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Abstract

We describe a novel approach for two-party private set intersection (PSI) with semi-honest security.
Compared to existing PSI protocols, ours has a more favorable balance between communication and
computation. Specifically, our protocol has the lowest monetary cost of any known PSI protocol, when
run over the Internet using cloud-based computing services (taking into account current rates for CPU
+ data). On slow networks (e.g., 10Mbps) our protocol is actually the fastest.

Our novel underlying technique is a variant of oblivious transfer (OT) extension that we call sparse
OT extension. Conceptually it can be thought of as a communication-efficient multipoint oblivious PRF
evaluation. Our sparse OT technique relies heavily on manipulating high-degree polynomials over large
finite fields (i.e. elements whose representation requires hundreds of bits). We introduce extensive algo-
rithmic and engineering improvements for interpolation and multi-point evaluation of such polynomials,
which we believe will be of independent interest.

Finally, we present an extensive empirical comparison of state-of-the-art PSI protocols in several
application scenarios and along several dimensions of measurement: running time, communication, peak
memory consumption, and — arguably the most relevant metric for practice — monetary cost.

1 Introduction

Private set intersection (PSI) allows two parties, who each hold a set of items, to learn the intersection of
their sets without revealing anything else about the items. PSI has many privacy-preserving applications:
e.g., private contact discovery [CLR17, RA17, DRRT18]1, DNA testing and pattern matching [TKC07],
remote diagnostics [BPSW07], record linkage [HMFS17], and measuring the effectiveness of online advertis-
ing [IKN+17]. Over the last several years PSI has become truly practical with extremely fast implementa-
tions [CKT10, CGT12, DCW13, PSZ14, KKRT16, KMP+17, RR17, CLR17, HV17, RA17, GNN17a, CCS18]
that can process millions of items in seconds.

In this paper we focus on two-party PSI with semi-honest security (with one variant of our protocol
achieving malicious security for one party). While we describe our protocols in terms of any number of
items, our evaluation focuses on the case where the two parties have sets of the same size. We discuss
the setting of unequal set sizes in Appendix F.

1.1 What Should We Value in a PSI Protocol?

The standard ways to measure the cost of a protocol are running time and communication. Depending on
which of these metrics is prioritized, a different protocol will be preferred.
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Minimizing time. The fastest known PSI protocols are all based on efficient oblivious transfers (OT).
The idea is to reduce the PSI computation to many instances of oblivious transfer. This approach is the
fastest because modern OT extension protocols [Bea96, IKNP03, KK13, ALSZ13] use only a small (fixed)
number of public-key operations (e.g., elliptic curve multiplications) but otherwise use only cheap symmetric-
key operations. The approach to PSI was introduced by Pinkas et al. [PSZ14] and refined in a sequence of
works [PSSZ15, KKRT16]. The state-of-the-art protocol [KKRT16] computes an intersection of million-item
sets in about 4 seconds.

Minimizing communication. To the best of our knowledge, the PSI protocol with lowest communication
in this setting is due to Ateniese et al. [ACT11]. This protocol requires communication that is only marginally
more than a näıve and insecure protocol (in which one party sends just a short hash of each item), and also
has the nice property of hiding the size of the input set. However, the protocol requires at least n log n
RSA exponentiations (for PSI of n items). These requirements make the protocol prohibitively expensive in
practice.2

A more popular (as well as the earliest) approach to low-communication PSI is based on the commutative
property of Diffie-Hellman key agreement (DH-PSI), and appears in several works [Sha80, Mea86, HFH99].
The idea is for the parties to compute the intersection of {(H(x)α)β) | x ∈ X} and {(H(y)β)α) | y ∈ Y } in
the clear, where α and β are secrets known by Alice and Bob, respectively. The DH-PSI protocol strikes a
more favorable balance between communication and computation than the RSA-based protocol. It requires
n exponentiations in a Diffie-Hellman group, which are considerably cheaper than RSA exponentiations
but considerably more expensive than the symmetric-key operations used in OT extension. In terms of
communication, it requires less than 3 group elements per item. When instantiated with compact elliptic
curve groups (ECDH-PSI), the communication complexity is very small. For example, Curve25519 [Ber06]
provides 128-bit security with only 256-bit group elements (around 600 bits of communication per item).

An ideal balance. Communication cost and overall running time are clearly both important, but which
metric best reflects the balance between the two costs, and the true suitability of a protocol for practice?
We argue that the most appropriate metric which balances the two costs is the monetary cost to run the
protocol on a cloud computing service. First, a typical real-world application of PSI is likely to use
such a service rather than in-house computing. Second, the pricing model of such services already takes into
account the difference in cost to send a bit vs. perform a CPU clock cycle.

1.2 Our Contributions

We present a new PSI protocol paradigm that is secure against semi-honest adversaries under standard-
model assumptions. We offer two variants of our protocol: one is optimized for low communication and the
other for fast computation. The variant that is optimized for low communication is also secure against a
malicious sender in the (non-programmable) random oracle model.

Better Balance of Computation and Communication. Compared to DH-PSI and RSA-based
PSI [ACT11], both of our protocol variants have much faster running time, since ours are based on OT
extension (i.e., dominated by cheap symmetric-key operations). The low-communication variant has smaller
communication overhead than DH-PSI (even on a 256-bit elliptic curve) while the fast-computation variant
has about the same communication cost as DH-PSI.

Compared to [KKRT16], both of our protocol variants require much less communication. Our protocols
perform more computation in the form of finite field operations, making our protocols slower over high-
bandwidth networks. However, the variant optimized for fast computation has a competitive running time
and is the fastest over low-bandwidth networks (e.g., 30Mbps and less).

Extensive Cost Comparison. In Section 6 we perform an extensive benchmark of state-of-the-art PSI
protocols for various set sizes and bandwidth configurations. To the best of our knowledge, our analysis is
the first to assess PSI protocols in terms of their monetary costs. Our experiments show that in all settings

2We are not aware of any prior implementation of this protocol, but estimated the running time through benchmark RSA
exponentiations. For the set sizes we consider in this work, the protocol would require many hours or even a day.
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Figure 1: Communication and
running time for different PSI pro-
tocols, with n = 220 items, on
3 network configurations. Curved
lines are lines of equal monetary
cost on a representative AWS con-
figuration (see Section 6).

we considered, the fast variant of our protocol has the least monetary cost of all protocols — up to 40%
less in some cases. A summary of the state of the art (including this work) is depicted in Figure 1.

Sparse OT extension technique. Our main technique, which we call sparse OT extension, is a novel
twist on oblivious transfer (OT) extension. Roughly speaking, the idea allows the receiver to obliviously
pick up a chosen subset of k out of N random secrets (where N may be exponential), with communication
cost proportional only to k.

The concept is similar to an oblivious PRF [FIPR05] on which the receiver can evaluate k chosen points.
Other PSI protocols like [PSSZ15, KKRT16] can also be expressed as a construction of OPRF from OT
extension. However, these involve an OPRF that the receiver can evaluate on only a single value, resulting
in significantly more effort to build PSI. This qualitative difference in OPRF flavor is the main source of our
performance improvements.

New hashing techniques. It is common in PSI literature to assign items randomly to bins, and then
perform a PSI within each bin. For security reasons, it is necessary to add dummy items to each bin. With
existing techniques, dummy items account for 20-80% of the protocol cost! Our speed-optimized protocol
variant is the first to use a kind of 2-choice hashing [SEK03] that requires almost no dummy items (e.g.,
2.5%). This 2-choice hashing technique requires placing many items per bin, while previous PSI techniques
are only efficient with 1 item per bin (due to their qualitatively different OPRF flavor). Hence, this hashing
technique does not immediately benefit existing PSI protocols.

New polynomial interpolation techniques. Our communication-optimized protocol variant requires
interpolation and multi-point evaluation of a polynomial, which turns out to be the main bottleneck for the
following reasons: (1) The polynomial is over a large field of ≫ 2400 elements, since the polynomial encodes
values related to an underlying OT-extension protocol. (2) The number of interpolation points depend on
the parties’ set size, which could be in the millions. (3) The best algorithms, which incur O(n log n) field
operations, require a special set of interpolation points, namely, the x-values should be the roots of unity of
the field or have a special algebraic structure. In contrast, in the context of our protocol the interpolation
points (the x-values) are the parties PSI input items, which are arbitrary. The best algorithms with an
arbitrary set of interpolation points incur O(n log2 n) field operations [MB72].

We develop and demonstrate new techniques, called Slice & Stream and Subproduct-Tree Reuse, to speed
up the concrete efficiency of these tasks by up to 2× for the special case in which the x and y-coordinates of
the points are drawn from the domains Dx and Dy where |Dx| ≪ |Dy|. We believe those techniques could
have a general interest (even outside of the field of cryptography).

1.3 Related Work and Comparison

We compare our results to relevant related work here, focusing on qualitative differences between the proto-
cols. A quantitative comparison is given later in Section 6.

DH-PSI Our protocol uses less communication than DH-PSI, even when the latter is instantiated with
the most compact elliptic curve known. In terms of computation, our protocol uses only symmetric-key
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operations (apart from a fixed number of base OTs). Its main computational bottleneck is computing poly-
nomial interpolation, requiring either O(n log2 λ) or O(n log2 n) finite field operations (i.e., multiplications),
depending on the variant, where n is the set size and λ is the statistical security parameter. The DH-PSI
protocol computes O(n) exponentiations (or elliptic curve multiplications, which are each computed using
log |G| multiplication operations in the underlying cyclic group G). If we consider the basic unit of com-
putation to be a multiplication in the underlying field/group, then our protocol uses at most O(n log2 n)
multiplications whereas DH-PSI uses O(n log |G|) multiplications. The experiments that we describe in Sec-
tion 6 demonstrate that our protocol is substantially faster than DH-PSI for all realistic set sizes and on all
network configurations.

Our communication-optimized protocol variant has security against one malicious party. In contrast,
DH-PSI is not easily adapted to malicious security, even against just one party.3 In order to harden DH-PSI
against malicious parties, the leading protocol of De Cristofaro et al. [CKT10] requires both parties to run
zero-knowledge proofs involving all of their input items. Thus, even one-sided malicious security requires
significant overhead to the semi-honest protocol.

While we do not formally consider security against quantum adversaries, we do point out that our
protocol exclusively uses primitives that can be instantiated with post-quantum security (OT, PRFs, and
hash functions). DH-PSI on the other hand is trivially broken against quantum adversaries.

Protocols based on an RSA accumulator. The protocol of [ACT11] has a very low communication
overhead of roughly λ+log2 n bits per item, which may even be optimal (even for an insecure protocol). On
the other hand, it computes O(n log n) RSA exponentiations, and as such is slower than DH-PSI by at least
an order of magnitude (due to the log n factor, and to RSA exponentiations being slower than elliptic curve
multiplications). Our protocols are substantially faster than both of these protocols (see Section 6). This
protocol also requires a random oracle, whereas for semi-honest security ours is in the standard model.

OT-based protocols Our protocol requires 40-50% less communication compared to [KKRT16] and is
the fastest over low-bandwidth networks (30 Mbps and lower). Over high-bandwidth networks, even though
our protocol is slower than [KKRT16], ours still requires less monetary cost (see Section 6).

Independently, Lambæk [Lam16] and Patra et al. [PSS17] showed how to enhance the protocols of [PSZ14,
KKRT16] with a security against a malicious receiver with almost no additional overhead. Interestingly, our
protocol naturally provides security against a malicious sender. In both of these protocols, if the parties
have sets of very different sizes then the party with more items should play the role of sender. Providing a
different flavor of one-sided malicious security is therefore potentially valuable.

Ghosh and Nilges [GN19] proposed a PSI protocol based on oblivious linear function evaluation (OLE).
This protocol requires 2n passive OLE invocations, polynomial interpolations at 3 times (one of degree n,
and two of degree 2n), and polynomial evaluation on 2n+ 1 points at 4 times. In terms of communication,
the required passive OLE instances [IPS09, GNN17b] require 8(n+1) elements sent from the receiver to the
sender to create a noisy encoding, and the cost of doing 4n-out-of-8(n + 1) OT which incurs an overhead
of at least 8(n+ 1) on the number of Correlated OT. Hence, this OLE-based PSI protocol requires at least
8(n+1)(κ+2ℓ) bits communication, where ℓ is bit-length of item. For example, when ℓ = 128, our protocols
show a factor of 4.8− 6.3× improvement in terms of communication.

Recently, Falk, Noble and Ostrovsky [FNO18] presented a protocol for PSI that achieves linear commu-
nication complexity relying on standard assumption (i.e. in the OT-hybrid model, assuming the existence of
correlation robust hash and one-way functions) and in the standard model (i.e. without a random oracle).
This is in contrast to previous protocols that achieve linear communication but rely on stronger assumptions
(like [CKT10, CT12] that are based on the one-more RSA assumption and a random oracle); and to previous
OT-based protocols that achive only super-linear communication complexity due to the stash handling. In
the protocol of [FNO18], just like previous OT-based protocols, Bob maps his n items to O(n) bins using a
Cuckoo hashing, hence, it has at most one item in each bin. Bob also maintains a special bin for items that
could not be mapped to the ‘regular’ bins, this special bin is called the stash and it contains ω(1) items.
Alice maps her items to O(n) bins using simple hashing, hence, she has at most O(log n/ log log n) items in
each bin with high probability. Then, Bob can obtain the intersection between items in its ‘regular’ bins

3The main challenge is that a simulator would have to extract effective inputs {x1, . . . , xn} from a corrupt party, seeing only
{H(x1)α, . . . , H(xn)α}.
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and Alice’s set using the BaRK-OPRF technique of [KKRT16] with communication complexity O(n · κ)
(where κ is the computational security parameter). It remains to compare the items in Bob’s stash to all
Alice’s items; since the stash is of size ω(1) this comparison would naively require ω(n · κ) communication
overall. However, the observation in [FNO18] is that this comparison can be performed using a separate
PSI protocol that is specialized for unbalanced set sizes in which Alice has much more items than Bob; such
a protocol can achieve communication complexity that depends only on the larger set size, therefore, the
overall communication complexity of [FNO18] is O(n ·κ) rather than ω(n ·κ). We note that in concurrent to
their work, in this paper we achieve the same (linear) communication complexity, under the same standard
assumptions and without a random oracle, using a new primitive, namely the Sparse OT Extension.

Other paradigms. Other approaches for PSI have been proposed, including ones based on Bloom
filters [DCW13] and generic MPC [HEK12]. Pinkas et al. [PSZ14, PSSZ15] performed a comprehensive
comparison of semi-honest PSI techniques and found the OT-extension paradigm to strictly dominate others
in terms of performance. They found that the best Bloom-filter approach is 2x worse in runtime, 4x worse in
communication; best generic-MPC-based approach is 100x worse in runtime and 10x worse in communication.
For this reason, we do not include these protocol paradigms in further comparisons.

Asymmetric set sizes. Several recent PSI protocols are optimized specifically for the case of highly
asymmetric set sizes. [CLR17, PSSZ15, KLS+17, RA17]. We discuss these protocols in Appendix F.

Other related work. One way of viewing our new technique is that we covertly embed some protocol
messages into a polynomial. Similar ideas appear in [MPP10, CDJ16]. In particular, [CDJ16] explicitly
propose to embed private equality-test protocol messages into a polynomial, to yield a PSI protocol. Their
protocol is based on the DH paradigm, and therefore requires a linear number of exponentiations. They also
achieve a stronger covertness property (participants cannot distinguish other participants from random noise,
until the protocol terminates). In our case, we look inside IKNP OT extension and identify the minimal
part of the protocol that needs to be covertly embedded into a polynomial, in order to achieve standard
(semi-honest or malicious) security.

2 Technical Preliminaries

2.1 Notation

Throughout the paper we use the following notation: We let κ, λ denote the computational and statistical
security parameters, respectively. We write [m] to denote a set {1, . . . ,m}. The notation dH(x,y,) denotes
the Hamming distance between bit vectors (strings) x and y of the same length and wH(x) = dH(x,0)
denotes the Hamming weight of x. For a bit vector v we let vi denote the bit in the ith coordinate. If a =
a1‖ · · · ‖ap and b = b1‖ · · · ‖bp are two vectors, the notation a⊕ b denotes the vector (a1⊕ b1)‖ · · · ‖(ap⊕ bp).
Similarly, the notation a · b represents the bitwise-AND of vectors: (a1 · b1)‖ · · · ‖(ap · bp).

2.2 Oblivious Transfer

Oblivious Transfer (OT) is a central cryptographic primitive in the area of secure computation, which was
introduced by Rabin [Rab05]. 1-out-of-2 OT [EGL85] refers to the setting where a sender with two input
strings (m0,m1) interacts with a receiver who has a input choice bit b. As the result, the receiver learns mb

without learning anything about m1−b, while the sender learns nothing about b. Rabin OT protocol requires
expensive public-key operations. In 2003, Ishai et al. [IKNP03] proposed a construction of OT extension
(refer as IKNP) that allows a large number of OTs executions at the cost of computing a small number
of expensive OTs [NP99]. Later, Kolesnikov and Kumaresan [KK13] improved IKNP for short secrets. It
gives O(log(κ)) factor performance improvement in communication and computation. In the same year,
[ALSZ13] presented several IKNP optimizations and several weaker variants of OT. In Random OT (ROT),
the sender’s OT inputs (m0,m1) are chosen at random, therefore, it allows the protocol itself to give him
the values (m0,m1) randomly. With ROT, the bandwidth requirement is significantly reduced since the
sender sends nothing to receiver. In our construction, we require this weaker variant, random OT, whose
functionality is described in Figure 2.
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Parameters: Sender S, receiver R, length κ
Functionality:

• Wait for an input b← {0, 1} from the receiver R.

• Choose m0,m1 ← {0, 1}
κ, and give both to sender S.

• Give mb to receiver R.

Figure 2: The Fκ

ROT ideal functionality for Random Oblivious Transfer.

2.3 (Hamming) Correlation Robustness

Our PSI construction is proven secure under a correlation robust assumption which was introduced for IKNP
OT extension [IKNP03] and later generalized in [KKRT16] to the version we use in this work.

Definition 2.1. [KKRT16] Let H be a function with input length n. Then H is d-Hamming correlation

robust function (CRF) if, for any a1, . . . ,am, b1, . . . , bm with ai, bi ∈ {0, 1}
n and wH(bi) ≥ d for all

i ∈ [m], the following distribution, induced by random sampling of s← {0, 1}n, is pseudorandom:

H(a1 ⊕ [b1 · s]), . . . , H(am ⊕ [bm · s])

The IKNP protocol uses this assumption with n = d = κ. In that case, the only valid choice for bi is 1
κ,

and the distribution simplifies to H(a1⊕ s), . . . , H(am⊕ s). In our case, we use n > d = κ, so other choices
for the bi values are possible.

2.4 Private Set Intersection

PSI is a special case of secure two-party computation, and we use the standard security definitions for
two-party computation in this work. The guarantees of PSI are captured in the ideal functionality FPSI

defined in Figure 3. For security against malicious parties, we use the framework of universal composability
(UC) [Can01].

2.5 The IKNP OT Extension: A Reminder

It is well-known that oblivious transfer cannot be obtained from scratch using only symmetric-key primi-
tives [IR88]. OT extension [Bea96] refers to the idea that parties can perform only a small number κ of
OTs (using public-key primitives), and then, using only symmetric-key operations thereafter, obtain N ≫ κ
effective instances of OT. Modern OT extension protocols follow the overall structure of the IKNP proto-
col [IKNP03]. In Figure 4 we review the variant of the IKNP protocol where the sender’s OT payloads are
chosen uniformly.

From the correctness of the base OTs, we have that:

qi = ti ⊕ si · (ti ⊕ ui) =

{
ti if si = 0

ui if si = 1

This relationship can be extended across the rows of the N × κ matrices to obtain: Q(i) = T (i)⊕ s · (T (i)⊕
U(i)), where T (i) and U(i) correspond to the rows of T and U . Then:

Q(i)⊕ s · P (i) =
(
T (i)⊕ s · (T (i)⊕ U(i))

)
⊕ s · (T (i)⊕ U(i)⊕ C(i))

= T (i)⊕ s · C(i) =

{
T (i) if ri = 0

T (i)⊕ s if ri = 1

From this we can deduce that Bob’s output is m∗

i = mi,ri
, whereas mi,1−ri

= H(T (i) ⊕ s). From the
correlation-robust property of H, this value is pseudorandom from Bob’s perspective.
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Parameters: Sender S, receiver R, set sizes n1, n2.
Functionality:

• Wait for input X = {x1, . . . , xn1
} ⊆ {0, 1}∗ from sender S.

• Wait for input Y = {y1, . . . , yn2
} ⊆ {0, 1}∗ from receiver R.

• Give output X ∩ Y to receiver R.

Figure 3: PSI ideal functionality FPSI.

Parameters:

• A PRG G : {0, 1}κ → {0, 1}N

• A κ-Hamming CRF H : {0, 1}κ → {0, 1}κ.

Input of Sender Alice: none.
Input of Receiver Bob: an N -bit string r.

Protocol:

1. Alice chooses s← {0, 1}κ uniformly at random.

2. Alice and Bob invoke κ instances of Random OT Fκ
ROT. In the i-th instance:

• Alice acts as receiver with input si.

• Bob acts as sender, and receives outputs ti,ui ∈ {0, 1}
κ.

• Alice receives output qi.

3. Bob computes the following N × κ matrices:

• T whose ith column is G(ti)

• U whose ith column is G(ui)

• C whose ith row is 0κ if ri = 0 and 1κ if ri = 1

Bob sends the matrix P = T ⊕ U ⊕ C to Alice. For each i ∈ [N ], Bob outputs m∗

i = H(T (i)),
where T (i) denotes the ith row of T .

4. Alice computes an N × κ matrix Q whose ith column is G(qi). Now let Q(i) denote the ith row
of this matrix, and let P (i) denote the ith row of P . For each i ∈ [N ], Alice outputs:

mi,0 = H(Q(i)⊕ s · P (i))

mi,1 = H(Q(i)⊕ s · P (i)⊕ s)

Figure 4: The IKNP protocol for OT extension.

3 Our Main Protocol

3.1 A Conceptual Overview: PSI From a Multi-Point OPRF

A conceptually simple way to realize PSI is with an oblivious PRF (OPRF) [FIPR05, HL08], which allows
a sender Alice to learn a [pseudo]random function F , and allows the receiver Bob to learn F (yi) for each
chosen item in his set {y1, . . . , yn}. If Alice has items {x1, . . . , xn}, she can send F (x1), . . . , F (xn) to Bob. If
the output of F is sufficiently long, then except with negligible probability we have F (xi) = F (yj) if and only
if xi = yj . Hence, Bob can deduce the intersection of the two sets. The fact that F is pseudorandom ensures
that for any item xi 6∈ {y1, . . . , yn}, the corresponding F (xi) looks random to Bob. Hence, no information
about such items is leaked to Bob.

Sparse OT Extension: Key Idea. We can interpret IKNP OT extension (Figure 4) as an OPRF as
follows: Define the function F (i) = mi,0. Clearly the sender who knows the key of F can compute F (i) for
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any i. The receiver can set his i’th choice bit in the OT to be ri = 0 if he chooses to learn F (i) (in this
case he learns mi,0), and use ri = 1 if he chooses not to learn F (i) (now he learns mi,1). To learn k OPRF
outputs, the receiver includes k 0s among his choice bits. The security of OT extension implies that the
receiver learns nothing about F (i) whenever ri = 1, and the sender learns nothing about the ri bits.

This yields an OPRF of the form F : [N ]→ {0, 1}κ, where N is the number of rows in the OT extension
matrix. To be useful for PSI, N should be exponentially large, making this simple approach extremly
inefficient. The following two key observations allow us to make the above approach efficient:

1. The parties require only random access to the large OT extension matrices. In the PSI application,
they only read the n≪ N rows indexed by their PSI inputs. While IKNP defines the matrices T, U,Q
by expanding base OT values via a PRG, we instead expand with a PRF4.

2. Besides the base OTs, the only communication in IKNP is when Bob sends the N × κ matrix P . In
PSI, Bob only has knowledge of the n ≪ N rows of P indexed by his PSI input. Yet he must not let
Alice identify the indices of these rows. Our idea is to have Bob interpolate a degree-n polynomial P
where P (y) is the correct “target row” of the IKNP OT extension matrix, for each y in his PSI input
set. He then sends this polynomial P instead of a huge matrix. This change reduces Bob’s
communication from O(Nκ) to O(nκ), allowing N to be exponential.

The polynomial P is distributed as a random polynomial (hiding Bob’s inputs) since all rows of the IKNP
matrix are pseudorandom from Alice’s point of view. The more important concern is whether Bob learns
too much. For example, suppose Bob interpolates P on points {y1, . . . , yn}, but P happens to match the
correct “IKNP target value” on some other y∗ 6∈ {y1, . . . , yn} as well. This would allow Bob to learn whether
Alice holds y∗, violating privacy. We argue that: (1) When the OT extension matrix is sufficiently wide, all
relevant values P (y∗) are sufficiently far in Hamming distance from their “target value”. (2) When this is
true, then Bob gets no information about Alice’s items not in the intersection.

Comparison to other PSI paradigms. Other state-of-the-art PSI protocols (e.g., [KKRT16, PSZ14])
can also be interpreted as constructing an OPRF from OT extension ([KKRT16] is explicitly described this
way). These works construct an OPRF that the receiver can evaluate on only one point, and use various
hashing tricks to reduce PSI to many independent instances of such an OPRF. In contrast, we construct a
single instance of an OPRF where the receiver can evaluate many points. With such a multi-point OPRF it
is trivial to achieve PSI, as illustrated above.

3.2 Protocol Details, Correctness, Performance

The formal details of our protocol are given in Figure 5. We use n1 for the size of Alice’s set and n2 for
the size of Bob’s. We write Interp

F
({(x1, y1), . . . , (xd, yd)}) to denote the unique polynomial P over field F

of degree less than d where P (xi) = yi. In IKNP, the width of the matrices (and number of base OTs) is κ
whereas the width in our instantiation is ℓ > κ, where ℓ is determined by the security analysis.

Costs. The main computational cost is evaluating the degree-n2 polynomial for Alice and interpolating
the polynomial for Bob. In the case of n1 = n2 = n this can be done with O(n log2 n) field operations
(details in 5.1).

In the communication costs of the protocol, we exclude the cost of the base OTs. These are fixed and
don’t depend on the parties’ set sizes. Bob sends n2ℓ bits, while Alice sends n1(λ+log(n1n2)) bits. Generally
speaking, ℓ is much larger than λ + log(n1n2), which suggests that the party with more items should play
the role of Alice. Concrete values are discussed later in Section 6.

Correctness. The idea behind the protocol is that for every row which Bob uses to interpolate the
polynomial P (namely, a row corresponding to an input of Bob), Alice sends a value which is equal to the
corresponding hash value that Bob computes in the last step of the protocol.

4In [HS13, Sec 3.2] they also use a PRF rather than PRG, but for a completely different purpose: random access to the OT
extension matrix was used to parallelize OT extension and reduce memory footprint.

8



Input of Sender Alice: X = {x1, . . . , xn1
} ⊆ [N ]

Input of Receiver Bob: Y = {y1, . . . , yn2
} ⊆ [N ]

Parameters:

• The size ℓ := log2 |F| as defined in Table 6.

• A κ-Hamming CRF H : {0, 1}ℓ → {0, 1}λ+log(n1n2)

• A PRF F : {0, 1}κ × [N ]→ {0, 1}

Protocol:

1. Alice chooses s← {0, 1}ℓ uniformly at random.

2. Alice and Bob invoke ℓ instances of Random OT Fκ
ROT. In the i-th instance:

• Alice acts as receiver with input si.

• Bob acts as sender, and receives outputs ti,ui ∈ {0, 1}
κ.

• Alice receives output qi.

3. For y ∈ Y , Bob computes R(y) = T (y)⊕ U(y), where:

T (y) := F (t1, y)‖F (t2, y)‖ · · · ‖F (tℓ, y)

U(y) := F (u1, y)‖F (u2, y)‖ · · · ‖F (uℓ, y)

4. Bob computes a polynomial P := Interp
F
({y,R(y)}y∈Y ), and sends its coefficients to Alice

5. Alice defines Q as follows:
Q(x) := F (q1, x)‖F (q2, x)‖ · · · ‖F (qℓ, x)

and sends O =
{
H
(
Q(x)⊕ s · P (x)

)
| x ∈ X

}
randomly permuted to Bob

6. Bob outputs {y ∈ Y | H(T (y)) ∈ O}

Figure 5: Our PSI protocol

Namely, following the discussion of IKNP, we can see that

Q(x) = T (x)⊕ s ·
(
T (x)⊕ U(x)

)
= T (x)⊕ s ·R(x)

and therefore in Step 5 Alice computes:

Q(x)⊕ s · P (x) = T (x)⊕ s ·
(
P (x)⊕R(x)

)
(1)

Now, consider the case that both parties have a common item x∗. Bob constructs P so that P (x∗) = R(x∗).
Alice computes H(Q(x∗)⊕ s ·P (x∗)) which from Equation 1 gives Alice H(T (x∗)). Hence, Bob will include
x∗ in his output.

In case that x 6∈ Y , P (x) and R(x) will be different in at least κ bits with overwhelming probability (see
the analysis below). Therefore, H

(
Q(x)⊕ s · P (x)

)
is pseudorandom from Bob’s view, under the Hamming

correlation robust assumption. If σ is the output length of H, then the probability that this random value
equals H(T (y)) for some y ∈ Y is n22

−σ. By a union bound over the items of X \ Y , the overall probability
of Bob including an incorrect value in the output is at most n1n22

−σ. Hence, choosing σ = λ+ log2(n1n2)
ensures that this error probability is negligible (2−λ).

3.3 Properties of Polynomials

We first prove some simple lemmas about polynomials that are used in the security proof of our PSI protocol.

Hiding Bob’s input. For security against a corrupt sender Alice, we simply need Bob’s polynomial to
hide his input:

9



n1:
Pr[BadPoly] 210 212 214 216 218 220 222 224

2−40 416 420 424 428 432 436 440 444
2−80 491 495 498 502 505 509 512 515

Figure 6: Field size log2 |F| for our protocol, with κ = 128.

Proposition 3.1. If z1, . . . , zd are uniformly distributed over F, then for all distinct x1, . . . , xd, the output
of Interp

F
({(x1, z1), . . . , (xd, zd)}) is uniformly distributed. In particular, the distribution does not depend on

the xi’s.

Proof. Viewing polynomial interpolation as a linear operation, we have the following, where p0, . . . , pd−1 are
the coefficients of the polynomial.




p0
p1
...

pd−1


 =




1 x1 x2
1 · · · xd−1

1

1 x2 x2
2 · · · xd−1

2
...

...
...

. . .
...

1 xd x2
d · · · xd−1

d




−1

×




z1
z2
...
zd




Since the polynomial is computed as a nonsingular matrix times a uniform vector, the polynomial’s distri-
bution is also uniform. �

Security for Alice. In our protocol, Bob generates a polynomial P such that P (y) = R(y) for his input
points y ∈ Y . The security of the protocol relies on the property that for all other points x 6∈ Y , P (x) is far
from R(x) in Hamming distance (with very high probability).

Definition 3.2 (Bad polynomial). Let BadPolyR
F
(X,Y ) be the procedure defined as follows:

1. P := Interp
F
({(y,R(y)) | y ∈ Y })

2. Output 1 iff ∃x ∈ X \ Y s.t. dH(P (x), R(x)) < κ

Proposition 3.3. The probability that a polynomial interpolated over points in Y also passes “too close” to
another point in X is bounded by n1

|F|

∑
i<κ

(
log

2
|F|

i

)
. Formally, for all X,Y with |X| = n1,

Pr[BadPolyR
F
(X,Y ) = 1] ≤

n1

|F|

∑

i<κ

(
log2 |F|

i

)
,

where the probability is over choice of random function R : F→ F.

Proof. For a fixed element v ∈ F, the probability of a uniformly chosen element u ← F being closer than
Hamming distance κ to v is

∑
i<κ

(
log

2
|F|

i

)
/|F|. This is the case when entering to the second step of the

procedure in Definition 3.2, where each P (x) is already fixed and R(x) is uniform in F. The claim follows
by a union bound over the (at most n1) items in X \ Y . �

On the communication complexity of the protocol.. Let ℓ = log2 |F|. In our protocol a small ℓ leads
to a bad event where two terms are close in Hamming distance. Since this bad event is a one-time event, it
suffices to bound its probability by the statistical security parameter λ. Since the bad event involves a union
bound over n, the concrete analysis involves both λ and n.

However, we could also just compute ℓ assuming the worst case n = 2κ (where κ is the computational
security parameter), and we would get ℓ = poly(κ) and a bad-event probability of poly(n)/2κ. For our specific
protocol/analysis, ℓ = 4.3 ·κ appears sufficient to achieve bad event probability n/2κ (robust to a wide range
of κ). As an analogy: in any OPRF-based PSI protocol, receiver learns F (y1), F (y2), . . . and sender sends
F (x1), F (x2), . . .. For correctness it suffices to truncate F to λ+2log(n) bits, but of course it is quite enough
to let F have O(κ) bits.
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In summary, asymptotically O(n ·κ) bits do suffice for correctness/security, but so do O(n · ℓ) bits, where
ℓ is some function of λ, κ, n. The more fine-grained analysis of ℓ leads to less concrete communication, and
that is why our concrete analysis displays a dependency of ℓ on n.

Hence, given a desired κ, n1, and Pr[BadPoly] one can solve for the smallest compatible field size. A table
of such field sizes is provided in Figure 6.

3.4 Semi-Honest Security

Theorem 3.4. The protocol in Figure 5 securely realizes the PSI functionality of Figure 3 in a semi-honest
setting, when F is a pseudo-random function, H is a κ-Hamming correlation robust (Definition 2.1), and
the parameter ℓ is chosen according to the table in Figure 6.

Proof. Due to space limitation we only sketch here the simulators for the two cases of corrupt Alice and
corrupt Bob. The full security proof including (via hybrid arguments) is defered to Appendix A.1.

Corrupt Alice. The simulator observes Alice’s inputs to the FROT primitive and gives random qi as
OT outputs in Step 2. The only other message Alice receives is the polynomial P in Step 4. Instead of
P := Interp

F
({y,R(y)}y∈Y ), the simulator sends a uniformly random polynomial to Alice.

Briefly, this simulation is indistinguishable for the following reasons: R(y) is pseudorandom from Alice’s
view (by the security of the PRF which defines the conceptual OT-extension matrices). Hence, the polynomial
P is distributed uniformly (from Proposition 3.1).

Corrupt Bob. The simulator for a corrupt Bob first obtains X ∩ Y from the ideal PSI functionality. It
simulates random outputs ti, qi from FROT. The only other message received by Bob is the set O in Step 5.
To simulate this message, the simulator computes n′ = n1−|X∩Y | and uniformly samples values z1, . . . , zn′ .
It then simulates O = {H(T (x)) | x ∈ X ∩ Y } ∪ {z1, . . . , zn′}.

This simulation is indistinguishable because P (x) and R(x) will differ in at least κ bits for every x ∈
X \ Y (Proposition 3.3), and as long as that is true, the corresponding outputs of H will be pseudorandom
(Definition 2.1).

3.5 Optimizations: Reducing Alice’s Communication

Recall that Alice’s communication consists of n1 OPRF outputs, each of length λ + log(n1n2). Using a
trick of Tamrakar et al. [TLP+17], this can be reduced to roughly λ + log n1 bits per item. For λ = 40
and n1 = n2 = 220 this reduces communication by 25%. This improvement is even more beneficial when
n1 ≫ n2, since Alice’s communication (despite being less per item) dominates the protocol overall.

For completeness, we describe the trick in Appendix B. It can be viewed as a public lossless compression
of Alice’s protocol message, and therefore does not affect security. We also show another approach to reduce
Alice’s communication to exactly λ+ log n1 bits per item, inspired by polynomial encodings. However, that
optimization is much slower in practice for only a marginal reduction in communication.

3.6 Security against Malicious Sender

Our protocol is secure against a malicious sender if F is modeled as a non-programmable random oracle. (In
Appendix A.3 we show that our protocol is insecure against a malicious receiver.)

Theorem 3.5. The protocol in Figure 5 securely realizes the PSI functionality of Figure 3 against a malicious
sender Alice, when F is modeled as a (non-programmable) random oracle.

Proof Sketch. The simulator plays the role of honest receiver Bob and the ideal FROT functionalities in steps 1
and 2, observing Alice’s FROT-input s and generating random outputs {qi}i∈[ℓ]. Throughout the protocol,
the simulator also observes all of Alice’s queries to the random oracle F . Without loss of generality, we can
assume that whenever Alice makes a query of the form F (qi, x) to the random oracle, where qi is one of
the FROT-outputs, it also queries F (qj , x) for all j ∈ [ℓ]. The simulator observes Alice’s oracle queries and
maintains a list

C = {x | Alice queried F on some F (qi, x)}.
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In step 4, the simulator sends a random polynomial P . In step 5, the simulator receives a set O from the
corrupt Alice and computes

X̃ = {x ∈ C | H(Q(x) + s · P (x)) ∈ O},

and finally sends X̃ to the PSI ideal functionality.
In Appendix A.2 we use a hybrid argument to formally prove the indistinguishability of this simulator.

4 The Fast Protocol Variant

The biggest performance bottleneck in our protocol is interpolating and evaluating extremely high-degree
(e.g., d = 220) polynomials over large (e.g., |F| > 264) finite fields. To reduce this computational cost, we
employ a technique of hashing the items into bins, and performing PSI (involving lower-degree polynomials)
within each bin. This general technique is quite common in the PSI literature, and two different types of
hashing have been suggested in previous work. However, we introduce a new hashing technique that (to the
best of our knowledge) has not been suggested previously for PSI. As we illustrate, previous protocols are
not able to immediately benefit from this new hashing technique — only our approach enjoys the advantages
of this new approach.

4.1 Previous Hashing Techniques

In simple hashing, parties choose a random hash function h : {0, 1}∗ → [m] and assign each item x to
bin with index h(x). Since if Alice and Bob have the same item they both map it to the same bin, then
they can perform a separate PSI within each bin. The load of each bin leaks information (i.e., it cannot be
simulated just given the intersection), and therefore the parties must pad each bin up to a maximum size
with dummy items. For example, with n items and m = O(n/ log n) bins, the expected load of each bin is
n/m = O(log n) and the maximum load B is O(log n) with high probability. In practice, B may be 4 to 5
times higher than n/m, meaning that about 80% of the items are dummies.

In Cuckoo hashing (used in [PSZ14, KKRT16]), the parties choose two hash function h1, h2 : {0, 1}∗ →
[m]. The receiver Bob places his items into m bins so that x is placed in either h1(x) or h2(x), and each bin
contains at most one item. Alice places each of her items x in both locations h1(x) and h2(x). As above, Bob
must pad each bin with dummy items to contain exactly one item (we can avoid dummy items for Alice).
The parties perform a PSI in each bin. Cuckoo hashing leads to roughly 20% dummy items (this is for
Cuckoo hashing with three hash functions; Cuckoo hashing with two hash functions has even more dummy
items), not to mention extra protocol costs associated with the stash (a special bin for items that cannot
find a home in the Cuckoo hashing).

4.2 Our High-Level Approach

An important feature of Cuckoo hashing is that it results in at most one item per bin for Bob. This situation
is the ideal fit for the underlying OPRF primitive of [PSZ14, KKRT16], which allows the receiver (Bob in
this case) to evaluate the OPRF on a single value. With Cuckoo hashing, the PSI performed in each bin
can be achieved with such an OPRF.

But our sparse OT extension technique results in a multi-point OPRF primitive that allows the receiver
to evaluate on many values. Hence we have no need to constrain the receiver Bob to have only one item per
bin. We propose to use a generalization of Cuckoo hashing called 2-choice hashing. Similar to Cuckoo
hashing, there are two hash functions h1 and h2, and item x can be placed in either h1(x) or h2(x). Unlike
Cuckoo hashing, there is no restriction on the number of items per bin.

Cuckoo hashing is also often synonymous with an online hashing procedure, where all the items are
processed in a single pass. For the application to PSI, though, all items are known upfront. We are free to
make the best assignment of items to bins, taking into account global information about all items. 5

5This observation was concurrently and independently noted in [FNO18]; however, their focus is exclusively on Cuckoo
hashing, with at most one item per bin. They do not consider our generalized 2-choice hashing.
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These facts about 2-choice hashing indeed lead to much better performance (in terms of dummy items).
The following theorem of Czumaj, Riley, and Scheideler [CRS03] shows that when the bins are allowed to
contain significantly many items, no dummy items are needed at all!

Theorem 4.1 ([CRS03]). Let h1, h2 : {0, 1}∗ → [m] be two random functions. Suppose there are n items
and m bins, where each item x can be placed in either h1(x) or h2(x). Let L = ⌈n/m⌉. If n = Ω(m logm)
then with high probability there exists an optimal assignment, where each bin contains no more than L
items.

The proof uses an explicit randomized algorithm to generate an optimal assignment. However, we found
that the algorithm takes prohibitively long to converge. Also, its analysis of error probability is not concrete.
However, if we are willing to settle for merely an “almost optimal” assignment of items to bins, the following
theorem of Sanders, Egner, and Korst [SEK03] suggests that one can be found quite efficiently:

Theorem 4.2 ([SEK03]). Let n,m, h1, h2 be as above, with L = ⌈n/m⌉. There is a deterministic algorithm
running in time O(n log n) that assigns at most L+ 1 items to each bin, with probability 1−O(1/m)L over
the choice of h1, h2.

Algorithm 1 FindAssignment(X,m, h1, h2)

1: for x ∈ X do

2: Assign item x to bin h1(x)

3: for x ∈ X do

4: Assign item x to whichever of h1(x), h2(x) cur-
rently has fewest items

We propose the two-pass heuristic in Algorithm
1 for assigning items to bins. This very simple, lin-
ear time algorithm seems to perform well. In our
experience, it never fails to find a near-optimal as-
signment with maximum load L + 1 = ⌈n/m⌉ + 1,
for the parameters we use. In the rare event that it
does fail, more iterations of the final loop are likely
to succeed.

With such a near-optimal assignment, we can see that for each of the n/m bins there is only one dummy
item. In practice, we set n/m to be the statistical security parameter λ so that an assignment exists with
overwhelming probability. Setting n/m = λ = 40 leads to the most dummy items one would ever consider
for our protocol, but still there are only 2.5% (= 1/40) dummy items.

In the overall PSI protocol, Bob will send a polynomial of degree ⌈n/m⌉+ 1 for each bin. For each item
of Alice x ∈ X, she considers both locations h1(x) and h2(x) and derives an OT-extension / OPRF output
for both possibilities. She then sends these 2 outputs for each item.

4.3 Protocol Details

The details of the protocol are given in Figure 7. It mostly follows the outline given above, with one important
exception. Most of the time, Alice computes two distinct mask values for each x ∈ X: one for h1(x) and one
for h2(x). But h1(x) = h2(x) is possible with probability 1/m. In that case, depending on how one specifies
this edge case, Alice will either send a repeated mask or send less masks overall. Either way, this event leaks
to Bob that Alice holds such an item satisfying h1(x) = h2(x). This issue is common to all PSI protocols
that use Cuckoo hashing as well.

To address this issue, we let Bob append to each item y a bit b ∈ {1, 2} indicating which hash function
hb was used to assign it to this bin. If h1(y) = h2(y) we just choose b arbitrarily. Then the OT extension &
polynomials are done with respect to these “extended” values. Now in the case of h1(y) = h2(y), Bob will
only learn the OT-extension output for one variant y‖b, but Alice (if she has such an item) will still be able
to compute two distinct OT-extension outputs for the two variants.

Theorem 4.3. The protocol in Figure 7 securely realizes the PSI functionality of Figure 3 in a semi-honest
setting, with F,H as in Theorem 3.4 and ℓ according to the column indexed by 2n1 in Table Figure 6.

The semi-honest security of the modified protocol follows with a very similar proof as the original protocol,
therefore we omit it for the sake of space. Unlike the original protocol, this new one is not secure against
malicious adversaries (details are given in Appendix A.4).
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Input of Sender Alice: X = {x1, . . . , xn1
} ⊆ [N ]

Input of Receiver Bob: Y = {y1, . . . , yn2
} ⊆ [N ]

Parameters: (same as Figure 5, except ℓ is chosen to be compatible with 2n1 rather than n1 — see
text for discussion)
Protocol: (steps 1–3 are the same as Figure 5)

4. Bob sets m = n2/λ, chooses random functions h1, h2 : [N ]→ [m], and sends them to Alice. Then
Bob assigns its items using FindAssignment(Y,m, h1, h2) (from Alg. 1) and adds dummy items so
that each bin has exactly ⌈n2/m⌉+1 items. Write y‖b ∈ Bi to mean that y was assigned to bin i
by hash hb. For each bin i, Alice computes a polynomial Pi := Interp

F
({y‖b, R(y‖b)}y‖b∈Bi

), and
sends its coefficients to Alice.

5. Alice defines Q as in Figure 5 and defines the sets:

O1 =
{
H
(
Q(x‖1)⊕ s · Ph1(x)(x‖1)

) ∣∣∣ x ∈ X
}

O2 =
{
H
(
Q(x‖2)⊕ s · Ph2(x)(x‖2)

) ∣∣∣ x ∈ X
}

She permutes each one randomly and sends them to Bob.

6. Bob outputs {y | y‖b ∈
⋃

i Bi and H(T (y‖b)) ∈ Ob}

Figure 7: PSI protocol using 2-choice hashing optimization.

4.3.1 Efficiency.

Theorem 4.2 suggests that a near-optimal assignment of items to bins exists with probability at least 1 −
2−n2/m. Hence, we must have n2/m ≥ λ, the statistical security parameter, to ensure that Bob’s hashing
step succeeds with overwhelming probability. Setting m = n2/λ, the cost of all interpolations is now
m ·O(λ log2 λ) = O(n2 log

2 λ) field operations if using the asymptotically efficient algorithm, or m ·O(λ2) =
O(n2λ) using the simpler quadratic interpolation algorithm (which is indeed faster in practice for such small
polynomials). In either case, this is a significant improvement over O(n2 log

2 n2) of the basic protocol (not
to mention that distinct bins allow for easy parallelization). The cost of Alice’s polynomial evaluation is
similarly improved.

No matter what m we choose (assuming n2/m is an integer), there will always be exactly m dummy items
for Bob. The percentage of dummy items is m/n2, so Alice’s communication will increase by a multiplicative
factor of (1 +m/n2). We suggest m = n2/λ, so Alice’s communication increases by a (1 + 1/λ) factor. As
mentioned above, for λ = 40, this increase is only 2.5%.

Recall from Section 3.3 that the parameter ℓ (width of OT extension matrix) depends on the number of
rows of the OT extension matrix that Alice accesses. With this new optimization, she accesses twice as many
rows (rows x‖1 and x‖2 for every x ∈ X). This leads to a slight increase in ℓ. For the concrete parameters
we consider (see Figure 6), ℓ must increase by only 2 bits.

5 Optimizations for High-Degree Polynomials

Despite using fast polynomial algorithms, having one party (the interpolating party) interpolating the huge-
degree polynomial leads to a long idle time by the other party (evaluating party), which implies a serious
computational bottleneck. In this section we show that in case that the x and y coordinates of the interpo-
lation points are drawn from the domains Dx and Dy, respectively, such that Dx ≪ Dy ,the idle time can be
significantly shrinked. To this end, we developed new techniques, namely, slice & stream and sub-product tree
reuse that allow a significant reduction of the overall time of the protocol. The former technique means that
we “slice” the interpolation points into several parts, then we can interpolated each part over a smaller field
and hence faster; when a slice is ready it is sent immediately to the other party for evaluation (i.e. streaming
of polynomials). The latter technique is based on our observation that one sub-algorithm that constructs a
sub-product tree (which is used both in interpolation and evaluation) depends only on the x-values of the
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interpolation points. Since all polynomial slices use the same x-values and differ only on their y-values we can
reuse the same sub-product tree for all slices! We believe our techniques are valuable for other applications
that require an implementation of high-degree polynomial algorithms over large fields. As demonstrated in
Section 5.2, our techniques reduce the overall interpolation and evaluation time by up to 60%.

In Section 5.1 we give an overview on known polynomial algorithms and in Section 5.2 we introduce our
techniques in detail.

5.1 Background: Interpolation and Multi-Point Evaluation

Trivial implementations of polynomial interpolation and multi-point evaluation of arbitrary points adopt the
O(n2) algorithms as they are sufficient for the typical use cases of low-degree polynomials. However, in our
case the degree is in the millions, so the O(n2) algorithms are completely impractical. Faster algorithms, by
Moenck and Borodin from 1972 [MB72], achieve computational complexity of O(n log2 n). In the following
we present a high level overview on the algorithms, while a detailed description is given in Appendix C.

Let X = {x1, . . . , xn} ⊂ {0, 1}
α and Y = {y1, . . . , yn} ⊂ {0, 1}

β .

• Given X and Y , the problem of polynomial interpolation is to find the unique (n− 1)-degree polynomial
P that passes through the points {(xi, yi)}i∈[n].

• Given X and an (n − 1)-degree polynomial Q, the problem of multi-point evaluation is to compute
Q(X) = {Q(xi)}i∈[n].

Algorithms for both problems follow the divide-and-conquer approach such that in every iteration the
problem is reduced to two half-size problems. Combining the solutions of the half-size problems to a solution
of the full-size problem has a computational complexity of O(n log n). Formally, let T (n) be the time to
solve the interpolation and multi-point evaluation problems for |X| = |Y | = n, then the recurrence relation
is: T (n) = 2 · T

(
n
2

)
+ O(n log n) = O(n log2 n) where the second equality follows from the Master theorem

[CLRS09, Ch. 4].
The evaluation and interpolation algorithms are separated to two and four sub-procedures, respectively,

as follows.

5.1.1 Evaluation.

Algorithm MultipointEvaluate(Q,X) invokes M ← BuildTree(X) and outputs Y ←
Evaluate(Q,M).

• BuildTree(X) constructs and outputs a binary tree of polynomials, denoted M . Its leaves are the
1-degree polynomials {(x − a)}a∈X and each node is the multiplication of its two children. Thus, if the
degrees of the childs are d1 and d2 then the node’s degree is d1 · d2. If n is a power of 2 then the degree
of M ’s root is n.

• Evaluate(Q,M) evaluates the polynomial Q on X, note that X is implicitly “encoded” within M . The
idea is that for every node m ∈M (recall that m is a polynomial), if (x− a) divides m then Q(a) = R(a)
where R = Q mod m (i.e. it is the remainder of the division of Q by m). To obtain Q(a) we replace
each node m with (Parent(m) mod m) and finally output the result on that leaf. The remainder is
computed in O(n log n) arithmetic operations in the underlying field.

5.1.2 Interpolation.

Algorithm Interpolate(X,Y ) invokes M ← BuildTree(X) as described above. Let M0 be M ’s
root, it computes M0’s derivative by M ′

0 ← Derivative(M0) and then evaluates M ′
0 over X by A ←

MultipointEvaluate(M ′
0, X). Finally it invokes P ← InternalInterpolate(M,A) and outputs P .

The purpose of the sub-algorithms is to enable the division of a n-size problem to two n
2 -size problems. Note

that within MultipointEvaluate there is a construction of the same sub-product tree as in BuildTree,
therefore we can skip this and construct M only once. The time of the algorithm is the sum of the
times of these four sub-algorithms, TInterpolate(n) = TBuildTree(n)+TDerivative(n)+TMultipointEvaluate(n)+
TInternalInterpolate(n) = O(n log2 n) +O(n) +O(n log2 n) +O(n log2 n) = O(n log2 n).
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Figure 8: Illustrating the slicing technique. The lines between •’s represent the interpolating party and the lines between the
✕’s represent the evaluating party. Solid (blue) lines illustrate the trivial implementation (overall 400 seconds), dashed (black) lines
illustrate the initial slicing technique (overall 317 seconds) and dotted-dashed (red) lines illustrate the final optimization (overall 189
seconds).

5.1.3 Concrete times.

Times for each of the above sub-algorithms were measured separately and are presented in Figure 13.

5.2 Polynomial Slicing and Streaming

Let x1, . . . , xn ∈ {0, 1}
α and y1, . . . , yn ∈ {0, 1}

β (where β > α) then we interpolate the polynomial P using
points {(xi, yi)}i∈[n] over a field F where |F| = 2β . For the sake of exposition suppose that α divides β and

let ρ = β
α . For each i we define yji for j ∈ [ρ] such that |yji | = α and yi = y1i || . . . ||y

ρ
i . We can “cut” P

into ρ slices P1, . . . , Pρ such that for every xi it holds that P (xi) = P1(xi)|| . . . ||Pρ(xi). This is done by

interpolating the polynomial Pj (for j ∈ [ρ]) using the points {(xi, y
j
i )}i∈[n]. This requires a smaller field,

i.e. we need that |F| = 2α, hence Pj is produced in a shorter time.
To demonstrate the above let us fix some parameters. Assume that the parties’ only task is to interpolate

P using n = 220 points and then perform a multi-point evaluation of n points; also assume an ideal network
with zero latency. Consider first performing this task directly to a “single-slice” polynomial over a field of
size 2β where β = 512. Interpolation and multi-point evaluation take 233 + 167 = 400 seconds (detailed
measurements are given in Table 13. We ignore milliseconds here and in the following). Utilizing the slicing
technique with α = 128 we have ρ = β

α = 512
128 = 4 slices. This means that the interpolating party produces

the sliced polynomials one after the other and sends them immediately (i.e. without waiting until for all
polynomials to be ready) and the evaluating party evaluates them one by one upon reception. This leads to
67 · 4 + 49 = 317 seconds which is 81% of the trivial implementation.

5.2.1 Further utilizing the slicing technique.

As shown above, the slicing and streaming technique leads to an improvement over the trivial implementation.
The following observation significantly pushes forward the slicing technique: Building the polynomials tree
M in the evaluation process depends only on x1, . . . , xn, which means this can be performed only once for
all slices. Similarly, in the interpolation algorithm the tasks of building the polynomials tree, calculating
the derivative and evaluating it depends only on x1, . . . , xn and can be performed once and for all slices.
Thus, taking β = 512, α = 128 and n = 220 the one-time tasks of building the sub-product tree, calculating
the derivative and evaluating it takes 12889 + 86 + 33144 = 46119 ms. The one-time task of the evaluating
party (building the sub-product tree) takes 13959 ms and can surely be done simultaneously. Then the
interpolating party produces 4 polynomial slices, each takes 19471 ms, and the evaluating party evaluates
them upon reception. Since the evaluation task is more expensive than the interpolating task (the part being
performed for each slice) the total running time is 46119 + 4 · 35835 = 189459 ms. This is less than 60% of
the initial slicing technique and 48% of the trivial implementation. Both of our optimizations, together with
the trivial implementation are illustrated in Figure 8.
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Protocol Communication
n = n1 = n2

216 220 224

KKRT (3 + s)(λ+ log(n1n2))n1 + 1.2ℓn2 1042n 1018n 978n
DH-PSI φn1 + (φ+ λ+ log(n1n2))n2 584n 592n 600n
spot-low 1.02(λ+ log2(n2) + 2)n1 + ℓn2 488n 500n 512n
spot-fast 2(λ+ log(n1n2))n1 + ℓ(1 + 1/λ)n2 583n 609n 634n

Table 1: Theoretical communication costs of PSI protocols (in bits), calculated using computational security κ = 128
and statistical security λ = 40. Ignores cost of base OTs (in our protocol and KKRT) which are independent of input
size. φ is the size of elliptic curve group elements (256 is used here). ℓ is width of OT extension matrix (depends on
n1 and protocol).

5.2.2 Communication.

Observe that this technique does not increase the communication complexity of the protocol. This is due to
the fact that instead of sending 2n coefficients of P , each of size β, we send 2n coefficients of Pj , each of size
α, for every j. This leads to exactly same communication size of 2n · α · ρ = 2n · β.

6 Implementation and Performance Comparison

Recall that we have presented two variants of our protocol. In this section we will refer to them as:

spot-low: the communication-optimized variant presented in Figure 5, in which Bob sends one large poly-
nomial and Alice sends one OPRF output per item.

spot-fast: the speed-optimized variant presented in Figure 7, in which Bob uses 2-choice hashing and Alice
sends two OPRF outputs per item.

We also compare our protocols to the following:

KKRT: the leading OT-extension-based protocol from [KKRT16].

DH-PSI: Diffie-Hellman-based PSI, instantiated with either Koblitz-283 (K283) or Curve25519 (25519)
elliptic curves.

Our focus in this section is on the case where n1 = n2, i.e., the parties have sets of equal size. We report
some findings also for the case of unequal set sizes in Appendix F. Our complete implementation is available
on GitHub: https://github.com/osu-crypto/SpOT-PSI.

6.1 Theoretical Analysis of Communication

We first compare the theoretical communication complexity of protocols (Table 1). This measures how much
communication the protocols require on an idealized network where we do not care about protocol metadata,
realistic encodings, byte alignment, etc. In practice, data is split up into multiples of bytes (or CPU words),
and different data is encoded with headers, etc. — empirical measurements of such real-world costs are given
later in Table 2and Table 9.

For set sizes in the range 216 to 224, our spot-low variant has the least communication of any of the
protocols we consider: ∼15% less than DH-PSI and ∼50% less than KKRT. Our spot-fast variant uses up to
∼5% more communication than DH-PSI but 35-43% less than KKRT.

We note that KKRT uses a parameter ℓ similar to ours (corresponding to the width of the OT extension
matrix), but their parameter is always slightly larger. This is because (as in our protocol) ℓ depends on how
many rows of the OT matrix the sender accesses, which is more than in ours ((3 + s)n1 in KKRT).

The communication optimization (described in Section 3.5) can indeed be applied to other protocols as
well (DH-PSI, KKRT, and spot-fast). For example, when n = 220 it saves 16 bits per item (only 2.6MB in
total), so the effect does not have significant impact on any comparisons. However, the optimization would
be much more expensive or cumbersome to implement since it requires all OPRF outputs to be computed
and sorted, but without this optimization they can be sent as they are computed.
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6.2 Experimental Comparison

We now present a comparison based on implementations of all protocols.

6.2.1 Implementation Details.

We used the implementation of KKRT provided by the authors. We implemented DH-PSI using the Miracl
library implementations of Koblitz K-283 and Curve25519 elliptic curves.

For our own protocols, we implemented the polynomial interpolation and evaluation algorithms using a
field of prime order p, where p is the smallest prime greater than 2ℓ and ℓ is bit length of the output of our
sparse-OT extension (the ℓ in Figure 6). We discuss this choice in Appendix D. The polynomial operations
are implemented using the NTL library v10.5.0.

Note that both KKRT and our protocols require the same underlying primitives: a Hamming correlation-
robust function H, a pseudorandom funtion F , and base OTs for OT extension. We instantiated these
primitives exactly as KKRT: both H and F instantiated using AES, and base OTs instantiated using Naor-
Pinkas [NP01]. We use the implementation of base OTs from the libOTe library6.

All protocols use a computational security κ = 128 bits and a statistical security λ = 40 bits.

6.2.2 Experimental setup: AWS benchmark.

1 2 3 4 5 6

Virginia 1 9.6 0.17 1.08 0.063 0.068 0.084

Oregon 2 0.18 0.053 0.072 0.058

Ohio 3 0.058 0.069 0.078

Mumbai 4 0.050 0.034

Sidney 5 0.031

Sao-paolo 6

Figure 9: Gbps between AWS sites.

We performed a series of benchmarks on the Ama-
zon web services (AWS) EC2 cloud computing ser-
vice. We use the M5.large machine class, which
is classified as the current state-of-the-art “general
purpose” instance. These machines have 2 vCPU
(2.5GHz Intel Xeon) and 8 GB RAM. We consid-
ered other kinds of instances, but ultimately rejected
them. The cheaper T2 class (“burstable”) was found
to be too unstable for our workloads, while the more
expensive C5 class (“compute-optimized”) resulted
in more monetary cost than M5 in all cases.

Based on the geographic region of the two parties, we can realize different network speeds, as illustrated
in Table 9. The network speeds given in the table were measured using the iperf3 command.7 This collection
of AWS sites was chosen to give a large range of bandwidth performance.

6.2.3 Experimental setup: local benchmark.

The AWS benchmarks use a real network connection which is sometimes unpredictable. For a highly con-
trolled experimental network, we benchmarked protocols on a single machine: Intel Xeon 2.30 GHz, 256GB
RAM, 36 physical cores (note that all implementations are single-threaded unless otherwise indicated). We
simulated a network connection using the Linux tc command, communicating via localhost network. We
simulated a LAN setting with 10 Gbps network bandwidth and 0.2ms round-trip latency, and various WAN
settings with 100 Mpbs, 10 Mpbs, 1 Mpbs and 80ms round-trip latency.

6.2.4 AWS Pricing Scheme.

Part of our motivation for evaluating protocols on AWS is to report and compare their real-world monetary
costs. Hence we describe now the pricing scheme for AWS at the time of our comparison.8 Costs are
associated with both running time and data transfer, and both depend on the data center (geographic
location) at which the instance runs.

The running-time cost per hour (in USD) for our instance type M5.large is 0.096 (USA), 0.101 (Mumbai),
0.12 (Sydney), 0.153 (Sao Paolo).

6https://github.com/osu-crypto/libOTe
7See https://iperf.fr/iperf-download.php.
8The pricing can be found in https://aws.amazon.com/ec2/pricing/on-demand/.
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Figure 10: Monetary cost (in USD) per 1000 runs of PSI on 216 (left) and 220 (right) items, in the B2B
network scenario.

Figure 11: Monetary cost (in USD) per 1000 runs of PSI on 216 (left) and 220 (right) items, in the ‘Internet’
network scenario.

The data transfer cost differ depending on whether both endpoints are within AWS, and the data-center
of the endpoints. We consider two network settings:

• In a business-to-business (B2B) setting between two fixed organizations that want to regularly
perform PSI on their dynamic data, both endpoints may be within the AWS network.

• In an internet setting where one organization wishes to regularly perform PSI with a dynamically
changing partner, only one party may be within the AWS network.

These considerations have the following effect on the cost of data transfer on AWS:

• Inbound data transfer from the Internet to EC2 is free.

• Outbound data transfer from EC2 to the Internet incurs the highest cost. Rates in USD per 1GB are
0.09 (USA), 0.1093 (Mumbai), 0.114 (Sydney), 0.25 (Sao Paolo).

• Outbound data transfer between two instance at the same site cost 0.01 USD/GB per direction.

• Outbound data transfer to another AWS site costs (in USD/GB): 0.02 (USA), 0.086 (Mumbai), 0.14
(Sydney) and 0.16 (Sao Paolo)

• Additional cost is for using a public IP address, which is indeed required for the scenarios we consider;
this costs 0.01 USD/GB for all sites.

We compute the total monetary cost of a protocol execution as follows. Let T be the runtime in hours of
the protocol; let X1 and X2 be the outbound communication of the first and second parties, resp.; let CT1,CT2

be the uptime rate of the machines run by the parties; and let CX1,CX2 be the outbound data transfer rates
for the machines/regions of the parties. The cost in USD is then:

TotalCost = T · (CT1 + CT2) + X1 · CX1 + X2 · CX2 + 0.01 · (X1 + X2)
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1 9.6 Gb/s Virginia-Virginia
2 1.08 Gb/s Virginia-Ohio
3 0.17 Gb/s Virginia-Oregon
4 0.031 Gb/s Sidney-Sao Paolo
5 0.01 Gb/s Virginia-Virginia

(controlled b/w)

Figure 12: Evaluated run times over AWS EC2 with descending bandwidth. Solid and dotted lines are for PSI
over 216 and 220 items respectively. The 1-5 numbers at the x-axis of the figure represent the configurations
1-5 described in the table to the right.

6.3 Experimental Results

6.3.1 AWS monetary cost.

To limit the number of protocol executions performed on AWS, we focus on set sizes of 216 and 220 as they
are representative of realistic set sizes for aformentioned applications of PSI.

The monetary cost of PSI protocols is presented in Figures 10 and 11. We see that our spot-fast protocol
variant is the cheapest protocol in all of the settings we consider. In the B2B scenarios it is 4%-35% for PSI
of 216 items and 10%-40% cheaper for PSI of 220 items, compared to the second cheapest protocol (KKRT).
In the ‘Internet’ scenarios it is 13%-38% cheaper for PSI of 216 items and 30%-40% cheaper for 220 items.
The numerical costs can be found in Tables 3-6 in Appendix E.

6.3.2 Break-even point with KKRT.

Our protocol has less communication than the faster KKRT protocol. As the network becomes slower,
the protocol becomes more network-bound and our advantage in communication eventually leads to faster
performance than KKRT. We compared the running time of the PSI protocols on networks of different speeds,
in order to identify the “break-even point” where our protocol (spot-fast) becomes faster than KKRT.

From the running times in Figure 12, we find that the spot-fast variant overtakes KKRT as the fastest
PSI protocol when network bandwidth drops below the 10–30 Mbps range. The concrete times are detailed
in Tables 7-8 in Appendix E.

6.3.3 Detailed, controlled local benchmarks.

A more detailed benchmark for set sizes 212 − 224 and controlled network configurations is given in Table 2.
We also considered the effect of multi-threading on protocol performance, with T ∈ {1, 4} threads. The
implementation of KKRT does not support multi-threading.

The communication of our protocol is approximately 2× smaller than that of [KKRT16]. For example,
computing the intersection of sets of size n = 220, spot-fast and spot-low variants require 76.43 MB and 63.18
MB respectively, whereas [KKRT16] requires 127 MB of communication, (a 1.7− 2.0× improvement).

In a single-threaded LAN setting, spot-fast variant is several times slower than KKRT, requiring 25.62
seconds with n = 220. Applying the same parameters to [KKRT16] results in a running time of 4.1 seconds.
The running time of spot-fast variant is improved significantly by multi-threading, improving to 7.61 seconds
when utilizing 4 threads.

In the WAN setting, spot-fast becomes the fastest protocol on slow (10Mbps and 1Mbps) network, due
to its lower communication cost. For example, in the 10Mpbs network, for sets of size n = 220, spot-fast
takes 66.2 seconds, while [KKRT16] requires 120.13 seconds, a 1.8× improvement.
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Params. Protocol Comm. Total time (seconds)

n1 n2 (MB)
10 Gbps 100 Mbps 10 Mbps 1 Mbps

T = 1 4 1 4 1 4 1 4

224 224

DH-PSI (K-283) — — — — — — — — —
DH-PSI (25519) — — — — — — — — —
KKRT 1955.2 63.3 — 261.9 — 1852.1 — — —
spot-low — — — — — — — — —
spot-fast 1254.5 440.1 146.1 474.6 173.3 1071.8 1062.8 — —

220 220

DH-PSI (K-283) 84.0 1141.8 338.5 1152.5 336.9 1158.2 334.2 1472.4 854.3
DH-PSI (25519) 76.1 2110.6 632.8 2290.5 634.5 2325.7 673.0 2497.8 1014.0
KKRT 127 4.61 — 17.47 — 120.1 — 1154.5 —
spot-low 63.1 270.3 179.2 273.4 185.3 299.6 206.67 687.2 311.16
spot-fast 76.4 25.6 7.6 27.8 10.53 66.2 66.0 646.3 645.3

216 216

DH-PSI (K-283) 5.2 69.8 20.20 70.77 21.93 71.10 22.8 80.1 44.4
DH-PSI (25519) 4.7 136.9 39.4 140.4 40.1 142.8 40.8 151.3 48.2
KKRT 8.06 0.43 — 1.99 — 8.4 — 74.5 —
spot-low 3.9 12.8 8.8 13.7 9.8 15.1 10.9 41.1 39.1
spot-fast 4.71 1.90 0.77 2.91 2.02 5.46 5.36 40.19 40.08

212 212

DH-PSI (K-283) 0.32 4.59 1.87 4.65 1.67 4.82 1.56 5.18 2.75
DH-PSI (25519) 0.29 8.72 2.58 8.90 27.5 9.10 2.80 9.59 2.98
KKRT 0.53 0.22 — 0.87 — 1.24 — 5.7 —
spot-low 0.25 0.87 0.61 1.4 1.2 1.4 13.23 3.17 3.0
spot-fast 0.3 0.4 0.21 1.14 0.99 1.16 1.01 3.58 3.51

Table 2: Total communication cost in MB and running time in seconds comparing our protocol to [KKRT16]
and HD-PSI, with T ∈ {1, 4} threads; each item has 128-bit length. 10Gbps network assumes 0.2ms RTT,
and others use 80ms RTT. Cells with ”—” denote setting not supported or program out of memory.

Both of our protocols outperformed DH-PSI. For example, spot-low requires 63 MB while DH-PSI
(Curve25519) requires 76 MB, a ∼ 12% improvement.

In terms of computation, even our slower spot-low variant is based on symmetric-key operations, and
is significantly faster than DH-PSI. We also examined the effect of multi-threading. Similar to DH-PSI,
spot-fast variant is extremely amenable to parallelization. Concretely, we parallelize our algorithm at the
level of bins. Both DH-PSI and spot-fast yield a similar speedup of about 3.5× by using 4 threads.
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A Security Proofs

A.1 Semi-Honest Security

Below we give the details of the proof of Theorem 3.4.

Corrupt Alice. The simulator observes Alice’s inputs to FROT primitive and gives random qi as OT
outputs in Step 2. The only other message Alice receives is the polynomial P in step 4. Instead of P :=
Interp

F
({y,R(y)}y∈Y ), the simulator sends uniformly random polynomial to Alice.

We formally show the simulation by proceeding the following hybrids:

Hybrid 1.. The first hybrid is the real interaction described in Figure 5. Here, a honest Bob uses his input
Y , honestly interacts with the corrupt Alice via FROT, and builds the polynomial P . We observe Alice’s
choice bits s used in step 2.

Hybrid 2.. In this hybrid, we consider each value of bit si. We replace {F (ti, y) | y ∈ Y } with uniformly
random bits if si = 0, and {F (ui, y) | y ∈ Y } with uniformly random bits if si = 1. Alice knows one
of {ti, ui} from FROT, and the output of pseudo-random function F is uniformly distributed. Hence, the
modification is indistinguishable. Note that in this hybrid, all R(y) values are random from Alice’s view.

Hybrid 3.. This hybrid chooses the polynomial P uniformly at random, as in the final simulation. Note
that in the previous hybrid P is chosen as P := Interp

F
({y,R(y)}y∈Y ). From Proposition 3.1, this distribution

on P is uniform; hence, the hybrids are identically distributed.

Corrupt Bob. The simulator for a corrupt Bob first obtains X ∩ Y from the ideal PSI functionality. It
simulates random outputs ti, qi from FROT. The only other message received by Bob is the set O in step 5.
To simulate this message, the simulator computes n′ = n1−|X∩Y | and uniformly samples values z1, . . . , zn′ .
It then simulates Alice’s message as (a random permutation of) O = {H(T (x)) | x ∈ X ∩ Y } ∪ {z1, . . . , zn′}.

To formally prove the security of this simulation, we consider a sequence of hybrids:

Hybrid 1.. The first hybrid is the real interaction described in Figure 5. Here, a honest Alice uses her
input X, honestly interacts with the corrupt Bob via FROT, computes O and sends it to Bob.

Hybrid 2.. In this hybrid, before doing anything else the simulation predicts what the function R will be
(recall that the function R is defined in terms of the FROT outputs), and uses Bob’s input Y to predict what
the polynomial P will be. The simulation immediately aborts in the event that P (x) ⊕ R(x) has hamming
weight less than κ for any value x ∈ X \ Y . Otherwise, the simulation continuse as in Hybrid 1.

Note that the simulator aborts exactly when BadPolyR
F
(X,Y ) = 1 (defined in Definition 3.2), where R is

the function defined in the protocol. To show that the hybrids are indistinguishable, it suffices to show that
Pr[BadPolyR

F
(X,Y ) = 1] is negligible.

Following Proposition 3.3, we have chosen parameters in Table 6 so that the desired probability is at
most 2λ. However, Proposition 3.3 deals with the case that R is a random function, whereas in this hybrid
R is derived from a PRF. What’s more, corrupt Bob sees the keys to those PRFs (the ti’s and ui’s)!

Fortunately it does not matter that Bob’s view includes the key material for the R function. The
algorithm BadPoly

F
(i.e., the logic that determines whether this simulation aborts) needs only black-box

access to R. Hence the output probability of BadPoly
F
is changed only by a negligible amount when using a

random R or R defined in terms of a PRF as in the protocol.
In other words, the probability that this simulation aborts is at most 1/2λ plus a negligible function, so

the hybrids are indistinguishable.

Hybrid 3.. In the previous hybrid, O is being computed as

{H(Q(x)⊕ s · P (x)) | x ∈ X}

= {H(T (x)) | x ∈ X ∩ Y } ∪ {H(T (x)⊕ s · (P (x)⊕R(x)︸ ︷︷ ︸
hamming weight ≥ κ

)) | x ∈ X \ Y }
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Conditioned on not aborting, P (x) ⊕ R(x) has hamming weight at least κ for x ∈ X \ Y . Hence, the
corresponding outputs of H are pseudorandom because of the κ-Hamming correlation robust property of
H (Definition 2.1). In this hybrid, we modify O to be computed as in the final simulation. That is, the
simulator chooses z1, . . . , zn′ where n′ = |X \ Y | and computes O as:

{H(T (x)) | x ∈ X ∩ Y } ∪ {z1, . . . , zn′}

Hybrid 4.. This hybrid no longer artificially aborts when P (x) ⊕ R(x) has low hamming weight for
x ∈ X \ Y . The change is indistinguishable for the same reason as before. Now the hybrid no longer uses
any information about the items in X \ Y , and it corresponds to our final simulation.

A.2 Security Against Malicious Sender

Hybrid 1.. This is the real interaction in which the simulator honestly plays the role of FROT and Bob,
with input Y .

Hybrid 2.. In the semi-honest proof, we first replace all F (ti, y) with uniformly random bits if si = 0, and
all F (ui, y) with uniformly random bits if si = 1. In this case, F is a random oracle rather than a PRF, so
these values are already uniform. Instead, we abort if Alice makes an oracle query of the form F (ti, ·) for
si = 0 or F (ui, ·) for si = 1. The probability of such an event is negligible and, conditioned on not aborting,
all R(y) values are random from Alice’s point of view.

Hybrid 3.. Instead of computing P := Interp
F
({y,R(y)}y∈Y ), the simulator sends a random polynomial.

When computing honest Bob’s output, the simulator checks for H(Q(y)⊕ s · P (y)) ∈ O instead of checking
for H(T (y)) ∈ O. These changes have no effect on the adversary’s view.

Hybrid 4.. In this hybrid, the simulator computes X̃ as described above, and it artificially aborts if honest
Bob outputs an item y 6∈ X̃. There are two cases for such a y:

• If y 6∈ C then the adversary has no information about Q(y) — this value is distributed independently
of the adversary’s view. Then the target value H(Q(y)⊕ s ·P (y)) is random only fixed in step 6 when
Bob computes his output — i.e., after Alice has already sent O in step 5. If the output of H is σ bits,
then it is only with probability |O|/2σ = n1/2

σ that the target value is in O, causing Bob to include
y in the output.

• If y ∈ C but y 6∈ X̃, it means that the value H(Q(y)⊕ s ·P (y)) has been fixed but is not in O. In this
case, Bob will never include y in the output.

Taking a union bound over the values y ∈ Y \ X̃, the total probability of abort is n1n2/2
σ, which we assume

to be negligible by the choice of σ.

Hybrid 5.. In the previous hybrid the simulation computes X̃ in step 5 by just observing Alice’s behavior
(including random oracle queries), then Bob outputs Y ∩ X̃. Hence, we can modify the interaction so that

the simulator sends X̃ to the ideal PSI functionality, Bob sends Y , and Bob receives X̃∩Y as output instead.
The adversary’s view is identical to the previous hybrid, and this hybrid correponds to our final simulation.

A.3 Insecurity against Malicious Receiver

We now demonstrate a concrete attack against our protocol, which can be carried out by a malicious receiver.
Let X = {x1, . . . , xn} be the sender’s set. Our attack will allow the receiver to perform a dictionary attack
to determine X, after the protocol has finished. That is, given any x̃, the receiver can easily test whether
x̃ ∈ X by merely inspecting the protocol transcript. Such an ability is inconsistent with security.

The attack requires that the receiver knows ℓ items, denoted x1, . . . , xℓ, in X, where ℓ is the number of
base OTs and the number of bits in the sender’s private randomness s. Generally speaking, ℓ≪ n.
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The receiver is supposed to generate a polynomial P such that P (y) = R(y) for every y ∈ Y , where
R is a target value determined by the OT extension process. Instead, the malicious receiver interpolates
a polynomial P̃ so that P̃ (xi) = R(xi) ⊕ ei for i ∈ [ℓ], where ei is a string with a 1 in position i and 0s
everywhere else. The polynomial P̃ can be interpolated to go through any other desired points — such
points don’t matter.

Now the sender will send H(Q(x)⊕ s · P̃ (x)) for all x ∈ X. From Equation 1, this is equal to:

H(T (x)⊕ s[P̃ (x)⊕R(x)])

In particular, for the special items x1, . . . , xℓ, the corresponding value is:

H(T (xi)⊕ s · ei) =

{
H(T (xi)) if si = 0

H(T (xi)⊕ ei) if si = 1

In particular, there are only two choices for this value, depending on a single bit of s. For each i, the receiver
can compute both of the above possibilities and check which one was included by the sender. In this way
the receiver can learn all the bits of s. Note that s is the only randomness of Alice in the protocol.

Later on, to test whether the sender held an item x̃, the receiver simply checks whether H(T (x)⊕s[P̃ (x)⊕
R(x)]) was sent by the sender. All of the values in this expression are now known to the receiver.

A.4 Insecurity of the Fast Variant Against Malicious Receiver

The speed-optimized protocol is no longer secure against a malicious sender! The problem is that the
sender is supposed to send a pair of masks for each item x ∈ X, but nothing stops a malicious sender from
sending the OT-extension output for x‖1 but omitting the value for x‖2. If the sender does this, then Bob
will include x in his output iff he assigned x to location h1(x). But the final bin assignment of x depends
(indirectly) on all of Bob’s input items. Hence, this behavior of a malicious sender (apparently) cannot be
simulated in the ideal world.

B Reducing Alice’s Communication

Let us abstract the last 2 steps of the basic PSI protocol. Alice computes a value A(x) = H(Q(x)⊕s ·P (x))
for each x ∈ X and sends all A(x) values to Bob as an unstructured set O. Bob computes B(y) = H(T (y))
for each y ∈ Y and outputs {y | B(y) ∈ O}.

B.1 Difference Encoding of Tamrakar et al.

In our basic protocol, the A(x) values have length σ = λ+ log(n1n2) bits. With overwhelming probability,
each of these items is distinct. Interpret these values as numbers in the range {0, . . . , 2σ−1} and suppose they
are sorted. Since there are n1 values, the average difference between consecutive values is 2σ/n1 = 2λ+logn2 .
This suggests that by sending only the differences between items, Alice could send expect to send only
λ+ log n2 bits per item.

Tamrakar et al. [TLP+17] use this idea in their PSI protocol, and suggest the following difference
encoding. Let A1 < . . . < An1

denote the values that Alice wishes to send. If Ai − Ai−1 can be written
in λ + log n2 + 2 bits, then it is sent as an integer with that length. Otherwise, an all-zeroes string of
λ+ log n2 + 2 bits is sent, and Ai is sent explicitly. The two cases are easily distinguished, since Ai − Ai−1

is never zero (except with negligible probability).
Tamrakar et al. use a simulation to argue that only roughly 2% of the differences Ai − Ai−1 exceed

λ + log n2 + 2 bits (i.e., are 4 times larger than the expectation). Hence the total communication of this
approach is roughly 1.02(λ + log2 n2 + 2)n1, and therefore Bob can easily run a decoding of this message
in linear time. Note that we are simply encoding/compressing the set of values sent by Alice, and not
introducing any additional failure probability. The change also has no effect on security. Suppose that in
the unaltered protocol, Alice sends the A(x) values in a random order. Then this message distribution is
computable from her “compressed” message, and vice-versa. Hence, both the original and modified protocol
leak the same information.
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Note that other methods of encoding Alice’s message are possible: For example, Alice can send a 0
followed by Ai − Ai−1, if the difference fits in λ + log n2 + 2 bits, or send a 1 followed by Ai otherwise.
One can even use an optimal encoding (ranking/unranking) scheme for k-combinations of [N ] — e.g., using
a combinatorial number system [Knu05]. Either of these would save a marginal amount of communication
(for example, when n = 220 it saves 16 bits per item, hence only 2.1 MB in total). The optimization would
be much more expensive or cumbersome to implement since it requires all OPRF outputs to be computed
and sorted, but without this optimization they can be sent as they are computed. The difference encoding
optimization can indeed be applied to other PSI protocols as well (DH-PSI, KKRT, and spot-fast), but we
only implement this optimization in our spot-low.

B.2 New Polynomial Encoding

Let us review why the A(x) values in our protocol have length λ+ log(n1n2). If for any x ∈ X and y ∈ Y ,
we have x 6= y and A(x) = B(y), then Bob’s output will be incorrect. To bound the correctness error by 2−λ

we consider a union bound over all |X| × |Y |, and set the length of these strings to be λ+ log2(n1n2) bits.
We suggest a different method based on polynomial interpolation: Instead of sending the A(x) hash

values back to Bob as a set, Alice interpolates and sends a polynomial π such that π(x) = A(x) for all
x ∈ X. Then Bob can output {y | B(y) = π(y)}. Now correctness is only violated when y 6∈ X and yet
π(y) = B(y). The analysis of correctness error now involves a union bound over only |Y | events. As such,
the length of these values now can be λ+ log2(n2) bits, a savings of log2(n1) bits per item. Note that since
A(x) values for x ∈ X \ Y look random to Bob, so the polynomial π hides these x-values.

This approach reduces communication to exactly λ+ log2(n2) bits per item of Alice. Note however that
we can only consider a polynomial mapping items x to A(x) if the length of items is less than the length
of A(x). For example, with 220 items and statistical security 2−40, the length of A(x) is 60 bits, so this
optimization works whenever the PSI items are 60 bits or less.

This optimization involves an expensive interpolation of a high-degree polynomial by Alice. In this case
we cannot use the 2-choice hashing technique of Section 4 to reduce the cost of this interpolation. To see why,
suppose Alice chooses h′

1, h
′
2 : {0, 1}∗ → [m] (independent of the hash functions Bob would use in Section 4),

assigns her items to bins, and in each bin interpolates a polynomial of the relevant A(x) values. Then Bob
would be able to detect whether Alice has placed item x in location h′

1(x) vs h′
2(x) (this is possible since

Bob identifies in which bin he sees a match). Unfortunately, this leaks some minor information about Alice’s
set, and cannot be simulated. Specifically, the choice of placing x at h′

1(x) vs h′
2(x) depends indirectly on

Alice’s entire set X.

C Fast Interpolation and Multi-point Evaluation

Two problems that the parties in our protocol have to solve are:

• Interpolation. Given a set of n points {(xi, yi)}i∈[n] where xi, yi ∈ F, output the (unique) polynomial
P (x) over F that satisfies P (xi) = yi for all i ∈ [n].

• Multi-point Evaluation. Given a polynomial P (x) and a set of n elements x1, . . . , xn ∈ F, output
P (x1), . . . , P (xn).

It is known that these problems could be solved in O(n2) arithmetic operations, however, when n is very
large (e.g. 220) this becomes impractical. In the following we describe the algorithms of Moenck and Borodin
from 1972 [MB72] to solve these problems in O(n log2 n) arithmetic operations, which make them a better
fit for our needs.

Binary tree representation.. Denote a binary tree with n leafs by T (n). In the following we may refer
to T (n) (with n a power of 2) as a simple array of size 2 · n − 1, denoted A(2 · n − 1) (and has entries
A[0], . . . , A[2 · n − 2]. This is a common representation of a binary tree, such that the i-th leafs resides at
A[n− 2 + i]. For an internal node A[i], its left and right childs reside at A[2 · i] and A[2 · i+ 1] respectively
and if i 6= 0 its parent resides at A[(i− 1)/2].
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C.1 Detailed Description of the Algorithms

In a high level the algorithms can be separated into sub-algorithms as follows:

C.1.1 Interpolation.

The input to this algorithm is the set {(xi, yi)}i∈[n] where xi, yi ∈ F. The output is a polynomial P (x) over
F s.t. P (xi) = yi for all i ∈ [n].

1. Construct a sub-product tree. A sub-product tree is a binary tree whose nodes and leafs contains polyno-
mials. Its i-th leaf contain the degree-1 polynomial (x−xi) and each node contains the polynomial that
is the multiplication of the polynomials of its childs. For example, let M(2·n−1) be the array represen-
tation of this tree, then M [0] =

∏
i∈[n](x− xn), M [1] =

∏
i∈[n/2](x− xn), M [2] =

∏
i∈[n/2+1,n](x− xn)

and so on.

2. Calculate derivative. In this step we calculate the derivative of M [0] that was produced before. Let
M(x) be the polynomial at the root of M (i.e. M [0]), its derivative is:

M ′(x) =




∏

i∈[n]

(x− xn)




′

=




∏

i∈[n]

(x− xi)


 ·




∑

i∈[n]

1

(x− xi)




=
∑

j∈[n]

∏

i∈[n]
i 6=j

(x− xi)

3. Evaluate derivative. When evaluating M ′(x) on xk for k ∈ [n] we get:

M ′(xk) =
∑

j∈[n]

∏

i∈[n]
i 6=j

(xk − xi)

=
∑

j∈[n]
j 6=k

∏

i∈[n]
i 6=j

(xk − xi) +
∑

j=k

∏

i∈[n]
i 6=k

(xk − xi)

=
∏

i∈[n]
i 6=k

(xk − xi)

since
∑

j∈[n]
j 6=k

∏
i∈[n]
i 6=j

(xk − xi) = 0. We denote a′i = M ′(xi). In this step we evaluate M ′ over x1 . . . , xn

and obtain a′1, . . . , a
′
n.

4. Actual interpolation. Using the Lagrange interpolation formula the desired polynomial P can be written
as:

P (x) =
∑

i∈[n]

yi · Li(x)

where Li(x) =

∏
j∈[n]
j 6=i

(x−xj)

∏
j∈[n]
j 6=i

(xi−xj)
=

{
1 x = xi

0 x = xk 6= xi

.

Now, setting ai =
1∏

j∈[n]
j 6=i

(xi−xj)
we get

P (x) =
∑

i∈[n]

yi · ai
∏

j∈[n]
j 6=i

(x− xj)
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To enable the “divide and conquer” method to the above, we write:

P (x) =




n∏

i=n
2
+1

(x− xi)


 ·




n
2∑

k=1

yk · ak




n
2∏

i=1
i 6=k

(x− xi)







+




n
2∏

i=1

(x− xi)


 ·




n∑

k=n
2
+1

yk · ak




n∏

i=n
2
+1

i 6=k

(x− xi)







Note that
∏n

i=n
2
+1(x − xi) and

∏n
2

i=1(x − xi) were already computed in sub-algorithm (1) and are

equal to M [1] and M [2] respectively. Moreover note that ai = 1/a′i where all ai’s were computed in
sub-algorithms (2) and (3).

Putting it all together, let Y = y1, . . . , yn, A = a1, . . . , an and the sub-product tree of polynomials M be
global objects precomputed by sub-algorithms (1-3) above, interpolation is done by running Interpolate(0)
where Interpolate is defined in Algorithm 2. The procedure IsLeaf(i) simply returns whether the index
i is a leaf in an array that represent a binary tree with n leafs (recall that such an array has 2 · n− 1 entries

indexed 0, . . . , 2 · n − 2. More formally IsLeaf(i) =

(
i

?
∈ [n− 2, 2 · n− 2]

)
where x

?
∈ X = 1 if and only if

x ∈ X. In addition, the procedure LeafNum(ℓ) is given a leaf index ℓ ∈ [0, 2·n−2] in an array representing a
binary tree and returns the index of the leaf among the leafs, i.e. a number from [n]. Formally, LeafNum(ℓ)
= ℓ− n+ 2. Finally, we define the procedures Left(i)= 2 · i and Right(i)= 2 · i+ 1 to obtain the indexes
of the childs for a node indexed i.

Algorithm 2 The algorithm for interpolation.

1: procedure Interpolate(i)
2: if IsLeaf(i) then
3: j ← LeafNum(i).
4: return yj · ak

5: ℓ← Left(i); r ← Right(i).
6: Pℓ ← Interpolate(ℓ); Pr ← Interpolate(r).
7: return Pℓ ·M [r] + Pr ·M [ℓ].

C.1.2 Multi-point evaluation.

The input to this algorithm is a degree-(n-1) polynomial P and the set X = {x1, . . . , xn}. The output is the
set Y = {P (x1), . . . , P (xn)}.

1. Construct a sub-product tree. This is the same sub-algorithm as in the interpolation, which returns the
sub-product tree of polynomials M .

2. Actual evaluation. This part exploits the following:

• Let A(x), B(x) be two polynomials, then there exist two polynomials Q(x) and R(x) such that

A(x) = Q(x) ·B(x) +R(x)

and degR < degB. We write R = A%B.

• Let A(x), B(x) be two polynomials, and let x1, . . . , xm be roots of B(x), then for every i ∈ [m] it
holds that

A(xi) = (A%B)(xi)

This is correct since A(x) = Q(x) · B(x) + R(x) and B(xi) = 0 as xi is B’s root, therefore
A(xi) = R(xi). Finally, observe that if B(x) is of degree 1, as happens in the leafs of M , then R
has degree 0 (i.e. R is a constant).
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Using the above, the multi-point evaluation algorithm is presented in Algorithm 3. We assume that the
sub-product tree of polynomials M (constructed using elements x1, . . . , xn) is a global object. We assume
a pre-allocated, initially empty, global array Y (n) with indices [n] that is being filled by the algorithm,
that is, Y [i] for i ∈ [n] will be assigned with P (xi+1). The algorithm is given i as the root of the cur-
rent sub-tree to process and P as the current polynomial to evaluate. The algorithm is executed with
MultipointEvaluate(0, P ).

Algorithm 3 The algorithm multi-point evaluation.

1: procedure MultipointEvaluate(i, A)
2: B = M [i].
3: R = A%B.
4: if IsLeaf(i) then
5: j ← LeafNum(i).
6: Y [j − 1] = R. ⊲ R is a constant.
7: return .
8: ℓ← Left(i); r ← Right(i).
9: MultipointEvaluate(ℓ, R).

10: MultipointEvaluate(r,R).

C.2 Concrete Times

Times for each of the above sub-algorithms were measured separately and presented in Figure 13.

C.3 Parallelization

There are two options to use multithreading for the interpolation and evaluation algorithms:

• All slices at once. Meaning that if we have ρ = β/α slices then we can use up to ρ completely
independent threads to process them simultaneously.

• Boost each slice separately. Meaning that we use as many threads as possible to speedup the processing
of an individual slice. This is possible due to the convenient tree-based structure of the algorithms
(more details are given in Appendix C). That is, for each slice, we can assign each thread the task of
processing a completely independent sub-tree and then combine all results to obtain the lowest levels
of the tree and finally its root.

In our implementation we chose the second options as it is much more flexible and can leverage any number
of threads and separate the work almost equally between them. On the contrary, in the first option, if the
number of threads does not divides ρ then there is clearly a waste of computational power.

D Choice of Finite Field

It would be natural to implement the polynomial algorithms (interpolation and evaluation) over GF (2ℓ)
as the parties use the bit-string output of the OT extension as input to these algorithms. However, our
implementation for the low communication variant (Figure 5) works over a prime field since existing libraries9

for polynomial multiplication and division have optimizations for this field type but not for the extension
fields. As such, we leave it to a future work to implement polynomial multiplication and division over
fields that allow for fast arithmetics (e.g. extension fields or prime fields with Mersenne or Fermat primes).
Therefore, in order to capture the ℓ-bit inputs/outputs of the polynomial we use the smallest prime p such
that p > 2ℓ. From the density of primes it is guaranteed that the gap p− 2ℓ is negligible (in ℓ) and does not
affect the security of the protocol (this is a known method, see [LPSY15, Sec 3.1] for example). For ℓ = 436
which we use in our implementation we have p = 2ℓ + 295, for which p ≈ 2ℓ(1 + 1.66 · 10−129).

9e.g. http://www.shoup.net/ntl
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β
Evaluation Interpolation

n 218 219 220 n 218 219 220

64

B.T. 2092 4702 10616 B.T. 2153 4333 9406
Eval. 5054 11146 24458 Der. 22 43 86

Eval. 5030 10644 23202
Int. 3378 6867 14549

Total 7146 15848 35074 Total 10585 21889 47246

128

B.T. 2820 6044 13959 B.T. 2765 6012 12889
Eval. 7032 15581 35835 Der. 21 42 86

Eval. 6934 15337 33144
Int. 4343 9246 19471

Total 9852 21625 49794 Total 14065 30638 65592

256

B.T. 4755 10811 24015 B.T. 4721 10551 23513
Eval. 12685 29010 61905 Der. 33 66 135

Eval. 12564 27857 62862
Int. 7054 15174 33338

Total 17440 39281 85920 Total 24373 53651 119849

512

B.T. 8428 19227 42209 B.T. 8232 18389 43995
Eval. 24482 56687 125394 Der. 37 74 173

Eval. 24212 53797 119701
Int. 12235 26322 69921

Total 32910 75914 167603 Total 44718 98584 233791

Figure 13: Time in millisecond to execute the multi-point evaluation and interpolation sub-algorithms over fields of
sizes 264 − 2512 and n ∈ {218, 219, 220}. Abbreviations: Build-Tree (B.T.), Evaluation (Eval.), Derivation (Der.) and
Interpolation (Int.). Runtimes obtained over Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz with 1 thread.

We applied our slicing technique described in Section 5.2 and found that the number of slices that performs
best is 3. For example, instead of interpolating a single polynomial with points (xi, yi) in

{
{0, 1}128, {0, 1}436

}

(see Figure 6) we interpolate three polynomials P1, P2, P3 where Pj∈{1,2} are interpolated with points (xi, y
j
i )

in
{
{0, 1}128

}2
and the last polynomial P3 with (xi||0 . . . 0, y

3
i ) in

{
{0, 1}180

}2
. Here yi = y1i ||y

2
i ||y

3
i which

y1i , y
2
i are of length 128, and y3i is of length 180. Note that the xi’s are the items of the interpolating party,

and that this means that our protocol works and performs exactly the same for every domain of elements
{0, 1}d for d ≤ 128. This is in contrast to other protocols with a different performance for each domain size.

For our fast protocol (Figure 7), Bob interpolates a small polynomial within a bin. Our empirical
experiments show that the straightforward Lagrange interpolation and straightforward polynomial evaluation
give the best results for this variant. We interpolate and evaluate the polynomial over GF (2ℓ).

E Supplementary Evaluation Results

In Tables 3–8 we report the concrete numerical costs and running times of our various benchmarks on the
AWS network.

F PSI with Unequal Set Size

Several protocols are optimized for PSI with sets of significantly different sizes. We compare the performance
of these protocols to our own, for set sizes n1 = {216, 220, 224} and n2 = 11041. These parameters were chosen
to match the numbers used in by Chen, Laine, and Rindal [CLR17]. n2 = 11041 is one of two input sizes
for which their homomorphic encryption parameters are ideal. Their use of fully homomorphic encryption
also restricts their implementation to support 32-bit items only. Hence, for these tests we run all protocols
with 32-bit items, even though ours and others support longer items. A summary of results is in Table 9.

Comparison with CLR Chen, Laine, Rindal [CLR17] describe a PSI protocol based on homomorphic
encryption. The protocol contains a considerable number of parameters that are set based on experimentation
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virginia-ohio virginia-oregon sidney-saopaolo us-us-10 us-sidney-10
ecdh283 4.48 (3.5%) 4.50 (3.5%) 7.12 (11.7%) 4.49 (3.5%) 4.91 (9.5%)
ecdh25519 8.36 (1.7%) 8.33 (1.7%) 12.46 (6.0%) 8.36 (1.7%) 8.85 (4.8%)
spot-fast 0.25 (56.1%) 0.27 (51.3%) 1.44 (51.3%) 0.68 (20.3%) 0.97 (42.7%)
spot-low 0.73 (16.1%) 0.79 (14.8%) 1.84 (33.9%) 1.22 (9.6%) 0.39 (91.1%)
kkrt 0.26 (91.4%) 0.29 (82.3%) 1.63 (79.3%) 1.00 (24.1%) 1.51 (48.1%)

Table 3: Monetary costs (USD) in the B2B scenario per 1000 runs with set size of 216 items (values in parentheses denote the
percentage of the cost due to data transfer).

virginia-ohio virginia-oregon sidney-saopaolo us-us-10 us-sidney-10
ecdh283 72.64 (3.5%) 73.13 (3.4%) 115.17 (11.7%) 75.28 (3.3%) 82.22 (9.2%)
ecdh25519 133.90 (1.7%) 134.39 (1.7%) 200.92 (6.1%) 136.11 (1.7%) 144.16 (4.7%)
spot-fast 3.69 (62.1%) 3.71 (61.8%) 15.46 (79.1%) 6.09 (37.7%) 10.77 (63.9%)
spot-low 16.91 (11.2%) 17.47 (10.9%) 33.71 (30.0%) 19.07 (9.9%) 23.31 (24.4%)
kkrt 4.09 (93.2%) 4.33 (88.0%) 23.04 (88.2%) 10.29 (37.0%) 18.08 (63.2%)

Table 4: Monetary costs (USD) in the B2B scenario per 1000 runs with set size of 220 items (values in parentheses denote the
percentage of the cost due to data transfer).

virginia-ohio virginia-oregon sidney-saopaolo us-us-10 us-sidney-10
ecdh283 2.42 (10.7%) 2.43 (10.7%) 4.02 (12.4%) 2.43 (10.7%) 2.86 (20.3%)
ecdh25519 4.35 (5.4%) 4.33 (5.4%) 7.01 (6.4%) 4.34 (5.4%) 4.85 (10.9%)
spot-fast 0.28 (81.0%) 0.30 (77.8%) 0.83 (53.0%) 0.50 (45.9%) 0.80 (64.4%)
spot-low 0.50 (38.9%) 0.53 (36.7%) 1.06 (35.5%) 0.74 (26.2%) 0.45 (96.2%)
kkrt 0.41 (97.2%) 0.43 (93.9%) 0.96 (80.4%) 0.78 (51.4%) 1.30 (69.2%)

Table 5: Monetary costs (USD) in the ‘Internet’ scenario per 1000 runs with set size of 216 items (values in parentheses denote the
percentage of the cost due to data transfer).

virginia-ohio virginia-oregon sidney-saopaolo us-us-10 us-sidney-10
ecdh283 39.26 (10.7%) 39.51 (10.6%) 65.08 (12.4%) 40.58 (10.4%) 47.69 (19.7%)
ecdh25519 69.61 (5.5%) 69.86 (5.4%) 113.08 (6.5%) 70.72 (5.4%) 78.92 (10.8%)
spot-fast 4.52 (84.5%) 4.53 (84.3%) 9.15 (80.2%) 5.72 (66.8%) 10.56 (81.1%)
spot-low 10.66 (29.6%) 10.94 (28.9%) 19.29 (31.4%) 11.75 (26.9%) 16.11 (43.9%)
kkrt 6.49 (97.9%) 6.61 (96.1%) 13.72 (88.9%) 9.59 (66.2%) 17.63 (80.7%)

Table 6: Monetary costs (USD) in the ‘Internet’ scenario per 1000 runs with set size of 220 items (values in parentheses denote the
percentage of the cost due to data transfer).

lan9.6 virginia-ohio virginia-oregon sidney-saopaolo us-us-10
ecdh283 81049.80 81074.90 81431.50 82875.80 81254.40
ecdh25519 153667.70 154187.00 153630.20 154327.30 154045.40
spot-fast 1936.60 2028.10 2465.20 9216.60 10189.10
spot-low 12850.00 11469.70 12586.70 16036.60 20623.00
kkrt 361.00 428.00 976.00 4433.00 14301.00

Table 7: Times in miliseconds for a set of 216 items.

lan9.6 virginia-ohio virginia-oregon sidney-saopaolo us-us-10
ecdh283 1304656.10 1314656.10 1323987.30 1341503.30 1364300.80
ecdh25519 2457893.80 2467833.30 2477097.90 2488985.10 2509353.00
spot-fast 26105.30 26270.80 26618.50 42545.50 71139.50
spot-low 270240.00 281463.00 291945.10 311266.00 322077.30
kkrt 4668.00 5195.00 9721.00 35901.00 121494.00

Table 8: Times in miliseconds for a set of 220 items.

rather than according to some formula. This make it challenging to describe its communication via a concrete
formula. Instead, we give only an empirical comparison (in Table 9) based on their implementation.

The CLR protocol has asymptotically better communication complexity that is logarithmic in the size of
the larger set, and linear in the size of the smaller set. However, our experiments show that spot-low variant
still outperforms CLR for somewhat large input sizes. In the single-threaded 1Mbps setting, with n1 = 220

and n2 = 11041, our protocol obtains a running time of 68 seconds, whereas CLR takes 105.4 seconds.
When comparing the two protocols in terms of communication overhead, our protocol achieves 1.5 − 4.4×
improvement when the sender’s set size is reasonable n1 ≤ 220. For larger set size n1, the CLR protocol
scales much better than our protocol, due to its communication complexity being only O(n2 log(n1)). As
mentioned above, CLR’s implementation is restricted to 32-bit items, whereas our implementation supports
128 bits.

Comparison with KLSAP. Kiss et al. [KLS+17] describe a protocol for unbalanced PSI, which defers
a significant amount of computation to an offline pre-processing phase. Essentially, Alice encodes her set as
a Bloom filter which she sends to Bob. In the online phase, the parties evaluate an oblivious PRF on each
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Params. Protocol Comm. Total time (seconds)

n1 n2 Size (MB)
10 Gbps 100 Mbps 10 Mbps 1 Mbps

T = 1 4 1 4 1 4 1 4

224 11041

[CLR17] 23.2, 21.1 115.4 40.3 117.8 42.7 134.4 59.3 290.8 215.1
[KLS+17] 2049 (43.3) 90.4 — 265.1 — 1640.21 — — —
[PSZ18] 480.9 40.5 23.3 88.0 66.4 449.5 427.5 4084.8 4067.2
Ours 114.8 89.3 31.1 104.1 41.45 189.2 129.7 1054.0 994.4

220 11041

[CLR17] 11.5 12.8 5.7 14.0 6.9 22.2 15.1 105.4 98.3
[KLS+17] 1968 (43.3) 82.1 — 259.9 — 1638.43 — — —
[PSZ18] 30.9 3.3 2.1 7.0 5.6 29.8 28.3 263.7 262.1
Ours 7.7 7.1 2.8 8.56 4.3 15.1 10.4 68.0 67.2

216 11041

[CLR17] 4.1, 4.4 3.0 1.7 3.4 2.1 6.4 5.3 36.0 35.0
[KLS+17] 1963 (43.3) 81.8 — 259.6 — 1636.22 — — —
[PSZ18] 2.6 0.7 0.6 1.5 1.4 3.3 3.1 21.6 21.1
Ours 1.0 2.3 1.7 3.1 2.5 3.5 3.2 10.8 10.5

Table 9: Total communication cost in MB and running time in seconds comparing our protocol to [PSZ18,
KLS+17, CLR17], with T ∈ {1, 4} threads. Each item has 32-bit length in [PSZ18, CLR17, KLS+17], and
128-bit length in our protocol. 10Gbps network assumes 0.2ms RTT, and others use 80ms RTT. Cells with
”—” denote setting not supported or program out of memory.

item of Bob, which Bob can probe in the Bloom filter. In their most communication-efficient variant, they
use a Diffie-Hellman approach to compute y 7→ H(y)αβ .

In our comparison, we separate the communication into the offline and online phases. The online commu-
nication cost is reported in parenthesis in Table 9. Comparing the two protocols, our protocol scales better
than KLSAP.

Comparison with PSZ. Pinkas et al. [PSZ18] propose different hashing parameters for the case of unequal
set sizes. The PSZ and KKRT both use a similar paradigm, but PSZ uses less communication when the items
have length 32, as we consider for this section. The experiments show that PSZ requires more communication
than our protocol. Namely, for n1 = 220 our protocol requires 114.8 MB of communication compared to PSZ
requiring 480.9 MB. When comparing the running time of the two protocols, we observe that in the LAN
setting, with n1 = 220, our protocol takes 89.3 seconds, which is about 2× slower than PSZ in this settings.
When restricting the parties to a 10Mbps or 1Mbps network, our protocol is 2.37− 3.87× faster than PSZ.
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