicating that probability integral transforms of the one-
day-ahead forecasts are non-uniformly distributed. The test rejects the hypothesis even at
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Fig. 3. Bar plot of the probability integral transforms of the one-day ahead forecasts for EEX logreturns for the
period October 1, 2003–September 30, 2004. Results for the model ‘Kluge’ (Left panel) and the regime-switching
model with Gaussian spikes (N) (Right panel).

Table 9
Test results for violations of uniformity: Kuiper distance T, modified Kuiper test statistic T * and p-value
(Stephens, 1970), *, **indicate rejection of uniformity at the 5% and 1% significance level, respectively

Model T T* p-Value

Kluge (K) 0.2331 4.5140** 0.0000
RS normal spikes (N) 0.0831 1.6020 0.1093
RS lognormal spikes (LN) 0.1281 2.4690** 0.0002
RS three regimes (3R) 0.0920 1.7728* 0.0431
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the 1% level. The results obtained for the regime-switching models are superior in terms
of the modified Kuiper test statistic. Empirical observed probability integral transforms
of the one-day-ahead forecasts are closer to the uniform distribution. However, for the
models LN and 3R the test still rejects the null-hypothesis of uniformity at the 1%, respec-
tively 5% level. Again the best forecast results are obtained by the model N where the
hypothesis of an uniform distribution is not rejected even at the 10% level. The superior
forecast results of the regime-switching approach are also indicated by Fig. 3 that shows
bar plots of the probability integral transforms for the models K and N. Despite the better
fit of the model N we find that for the out-of-sample period still a higher fraction of obser-
vations is in the area [0.25, 0.75] confirming the results on interval forecasts of the previous
section where the number of extreme values is also slightly underestimated. Again, we
argue that this behavior may be explained by the lower volatility and less spiky behavior
of the spot prices in the out-of-sample period.

Overall, we conclude that the best in-sample and out-of-sample results are obtained by
the regime-switching model N with a mean-reversion process for the base regime and a
Gaussian distribution with substantially higher variance in the spike regime.
4.8. Futures pricing

For the valuation of futures contracts, the ability to forecast the expected future spot
price at maturity is essential and will decide on the reliability of the derived futures prices.
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Therefore, we conduct a backtesting analysis, where the two-regime switching models N
and 3R and the most appropriate of the benchmark models, namely the model ‘Kluge’
are compared with respect to their predicting power. Approaches for the valuation of for-
ward and futures contracts can be conceptually divided into two groups: On the one hand,
there is the class of no-arbitrage or cost-of-carry models which is based on considerations
on a hedging strategy that consists of holding the underlying asset of the forward contract
until maturity. The long position in the underlying is funded by a short position in the
money market account. Risk drivers determining the forward price in this case include
the cost-of-storage for forwards on commodities, cost-of-delivery and interest rate risk.
As electricity is a non-storable good, this approach fails in the present context. Eydeland
and Geman (1998) circumvent this problem when valuing electricity options by using the
forward contracts as hedging instrument. Lucia and Schwartz (2002) solve the problem by
making an ad-hoc assumption about the market price of risk whose governing the change
from the objective to the pricing measure.

On the other hand, the value of a forward contract can be retrieved from equilibrium
considerations. In the context of electricity forwards, one possible approach has been sug-
gested by Bessembinder and Lemmon (2002). Generally, the forward premium, i.e. the dif-
ference between the forward price and the expected future spot price represents the
equilibrium compensation for facing the risk of uncertainty about futures prices: In the
case of risk-averse buyers/consumers, there exists a high demand for forward contracts
which lets forward prices rise. If the risk aversion on the producer side is higher, the for-
ward prices will decrease. In the classical terminology, the case where the expected future
spot price is higher than the forward price is called normal backwardation, whereas the
opposite relation is denoted as contango. Both situations resemble a typical insurance con-
tract: In the normal backwardation case the producers are buying insurance against falling
prices whereas in the contango case, consumers buy insurance against raising prices. Long-
staff and Wang (2004) examine forward risk premiums by comparing the hourly spot
prices with the hourly day-ahead forward prices in the intraday market in a non-paramet-
ric way. This approach is not feasible in our setting as the EEX does not offer a true spot
market. Our analysis, however, can be based on a set of appropriate stochastic models
describing the evolution of the underlying under the objective probability measure. With
the help of these models, the expected future stock price EtPT under the objective proba-
bility measure can be retrieved – analytically or by simulation. Additionally, we can collect
at time t forward prices Ft,T with expiration date T. Under the two assumptions that (1)
the stochastic model for the underlying is appropriate and (2) the energy market is suffi-
ciently efficient, the difference between these two quantities provides a consistent estimate
for the unknown forward premium:

ft;T :¼ F t;T � EtP T : ð15Þ

In order to make the results comparable along different maturities, one can transform the
obtained expression for the futures premium and express it in form of an annualized excess
yield k:

F t;T ¼ e�ks � EtP t; ð16Þ

where the time to maturity is expressed as a year fraction.
In what follows, we ignore the interest rate risk and do not separate between futures

and forward contracts. For our analysis we use all futures quotes available on September



Table 10
EEX futures quotes on September 30, 2003, settlement prices, expected future spot prices, futures premiums and
annualized excess yields for different models

Market data Expected future spot prices

Contract Quote Settlement Model K Model N Model 3R

EtPt ft,T k (%) EtPt ft,T k (%) EtPt ft,T k (%)

Monthly

October 2003 33.38 34.00 27.48 5.90 �229.01 27.70 5.68 �219.62 28.00 5.38 �206.93
November

2003
34.54 30.99 29.30 5.24 �98.45 29.53 5.01 �93.77 30.02 4.52 �83.92

December
2003

32.98 28.47 33.81 �0.83 9.86 34.04 �1.06 12.55 34.58 �1.60 18.80

January 2004 34.30 27.84 32.05 2.25 �20.13 32.20 2.10 �18.75 33.05 1.25 �11.02
February

2004
34.35 26.54 32.16 2.19 �15.82 32.57 1.78 �12.78 32.98 1.37 �9.77

March 2004 29.15 31.05 28.60 0.55 �3.80 28.74 0.41 �2.83 29.21 �0.06 0.41
April 2004 27.93 25.57 29.75 �1.82 10.82 29.81 �1.88 11.16 30.29 �2.36 13.90

Quarterly

Q4 2003 33.85 31.15 30.20 3.65 �45.27 30.43 3.42 �42.26 30.87 2.98 �36.56
Q1 2004 32.55 28.48 30.91 1.64 �10.31 31.14 1.41 �8.83 31.72 0.83 �5.15
Q2 2004 26.25 26.48 28.83 �2.58 12.49 29.03 �2.78 13.41 29.47 �3.22 15.41
Q3 2004 27.22 29.40 31.56 �4.34 14.75 31.76 �4.54 15.38 32.27 �5.05 16.97
Q4 2004 31.20 29.69 33.60 �2.40 5.91 33.87 �2.67 6.54 34.33 �3.13 7.62
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30, 2003. These include seven futures with a delivery period of one month and maturities
between October 2003 and April 2004 and five futures with a delivery period of three
months and maturities between the fourth quarter of 2003 and the fourth quarter 2004.
We calculate the expected future spot price – which is an average over the respective matu-
rity period – and estimates for the forward/futures premiums as well as the annualized
excess yield according to Eqs. (15) and (16) for the three different models that were also
considered in the sections on forecasting and distributional tests: the model with stochastic
jumps by Kluge (Model K) and the two-regime switching models N and 3R.4 The results
are presented in Table 10. We can state the following facts: (1) The estimates for the
expected future mean are quite stable among the different models, (2) the futures prices
are greater than the expected future spot most of the times for the first six months and less
than the expected spot for the second, third and fourth quarter in 2004 and (3) our results
underpin what is commonly reported about electricity futures: The futures premium is
positive and the implied excess yield negative – most of the time.

These results are in accordance with the findings of Longstaff and Wang (2004) and
Botterud et al. (2002). Nevertheless, the analysis could be performed in a superior way
by using not only the futures quotes of a single trading day but a series of price quotes
for every particular contract. First, this would allow to assess the intertemporal dynamic
of the forward risk premium and second, statements about the significance of the result
4 Model LN is excluded in this section as it predicts an infinite expected spot price.
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can be derived. Furthermore, the reader may notice that identifying a market consistent
annualized access yield is an important step toward market consistent derivative pricing.
Choosing a time dependent or possibly stochastic excess yield (kt)tP0 combined with a
probabilistic model for the spot price process (St)tP0 identifies a risk-neutral dynamic of
the spot price process. This risk-neutral dynamic reproduces the observed futures prices
and can therefore be used to retrieve market consistent prices of other derivatives.

5. Conclusion

We conducted an extensive empirical analysis of spot price modeling in the German
EEX Power market. We examined the explanatory power and the goodness-of-fit of var-
ious regime-switching model specifications and benchmarked them against a set of mean-
reversion and jump-diffusion models. We find that the regime-switching models clearly
outperform the benchmark models in terms of Log-likelihood, Akaike and Bayesian infor-
mation criterion. The two-regime model with a Gaussian distribution in the spike regime
outperforms its competitors in almost all respects. Another result is that while all models
provide similar results for predictions of the mean, the jump-diffusion and especially the
regime-switching models are able to additionally capture price jumps and spikes. Using
confidence interval predictions and distributional tests, the superiority of the regime-
switching models is confirmed in out-of-sample tests.

Regarding electricity futures, we find that the considered models predict similar values
for future means. Additionally, we denote that for the first six months electricity futures
quotes are consistently greater than the expected future spot, a situation which is denoted
as contango. This observation is consistent with the observed right-skewness in electricity
spot prices.

We confirm the adequacy of regime-switching models for modeling electricity spot
prices and recommend them for further investigation of electricity spot and futures mar-
kets. However, we point out that the scope of our investigation is limited to the EEX and
caution should be exercised in generalizing the results also to other markets. Longstaff and
Wang (2004) point out the individual structure of power markets while Mugele et al.
(2005) obtain quite diverse results considering electricity spot prices from different Euro-
pean power markets.
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