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We propose a model where wholesale electricity prices are explained by two state variables: demand and
capacity. We derive analytical expressions to price forward contracts and to calculate the forward pre-
red to be a commodity, its price

This inability to store power is perhaps the pivotal reason for
the extreme behavior of electricity’s price dynamics. Unlike most
commodities, once electricity is produced it must be consumed.
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1. Introduction

Although electricity is conside
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mium. We apply our model to the PJM, England and Wales, and Nord Pool markets. Our empirical find-
ings indicate that volatility of demand is seasonal and that the market price of demand risk is also
seasonal and positive, both of which exert an upward (seasonal) pressure on the price of forward con-
tracts. We assume that both volatility of capacity and the market price of capacity risk are constant
and find that, depending on the market and period under study, it could either exert an upward or down-
ward pressure on forward prices. In all markets we find that the forward premium exhibits a seasonal
pattern. During the months of high volatility of demand, forward contracts trade at a premium. During
months of low volatility of demand, forwards can either trade at a relatively small premium or, even
in some cases, at a discount, i.e. they exhibit a negative forward premium.
behavior is strikingly different from that of any other commodity
or more generally from that of any other asset. The most conspic-
uous features of its price dynamics are the presence of a seasonal

When storing a commodity is feasible, mismatches between de-
mand and supply can be partially met by either storing the good
or by drawing from inventories. In this way, storage capabilities
trend and short-lived deviations or spikes with strong mean rever-
sion, a unique characteristic of the power market. The latter behav-
ior is a consequence of the complex dynamics of, and the
interaction between, the demand and supply of a commodity
which is either impossible or un-economical to store.
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act as a buffer and have the effect of smoothing out price devia-
tions from their expected seasonal trend. A clear example is gas,
where storage levels follow a seasonal profile that reflects net de-
mand or supply. Where demand outstrips supply, usually between
the months of December–April, inventories are depleted; where
supply exceeds demand storage facilities are replenished. How-
ever, contrary to the way inventories act against sharp price devi-
ations in most commodities, the absence of storage in electricity
markets amplifies the effects produced by mismatches between
supply and demand.

Moreover, the adverse consequences of not being able to store
power are exacerbated by the composition of the generation park
of every market. There are two sides to this problem that must
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be considered. First, in most markets around the world, the vast
majority of generation capacity is concentrated in a small number

valuation formulae for forward contracts and undertakes an
empirical analysis of the PJM market. Similarly, Cartea and
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of companies that own generation plants. Therefore the actions or
performance of just one player in the market may have an impact
on equilibrium prices. Furthermore, due to the economies of scale
in this market, investments come in large tranches, hence installed
capacity increases in steps rather than in a gradual manner. The
immediate implication is that power supply takes the form of a
‘supply stack’ since different plants come on line at different prices
which, makes equilibrium prices very unstable around these step
changes.

The second aspect that must be contemplated is that every gen-
eration park consists of a heterogeneous ensemble of plants where
the main characteristic that differentiates them is the source em-
ployed to produce power and their cost function (marginal costs).
For instance, the Scandinavian power market is dominated by hy-
dro plants, but most of the time the marginal plants that determine
equilibrium prices are coal, gas or oil-based. Similarly, in the Eng-
land and Wales (E&W) market gas and coal plants, representing
around 60% of generation capacity, are usually the marginal en-
trants that set prices.

Nevertheless, the peculiarities of the supply side are not solely
responsible for the exceptional behavior of power prices. Aggregate
demand is highly inelastic and mainly dependent on weather and
economic activity. Short-term unexpected demand variations are
normally attributed to changes in weather, but on a longer time
scale, the different seasons of the year, together with the economic
cycle, also affect the seasonal trend that underlies aggregate
demand.

The main contribution of this article is to introduce a general
framework that analyzes how demand and capacity determine
wholesale electricity prices. We propose a flexible model that al-
lows different specifications both for the modeling of the state
variables (demand and capacity) and for the relationship between
state variables and electricity prices. Moreover, the specification of
our model allows us to obtain closed-form solutions for forward
prices which enables us to directly examine the dynamics of the
forward premium. Finally, we exemplify the use of our model by
analyzing the markets of PJM, E&W and Nord Pool.

The rest of this article is structured as follows. In Section 2 we
present an overview of previous work on the valuation of electricity
derivatives. Section 3 analyzes the characteristics of the supply and
demand of electricity. In Section 4 we propose the model for the elec-
tricity spot price as a function of demand and generation capacity.
Further, in Section 5 we present the model under the risk-adjusted
probability measure, derive valuation formulae for forward contracts
and discuss the forward premium. Finally, Section 6 concludes.

2. Models for the valuation of electricity derivatives

Modeling power prices, and other financial instruments
related to this market, is quite recent in the academic litera-
ture. For instance, although the subject matter was not the
modeling of power prices but storable commodities, the work
of Schwartz (1997) and Schwartz and Smith (2000) served as
a platform for a number of articles that dealt with the valua-
tion of electricity derivatives by proposing no-arbitrage models
for the dynamics of wholesale electricity prices. For example,
in the work of Lucıa and Schwartz (2002) and Carte and Villa-
plana (2008) power prices are modeled according to non-ob-
servable state variables that account for the short-term
movements and long-term trends in electricity prices. In par-
ticular, the former looks into the valuation of electricity futures
contracts traded in the Nord Pool (Scandinavian market), and
the latter introduces the possibility of jumps in the short-term
process of the Schwartz and Smith (2000) model, derives
gueroa (2005) present a mean-reverting jump-diffusion model
wholesale electricity prices and derive closed-form formulae

r forward contracts and apply the model to the E&W power
arket. Finally, Geman and Roncoroni (2006) focuses on the
odeling of spot prices and apply their model to the PJM,
AR and COB markets.
Alternatives to no-arbitrage models are the so-called equilib-

um and hybrid models which, given the particular characteris-
s of electricity, explain price formation based on state
riables that are mainly associated to supply and demand. This
e of research has been pursued in Geman and Eydeland

998); Pirrong and Jermakyan (1999); Pirrong and Jermakyan
000); Bessembinder and Lemmon (2002); Longstaff and Wang
004); Barlow (2002); Skantze et al. (2000) and Skantze and Ilic
001) among others.
For example, Pirrong and Jermakyan (1999) and Pirrong and

rmakyan (2000) propose to model the equilibrium price as a
nction of two state variables, electricity demand and the futures
ice of the marginal fuel. Moreover, the authors consider that
ectricity prices should be an increasing and convex function of
mand.
Bessembinder and Lemmon (2002) adopted an equilibrium per-

ective and explicitly modeled the economic determinants of the
rward market. In their model, producers face marginal produc-
n costs that may increase steeply with output and aggregate de-

and is exogenous and stochastic. They show that the forward
emium, defined as the forward minus the expected spot price,
positively (resp. negatively) related to the skewness (resp. vari-
ce) of the spot price. One of the key insights is that the risk of
ice spikes, due to sudden positive shocks in power demand,
n have important effects on the size and the sign of the forward
emium. In their equilibrium model, the resulting expression for
ot prices is given by the following expression: P = a(D/N)k�1,
here P is the electricity spot price, D is the demand level, N num-
r of (symmetric) producers (generators), and a and k > 2 are con-

ants. Note that assuming N constant is equivalent to assuming
at generation capacity is also known and fixed.
Longstaff and Wang (2004) focus on the question of how elec-

icity forward prices are related to expected spot prices. Their goal
to provide an empirical analysis of the theoretical predictions
esented in Bessembinder and Lemmon (2002). They find a signif-
ant forward premium in the PJM market which they consider as
ing the result of ‘‘the rationality and risk aversion of economic
ents participating in the market”. They point out that ‘‘total de-
and approaching or exceeding the physical limits of power genera-
n” is an important economic risk (related also to quantity risk)
d ‘‘the risk of price spikes as demand approaches system capacity
an extreme type of risk which may have important implications

r the relation between spot and forward prices”.
Therefore in those situations where the demand level is near the

aximum capacity of the system, the behavior of electricity prices
n be quite abrupt, since electricity must be generated by plants
ith higher marginal costs (convexity of the supply function). Fur-
ermore, although Longstaff and Wang (2004) try to establish a
lationship between the forward premium and the difference be-
een maximum capacity and expected demand, they must assume

ue to lack of data) that generating capacity is constant.
Furthermore, Barlow (2002); Skantze et al. (2000) and

antze and Ilic (2001) have in common the fact that they im-
se a functional form for the relationship between price and
o state variables: demand and a non-specified variable re-

ted to the supply side. For instance, Barlow (2002) proposed
non-linear Ornstein-Uhlenbeck process for the description of
served electricity prices. The author considered demand as



the relevant state variable and modeled it as a mean-reverting
process incorporating a non-constant mean given by a deter-

volatility captured by the term rD(t) and dZD
t are the increments of a

standard Brownian motion. 3
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ministic seasonal function. Skantze et al. (2000) and Skantze
and Ilic, 2001 impose an exponential functional form between
electricity spot prices and the state variables demand and a
non-observable residual variable which is related to supply
conditions.

In this article we model equilibrium electricity prices as a func-
tion of two observable state variables: demand and generation
capacity. In this way we extend the work of Pirrong and Jermakyan
(1999); Barlow (2002) and Bessembinder and Lemmon (2002) by
considering the capacity of a system to generate electricity at
any point in time as a random variable, in other words, capacity
follows a stochastic process. Moreover, based on empirical obser-
vations and in line with Bessembinder and Lemmon (2002); we as-
sume that electricity prices are increasing in demand and
decreasing in capacity. Yet we propose a model flexible enough
so that forward prices, a key building block in power markets,
can be priced in closed-form, which also allows us to gain further
insights into the characteristics of power markets by examining
the forward premium for which we also obtain an analytical
expression.

3. Demand and effective generation capacity
3.1. Demand

Dt ¼gDðtÞ þ vD
t þ nt

dvD
t ¼� kDvDdt þ rDðtÞdZD

t

dn ¼lndt þ rndZn
t

where ln and rn are constant and dZn
t are the increments of a standard Brownian mo-

tion. With this specification the long-term equilibrium level gD(t) + nt is not

deterministic.
4 In each market we use the day-ahead demand.
5 Since we are dealing with daily data, the discretization error is negligible, Melino

(1994). The models have been estimated using the BHHH algorithm.
As mentioned above there are two key drivers that affect
power demand: economic activity and weather conditions. On
a broad level, the seasonal behavior of these drivers is passed
onto the dynamics of power prices. For instance, the relation-
ship between economic activity and electricity demand makes
load (i.e. out-turn or realized demand) a seasonal variable
too. Similarly, on short-time scales, electricity demand
exhibits intra-day and intra-week seasonality with clearly
discernible patterns. Within working days, for example, one
can identify high demand (mornings and evenings) and low
demand hours (generally from midnight to 6:00 am). And like-
wise, throughout the week, we may also observe that demand
is higher during weekdays and lower during weekends and
public holidays.

Weather, on the other hand, also influences electricity
demand; temperature being one of the most influential
factors. Extreme temperatures, high or low, induce a consider-
able use of air-conditioners or heating devices. As with cycles
in economic activity, the marked seasonal patterns such as
winters and summers are generally reflected in the seasonal
levels of electricity prices. However, on short-time scales,
electricity demand usually depends non-linearly on tempera-
ture (see Pardo et al. (2002)) which makes volatility of de-
mand very sensitive to short-term weather variations; an
effect which is exacerbated during periods of already high
demand.

Therefore electricity demand may be modeled as a mean-
reverting process, where the mean is non-constant (seasonal)
and with periods of high and low volatility. In order to take into ac-
count these features, we introduce several components in our
model for the evolution demand. We assume

Dt ¼gDðtÞ þ vD
t ð1Þ

dvD
t ¼� kDvD

t dt þ rDðtÞdZD
t ð2Þ

where demand Dt has a non-constant, deterministic trend given by
the function gD(t), and vD

t is a mean-reverting process, with seasonal
From Figs. 1–3 it is straightforward to observe that the behavior
of demand is different in each market.4 These differences are
important in order to understand the behavior of spot prices (see
Figs. 4–6), forward prices and forward premiums. For example, it
is important to emphasize that demand levels in the PJM market
exhibits the largest volatility and that the Nord Pool shows the larg-
est kurtosis (see Table 1).

We employ daily demand data to estimate a discretized version
of the demand model, (1) and (2), and obtain the parameter esti-
mates by Maximum Likelihood.5 The discretized version of the de-
mand model is given by

Dt ¼gDðtÞ þ vD
t ð3Þ

vD
t ¼BvD

t�1 þ rD;tet : ð4Þ

Here (4) is an autoregressive form of (2) where B = 1 � kD,
et � N(0,1) and

rD;t ¼ rD
1 wintert þ rD

2 springt þ rD
3 fallt þ rD

4 summert ð5Þ

is designed to capture the seasonal component of the time-depen-
dent volatility by including quarterly dummies: fallt takes the value
1 if the observation is on September, October or November and zero
the rest of the months; springt takes the value of 1 if the observation
is March, April and May or zero in the rest of months; summert

takes the value 1 if the observation is in June, July or August and
zero the rest of the months; and wintert is similarly defined. Finally,
depending on the market, the seasonal component is given by

gDðtÞ ¼ B0 þ
X12

j¼2

MjD
M
j þ

Xy

j¼2

YjD
Y
j ð6Þ

or

gDðtÞ ¼ B0 þ
X12

j¼2

MjD
M
j þ Ct: ð7Þ

Here DM
j are the monthly dummies that take into account the exis-

tence of discrete changes in the annual mean level of the demand
series; DY

j are the yearly dummies (y varies depending on the mar-
ket); Mj and Yj are parameters; and C is a parameter responsible for
the linear trend in (7).

Table 2 shows parameter estimates for the demand model (3)–
(5) applied to three markets: PJM, E &W and Nord Pool. Moreover,
we used (6) for PJM and Nord Pool and (7) for E&W. For comparison
purposes we have estimated two different specifications for the
volatility of demand in each market. The first specification assumes
the volatility is constant rDðtÞ ¼ rD

const (results shown in columns
with heading ‘Const Vol’) and the other assumes that volatility is
seasonal as described in (5) (results shown under heading ‘Seas
Vol’). From the table we see that in all markets, the quarterly dum-

3 We note that a simple extension to model (1) and (2) would consist of adding
another factor to capture long-term shocks in the following way
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Fig. 1. PJM demand and estimated seasonal component gD(t) over the period January 1999–August 2006.
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Fig. 2. E&W demand and estimated seasonal component gD(t) over the period March 2001–March 2006.

Sep 03 Jan 04 Jul 04 Jan 05 Jul 05 Jan 06 Jul 06
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 106

D
em

an
d 

M
W

h

Demand
Seasonal component

Fig. 3. Nord Pool demand and estimated seasonal component gD(t) over the period September 2003–December 2006.
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Table 1
Statistics for power prices and demand

PJM E&W Nord Pool

Dt Dt � Dt�1 lnDt ln(Dt/Dt�1) Dt Dt � Dt�1 lnDt ln(Dt/Dt�1) Dt Dt � Dt�1 lnDt ln(Dt/Dt�1)

Num. Obs. 2800 2799 2800 2799 1240 1239 1240 1239 2922 2921 2922 2991
Mean 43775.21 18.94 10.60 0.00 36433.53 8.58 10.50 0.00 14515.38 8.43 9.50 0.00
Median 34612.00 �149.00 10.45 0.00 35715.00 50.00 10.48 0.00 13142.25 �50.00 9.48 0.00
Min 20699.00 �16311.00 9.94 �0.28 25434.00 �8309.00 10.14 �0.23 5624.80 �3819.40 8.63 �0.18
Max 116187.00 16270.00 11.66 0.37 54354.00 8320.00 10.90 0.19 39227.80 6137.60 10.58 0.34
Std 20415.01 3129.13 0.41 0.07 4654.99 1217.21 0.13 0.03 6380.82 826.26 0.39 0.05
Skew 1.21 0.41 0.79 0.49 0.60 �0.32 0.30 �0.29 1.36 1.03 0.54 0.81
Kurtosis 0.23 2.85 �0.67 1.39 0.08 10.42 �0.39 9.91 1.47 6.18 �0.40 2.38

Pt Pt � Pt�1 lnPt ln(Pt/Pt�1) Pt Pt � Pt�1 lnPt ln(Pt/Pt�1) Pt Pt � Pt�1 lnPt ln(Pt/Pt�1)

Num. Obs. 2800 2799 2800 2799 1240 1239 1240 1239 2922 2921 2922 2991
Mean 37.48 0.01 3.50 0.00 24.87 0.02 3.10 0.00 27.47 0.00 3.19 0.00
Median 33.69 �0.41 3.52 �0.01 20.37 0.00 3.01 0.00 26.21 �0.14 3.27 �0.01
Min 8.19 �368.00 2.10 �2.61 10.39 �86.27 2.34 �1.52 3.89 �32.28 1.36 �0.77
Max 397.34 251.18 5.98 2.78 183.32 139.40 5.21 1.77 114.61 53.72 4.74 1.19
Std 22.93 16.22 0.48 0.27 14.83 7.98 0.44 0.18 14.39 2.70 0.51 0.10
Skew 4.76 �2.29 0.32 0.24 3.28 3.89 1.11 0.89 1.59 2.62 �0.20 1.72
Kurtosis 46.60 167.20 0.60 13.37 17.75 108.60 1.32 16.95 4.46 82.69 0.11 26.53
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Fig. 4. PJM spot prices over the period January 1999–August 2006.
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Fig. 5. E&W spot prices over the period March 2001–March 2006.

2506 Á. Cartea, P. Villaplana / Journal of Banking & Finance 32 (2008) 2502–2519 5



mies of the seasonal volatility specification are significant, more-
over, according to the Schwarz Criterion, the seasonal volatility
model is the preferred one. Finally, we have computed a LR test
to check the difference between the restricted model (constant vol-
atility model) and the unrestricted one (seasonal volatility specifi-

serve from Table 2 that volatility rD(t) is also higher during the
summer and fall seasons (i.e. June–November) coinciding with
the times when gD(t) is already high. This feature, which is
broadly present across the three different markets under study,
will have interesting consequences. First, a straightforward effect
is
m
be
th
se
ab
po
pr

Table 2
Parameter estimates for demand in PJM, E&W and Nord Pool

PJM E&W Nord Pool

Const Vol. Seas Vol. Const Vol. Seas Vol. Const Vol. Seas Vol.

B0 32116.15 62.05 32253.96 91.70 37131.58 154.72 37024.91 103.14 1267358.28 96.31 1268589.72 84.41
M2 �1079.54 �1.43 �1154.57 �2.49 319.85 0.69 126.86 0.17 10234.39 0.81 9316.71 0.61
M3 �3874.12 �4.96 �3916.81 �7.74 �1819.47 �5.32 �1417.90 �4.14 �40723.80 �3.65 �40631.19 �3.11
M4 �6455.70 �7.89 �6700.07 �12.33 �4884.96 �15.89 �4913.86 �11.85 �223557.88 �18.00 �224221.86 �15.69
M5 �4627.65 �7.21 �4640.05 �10.63 �6315.90 �22.56 �6313.21 �16.03 �358245.29 �25.64 �364414.32 �23.49
M6 1548.45 2.62 1692.55 2.74 �7200.07 �17.01 �7231.53 �19.57 �416490.37 �31.36 �417859.21 �34.25
M7 5840.82 10.12 6074.61 10.17 �7525.10 �12.85 �7418.93 �18.75 �463264.87 �26.71 �466017.54 �33.56
M8 5990.73 9.91 6065.91 9.50 �7205.93 �19.92 �7319.21 �20.35 �406970.33 �28.02 �409953.25 �32.06
M9 �909.60 �1.42 �811.73 �1.88 �5249.88 �14.54 �5299.99 �11.36 �343623.05 �25.39 �344530.58 �22.83
M10 �6099.74 �6.85 �5952.42 �10.55 �3639.70 �13.31 �3670.37 �9.46 �228811.93 �20.58 �230903.21 �17.98
M11 �5214.99 �6.19 �5192.79 �9.48 318.03 1.11 331.71 0.83 �117514.59 �10.55 �117801.93 �9.19
M12 �417.11 �0.59 �461.33 �1.09 309.30 1.38 353.37 0.93 �61875.93 �5.74 �62036.10 �4.76
C 3.72 17.45 3.93 20.65
Y2 7179.39 19.24 7091.29 20.95
Y3 37256.96 71.44 37828.30 91.80
Y4 41496.42 68.57 43084.11 45.44 3857.12 0.35 4573.77 0.39
Y5 51677.70 143.86 50417.87 150.02 16966.61 1.56 13930.77 1.19
Y6 22131.24 2.00 20767.42 1.75
B 0.67 85.73 0.73 55.88 0.67 44.18 0.65 34.74 0.82 48.91 0.82 45.58
rD

const 3433.87 97.96 1582.91 87.37 55524.17 48.95
rD

1 2630.69 33.45 2066.98 42.96 61361.61 22.53
rD

2 54.48 0.53 �453.75 �6.06 �3247.50 �0.85
rD

3 94.92 0.83 �451.93 �6.22 �4476.56 �1.31
rD

4 1922.57 12.49 �1085.51 �19.99 �18622.78 �5.46

LL �19128.02 �18880.93 �10918.53 �10833.48 �14986.35 �14968.35
SC 38392.86 37921.48 21943.92 21795.19 30094.75 30078.73

The first column for each market assumes that volatility rD(t) is constant and the second column assumes volatility varies across seasons according to (5).
Note that rD(t) for winter is given by rD

1 , for spring is rD
1 þ rD

2 , fall is rD
1 þ rD

3 and summer is rD
1 þ rD

4 . LL: Log-likelihood and SC: Schwarz Criterion.
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Fig. 6. Nord Pool spot prices over the period January 1999–December 2006.
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cation), where we find that in the three markets the null
hypothesis is clearly rejected at 1% significant levels.

It is interesting to mention the relationship between the level
gD(t) of the demand series and the seasonal pattern in the volatil-
ity of the series. For example, Fig. 2 shows demand in E&W over
the period March 2001 to March 2006. Here we can observe that
periods of high demand, i.e. high levels in gD(t), occur during the
months of August through December. At the same time we ob-
that across seasons when demand levels and volatility of de-
and are high, wholesale power prices will also, ceteris paribus,

high and volatile. Second, we can expect forward prices and
e forward premium to reflect a seasonal pattern as a result of
asonality in the volatility of demand. We will me more precise
out this last point in Section 4 when we present a model for
wer prices and in Section 5 where we study the forward
emium.



3.2. Generation capacity

The inclusion of demand as a state variable is as important as
the inclusion of effective generation capacity to explain the

capacity derived from other generation sources is not readily avail-
able. Therefore, when looking at the Scandinavian market we will
use hydro reservoir as a proxy for total capacity. In the E&W mar-
ket, information on capacity (surplus) is made public by the Na-
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Fig. 7. PJM installed capacity over the period January 1999–August 2006.
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2508 Á. Cartea, P. Villaplana / Journal of Banking & Finance 32 (2008) 2502–2519 7
dynamics of spot or forward prices. The former accounts for the
dynamics of aggregate demand and the latter accounts for
the dynamics of the supply stack, yet it is the interaction between
the two at every point in time (for example half-hour slots) what
determines equilibrium market prices.

There are different definitions of capacity. One working defini-
tion of capacity is the maximum level of energy that can be pro-
duced at a point in time. In an ideal situation this figure should
incorporate all generation that can be made available should the
system operator call upon it. Hence, planned maintenance or other
circumstances that reduce or increase the ability to generate power
should already be accounted for when capacity is reported (see
Cartea et al. (2007)).

One level of difficulty we face stems from the fact that not all
markets are the same and that publicly available information also
differs across them. For example, in the Nord Pool market it is rel-
atively straightforward to obtain figures for reservoir levels, but
tional Grid Company (NGC). Finally, for the PJM market we use
installed capacity.6

Figs. 7–9 show the proxies we use for generation capacity for
the three markets we study. For instance, Fig. 7 shows installed
capacity in the PJM market over the period January 1999–August
2006; Fig. 8 shows E&W daily observations of capacity surplus over
the period March 2001–March 2006; and Fig. 9 shows reservoir
levels for the Nord Pool over the period January 1999–December
2006. Although the information we have relating to capacity differs
across markets, it is clear from the figures that capacity cannot be
considered a deterministic variable, instead, capacity must be con-
sidered as a state variable that exhibits two main characteristics.
First, a predictable component since some of the fluctuations on

6 Information for Nord Pool is obtained from www.nordpool.com; for E&W is
obtained from www.bmreports.com where we use the surplus variable SLPD; and for
PJM from www.pjm.com.

http://www.nordpool.com
http://www.nordpool.com
http://www.bmreports.com
http://www.bmreports.com
http://www.pjm.com
http://www.pjm.com


generation capacity may be known in advance by market partici-
pants (for instance because of the existence of seasonality and/or
planned outages). Second, short-lived deviations that are consid-

kC, volatility captured by rC(t) and dZC
t are the increments of a stan-

dard Brownian motion.7

In order to estimate empirically the parameters of the model gi-
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ered random shocks to the expected available capacity in the
market.

We note that although reductions in available capacity are
planned, and may be known by market participants, they have
also been the cause of some of the jumps observed in price ser-
ies. As an example, Krapels (2000) shows how the increase in
prices in the New England market during 7–8 June 1999, was
due to a combination of a known reduction in available capacity
plus an unexpected increase in demand which could not be met
because power plants could not be ramped up in time. Another
example is Nord Pool where during the last months of 2002 and
the beginning of 2003 the level of hydro reservoirs was at a his-
torical low, and consequently, spot and forward prices under-
went a sharp increase.

Kollberg et al. (1999) present further examples of how impor-
tant the relationship between generation capacity and levels of for-
ward prices in Nord Pool is: ‘‘... a shock that affected futures prices
at Nord Pool was the decision by the Swedish government to close
down one nuclear reactor at Barsebäck. At a time when the supply
of electricity was already regarded as constrained in the Nordic re-
gion, this decision to cut production resources even further made
the market react in a powerful way. Suddenly, there was a shift
in all forward and futures contracts with maturity after the closing
date”. Therefore, fluctuations in price levels or short-lived price
spikes are not caused by abrupt changes in demand alone, but also,
possibly contributing on an equal footing, by changes in generation
capacity.

Therefore, given the characteristics of the variable capacity we
propose the following model for capacity:

Ct ¼ gCðtÞ þ vC
t ð8Þ

dvC
t ¼ �kCvC

t dt þ rCðtÞdZC
t : ð9Þ

Here gC(t) represents a deterministic seasonal component present in

capacity and vC

t is a mean-reverting process with speed of reversion va

increasing in demand and decreasing in capacity. Therefore, we
m
pr
oC
7 As in the demand model above we could also add another factor to account for
long-term stochastic changes in the capacity levels. Furthermore, depending on the
particular market under consideration, it could be desirable to add jumps in the
dynamics of the short-term shocks vC

t to account for sudden unexpected changes in
available capacity that cannot be captured by diffusive shocks.
n by Eqs. (8) and (9) we use a discretized version of the model
milar to the one used in the demand case. Depending on the mar-
t, we use different specifications for the seasonal component. For
stance, in Nord Pool we modeled gC(t) as

ðtÞ ¼ B0 þ
X12

j¼2

MjD
M
j þ

Xy

j¼2

YjD
Y
j ð10Þ

d in E&W we used

ðtÞ ¼ B0 þ
X12

j¼2

MjD
M
j þ Ct ð11Þ

here the dummies and parameters have the same interpretation
in the seasonal component for demand. For example, in specifica-

on (10), monthly and annual dummies are included in order to
pture the changes on the level of the capacity variable for the dif-
rent months of the year and for the different years.

For PJM we used a different approach due to the nature of the
ta we have for capacity. For example, from Fig. 7 we observe
e existence of important discrete and permanent changes in
e PJM capacity variable mainly as a consequence of a planned
pansion of the PJM market (see FERC (2002)). Therefore the
terministic trend gC(t) is calculated as the mean of the monthly
ailable capacity and the mean-reverting component vC

t is given
the difference between our proxy for capacity and the monthly

eans.
In the case of the PJM market we estimate kC and rC(t), employ-

g autoregressive of order 1 model. In all markets we assumed
at the volatility coefficient in (9) is constant, i.e. rC(t) = rC. The
timation results for PJM are B = 0.70 (recall that B = 1 � kC) and
= 107.13. The results for E&W and Nord Pool are reported in
ble 3.

The model: the relationship between spot prices and state
riables

Based on empirical evidence we know spot prices should be
ay specify a generic function u(�) such that wholesale power
ices are given by Pt = u(Dt,Ct) and require ou/oD > 0 and ou/
< 0.



In addition to requiring u(�,�) to be increasing in demand and
decreasing in capacity, we look for plausible functional forms so
that forward prices can be expressed in closed-form. Hence, we
propose the following model:

pressure on expected prices and that this pressure decays at an
exponential rate given by the speed of mean reversion kC.

Table 3
Parameter estimates for capacity in E&W and Nord Pool

E&W Nord Pool

Const. Vol. t-stat Const. Vol. t-stat

B0 6166.75 18.21 52.30 42.34
B 0.63 32.18 0.85 60.16
rC 2056.30 58.73 3.88 39.17
C �0.71 �2.54
M2 �762.91 �1.86 �11.42 �18.67
M3 �1508.77 �3.04 �23.39 �32.69
M4 �1100.47 �2.46 �30.28 �29.00
M5 �1498.00 �3.90 �22.36 �30.16
M6 �1623.46 �3.30 �8.57 �10.83
M7 �3381.43 �7.91 4.03 4.41
M8 �4635.72 �9.37 8.52 8.62
M9 �2248.21 �6.54 13.86 16.78
M10 �3742.38 �7.92 15.71 17.88
M11 �2885.80 �6.11 14.60 16.34
M12 �1270.50 �3.34 10.30 11.30
Y4 7.30 5.84
Y5 16.18 13.18
Y6 5.87 4.91

LL �1180.92 �3366.42

Coefficient t-stat Coefficient t-stat Coefficient t-stat

B0 3.2413 163.1605 2.6472 98.9554 3.3564 200.6536
M2 �0.0637 �2.3174 0.0291 0.9603 0.0379 2.2305
M3 0.0075 0.2786 0.0449 1.5170 0.1730 10.4027
M4 �0.0452 �1.6687 0.1118 3.9278 0.1813 10.7993
M5 �0.1294 �4.6273 0.1164 4.1190 0.0512 3.0833
M6 �0.1249 �4.5751 0.0850 2.9768 0.1147 6.839
M7 0.1098 4.0543 0.2373 8.3983 0.1494 8.9775
M8 0.1062 3.9221 0.3709 13.1061 0.3098 18.6285
M9 �0.0932 �3.3033 0.3583 12.5747 0.2138 13.3862
M10 �0.1252 �4.5042 0.3384 11.9633 0.2005 12.6572
M11 �0.2077 �7.4087 0.3469 12.1754 0.1695 10.6300
M12 �0.0404 �1.4533 0.2915 10.2235 0.0551 3.4783
Y1 0.3818 28.7939
Y2 0.5460 23.9803 �0.0833 �4.3399
Y3 0.5535 9.5811 0.0629 3.0118
Y4 0.7940 47.6204 0.2538 11.9236 �0.1352 �10.5361
Y5 0.9724 50.7857 �0.1258 �9.8002
Y6 0.3617 28.1650
Y7

a 0.0000380 34.5499 0.000014966 5.6122 0.000000752 17.4695
c �0.0001486 �3.9060 �0.000043112 �16.8483 �0.006668338 �13.0018

R2 0.6196 0.8021 0.8235
SSR 248.2981 46.6000 15.4325
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Pt ¼ becCtþaDt ; a > 0; c < 0; b > 0; ð12Þ

where

Dt ¼gDðtÞ þ vD
t ð13aÞ

dvD
t ¼� kDvD

t dt þ rDðtÞdZD
t ; ð13bÞ

Ct ¼gCðtÞ þ vC
t ð13cÞ

dvC
t ¼� kCvC

t dt þ rCdZC
t ; ð13dÞ

and the standard Brownian motions ZD
t and ZC

t are independent.
Then, by applying the natural logarithm to (12), we can write

ln Pt ¼ hðtÞ þ cvC
t þ avD

t ð14Þ

where h(t) = lnb + cgC(t) + agD(t). Further, we will assume that the
seasonal component h(t) has the same form as (6).

Before presenting the model under the risk-neutral probability
measure, and deriving valuation formulae for forwards, we present
some preliminary evidence about the adequacy of the proposed
specification.

For example, by letting a = 0, we can analyze a restricted ver-
sion of model (12). One can show that in this ‘‘pure capacity” mod-
el the logarithm of the expected price is given by the following
expression:

ln EP
t PT½ � ¼ ln bþ cgCðTÞ þ c e�kC ðT�tÞvC

t þ
1
2

Z T

t
e�2kC ðT�sÞðrCÞ2ds

� �
;

where EP
t is the expectation operator with respect to the statistical

measure P with information up until time t. It must be noted that
the parameter c < 0 implies that expected power prices are decreas-
ing,8 at an increasing rate, in capacity. For example, if capacity goes
down (resp. up) prices go up (resp. down). On the other hand, we can
also check the effect of seasonal changes in capacity on the expected
price. For instance, during months of high capacity, i.e. high gC(T), ex-
pected prices are relatively lower than months with low seasonal
capacity. Similarly, it is straightforward to see that positive (resp.
negative) short-term deviations vC

t exert a downward (resp. upward)

8 Assuming that gCðTÞ þ ðe�kC ðT�tÞvC
t þ 1

2

R T
t e�2kC ðT�sÞðrCÞ2dsÞ > 0.
To estimate the parameters a and c we follow two steps. First,
we deseasonalize the demand and capacity series using the results
from the models (1), (2), (8), and (9). Second, using the deseason-
alized series for demand and capacity, vD

t and vC
t , we estimate

h(t), a and c in (14) by Maximum Likelihood and report the results
in Table 4. For example, we can see that for all markets the param-
eters a and c possess the correct sign and are statistically
significant.

5. Valuation of futures contracts

In order to value derivatives contracts we have to express mod-
el (12) under a risk-neutral probability measure. In line with the
literature on commodities, we incorporate the price of risk for
the different sources of uncertainty in the same way as in, for
example, Schwartz (1997) and Cartea and Figueroa (2005). In our
case, the sources of uncertainty are the demand and the effective
generation capacity, and therefore we introduce two additional
parameters (/D(t), /C(t)): the time-dependent market price per
unit of demand and capacity risk, respectively. Consequently, un-
der the risk-neutral probability measure Q the specification of
the model is given by:

ln Pt ¼hðtÞ þ cvC
t þ avD

t ð15aÞ
dvD

t ¼� kD vD
t þ hDðtÞ

� �
dt þ rDðtÞdWD

t ð15bÞ
dvC

t ¼� kC vC
t þ hCðtÞ

� �
dt þ rCdWC

t ð15cÞ

where dWD
t and dWC

t are the increments of two independent, stan-
dard Brownian motions, and

hDðtÞ ¼ /DðtÞrDðtÞ
kD ; ð16Þ

hCðtÞ ¼ /CðtÞrC

kC ; ð17Þ

h(t), rD(t), rC, kD, kC have the same interpretation as above.
Integrating Eqs. (15b) and (15c) over the time interval (t,T)

yields:

Table 4
Spot model and parameter estimates

PJM E&W Nord Pool
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þc e�k ðT�tÞvC
t þkC

t
e�k ðT�sÞhCðsÞdsþ

t
e�k ðT�sÞrCdWC

s

þa e�kDðT�tÞvD
t þkD

Z T

t
e�kDðT�sÞhDðsÞds

�

þ
Z T

t
e�kDðT�sÞrDðsÞdWD

s

�
; ð18Þ

thus we can calculate the log-price of a forward contract at time t
delivering one MWh, at a pre-specified future date T,

ln f t; Tð Þ ¼ ln EQ
t PT½ �

¼ hðTÞ þ c e�kC ðT�tÞvC
t þ kC

Z T

t
e�kC ðT�sÞhCðsÞds

�

þ1
2

Z T

t
e�2kC ðT�sÞðrCÞ2ds

�

þa e�kDðT�tÞvD
t þ kD

Z T

t
e�kDðT�sÞhDðsÞds

�

þ1
2

Z T

t
e�2kDðT�sÞr2

DðsÞds
�
; ð19Þ

where EQ
t is the expectation operator with respect to the risk-neu-

tral measure Q with information up until time t.
We may also write the price of the forward contract as the prod-

uct of the expected price of power, under the physical measure P,
EP

t ½PT � and a correction factor that depends on the market prices of
demand and capacity risk:

f ðt; TÞ ¼ exp ckC
Z T

t
e�kC ðT�sÞhCðsÞdsþ akD

Z T

t
e�kDðT�sÞhDðsÞds

� �
EP

t ½PT �:

ð20Þ

Hence, the forward premium FP(t,T), can be written as

FPðt; TÞ ¼ EQ
t ½PT � � EP

t ½PT � ¼ f ðt; TÞ � EP
t ½PT �

¼ exp ckC
Z T

t
e�kC ðT�sÞhCðsÞds

��

þakD
Z T

t
e�kDðT�sÞhDðsÞds

�
� 1

�
EP

t ½PT �; ð21Þ

which also allows us to study the sign of the forward premium by
looking at

signfFPðt; TÞg

¼ sign ckC
Z T

t
e�kC ðT�sÞhCðsÞdsþ akD

Z T

t
e�kDðT�sÞhDðsÞds

� 	
: ð22Þ
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One of the main advantages of our model is that we are able
to express in an analytical way both the forward prices and the
forward premiums. In commodities markets, and especially in
power markets, understanding the behavior of the forward pre-
mium poses interesting challenges (see for example Benth
et al. (in press)). One can focus attention on the forward bias it-
self (21), or focus on the question of whether forward prices are
trading above (i.e. FP(t,T) > 0) or below (i.e. FP(t,T) < 0) the ex-
pected spot price. Thus, if we focus on the sign of the forward
bias (22), we can see that the two key components that affect
FP(t,T) are the market prices of demand and capacity risk, which
are in the functions hD(t) in (16) and hC(t) in (17). For example, if
over the interval (t,T) the market price of demand risk /D(s) < 0,
then hD(s) < 0, in the same interval. This induces a downward
pressure on the price of the forward f(t,T), as can be seen from
expression (20). Conversely, if over the interval (t,T) /C(s) > 0,
then hC(s) > 0. This exerts a downward pressure on forward
prices (recall that c < 0).
r example, if for simplicity we assume that c = 0 and that over
relevant time interval (for instance a season) the parameters
(t), rD(t) are constant, then the size and sign of the forward pre-
ium only depend on the size and sign of hD(t). Furthermore,
though the sign of hD(t) is determined by the sign of /D(t), it is
t clear whether periods of high or low volatility of demand are
companied by positive or negative /D(t).
According to Bessembinder and Lemmon (2002) the forward

emium is decreasing in the variance of power prices and increas-
g in the skewness of power prices. In our model, although shocks
demand and capacity are symmetric, an increase in the volatility
demand or capacity increases both the variance and the skew-
ss of power prices as a result of the convexity of the exponential
nction. Therefore during periods of high rD(t) there would be two
posing forces acting on the forward premium FP(t,T) and this is

hy we cannot unambiguously determine the sign of the term
(t). A similar argument applies to the relationship between the

gn of /C(t) and the size of rC.

1. The forward premium

The forward premium is an interesting quantity because it al-
ws us to interpret how ‘strong’ hedging pressures from buyers
d sellers of electricity are. For example, a positive forward pre-
ium indicates that forward contracts are trading at a premium
er and above expected spot prices due to pressure from buyers.
our analysis we still need to estimate the risk-neutral parame-

rs relating to the market prices of demand /D(t) and capacity
(t) risk.9 For PJM, E&W and Nord Pool we employ non-linear Least
uares to estimate /D(t) and /C(t) from monthly forwards, and

nce (19) is for delivery in one day, we use, as in Lucıa and Schwartz
002);

t; T1; T2Þ ¼
1

T2 � T1

Xn

i¼1

f ðt; siÞ T1 < T2; ð23Þ

here T1 and T2 are the start and finish of the delivery period, n is
e number of days between T1 and T2 and f(t,si) is given by (19).
rthermore, partly due to: simplicity; the type of data we have
proxies for capacity; and the fact that we have assumed that

e volatility of capacity is constant (rC(t) = rC), we assume that
e market price of capacity risk is constant, i.e. /C(t) = /C. However,
the other hand, we assume that the market price of demand risk

constant within the different seasons in the same way that we as-
med that volatility of demand rD(t) was also constant within
asons.
To estimate the market prices of risk we build on the results ob-

ined from estimating the model under the physical measure. We
e the deseasonalized demand and capacity series; the mean
version coefficients kD and kC; the (seasonal) volatility of demand
(t) and volatility of capacity rC (all obtained in Sections 3.1 and

2); and h(t), a and c obtained in Section 4. The last step consists of
timating the market prices of capacity and demand risk. We esti-
ate them by minimizing the sum of squared deviations between
eoretical forward prices, given by (23), and daily quotes for
onthly forwards in each market. Moreover, for each monthly
ntract we take observations of the price of the contract every
y, until start of delivery, where the first price is that observed
e month prior to the start of delivery.10

The other parameters have already been estimated under the physical measure.
For example, for a forward delivering throughout the month of March, we use the

ward price of the March contract for every day it was traded during the month of
bruary.



Studies such as Bessembinder and Lemmon (2002); Pirrong and
Jermakyan (1999, 2000) and Cartea and Villaplana (2008) present
evidence for and discuss the existence of a seasonal pattern in the for-
ward premium on the PJM. Our framework allows us to understand

In the three markets we study, our empirical findings indicate
that the forward premium is higher in those contracts that mature
in periods of high volatility of demand. To calculate the forward
premium we take the difference between forward prices, obtained

Table 5
PJM market prices of demand and capacity risk January 1999–March 2002, April
2002–August 2006, 1999, 2000

Coefficient Std. error t-stat Significance

1999–2002 /D(t)
Feb, March, April 0.55164 0.16626 3.31785 0.00095
Nov, Dec, Jan 0.46548 0.16206 2.87221 0.00418
May, June, July 1.30065 0.08527 15.25191 0.00000
Aug, Sep, Oct 0.53861 0.16105 3.34431 0.00086

/C �2.24838 1.00732 �2.23204 0.02587
Adjusted R2 0.60562
Mean square errors 200.42

2002–2006 /D(t)
Feb, March, April 0.11636 0.07653 1.52049 0.12866
Nov, Dec, Jan 0.36663 0.07215 5.08171 0.00000
May, June, July �0.04187 0.04110 �1.01878 0.30852
Aug, Sep, Oct 0.32195 0.07063 4.55837 0.00001

/C �3.92131 0.45467 �8.62447 0.00000
Adjusted R2 0.53570
Mean square errors 146.79

1999 /D(t)
Feb, March, April 0.59546 0.22512 2.64510 0.00867
Nov, Dec, Jan 0.48079 0.22019 2.18353 0.02991
May, June, July 1.52356 0.11683 13.04116 0.00000
Aug, Sep, Oct 1.20182 0.20663 5.81619 0.00000

/C 2.85035 1.39951 2.03668 0.04271
Adjusted R2 0.84361
Mean square errors 54.943

2000 /D(t)
Feb, March, April 0.65748 0.38310 1.71622 0.08733
Nov, Dec, Jan 1.40370 0.35614 3.94145 0.00010
May, June, July 1.94386 0.19631 9.90191 0.00000
Aug, Sep, Oct 1.12011 0.35219 3.18041 0.00165

/C 0.69783 2.36838 0.29464 0.76850
Adjusted R2 0.77831
Mean square errors 207.58

When estimating /D(t) and /C for different periods we keep all model parameters
unchanged, but restrict the forward data to the particular periods we want to focus
on.

Table 6
E&W market prices of demand and capacity risk 2001–2005, 2002, 2003, 2004, 2005

Coefficient Std. error t-stat Significance

2001–2005 /D(t)
Feb, March, April 0.36433 0.47116 0.77327 0.43951
Nov, Dec, Jan 2.73326 0.33923 8.05738 0.00000
May, June, July �0.13266 0.72444 �0.18312 0.85473
Aug, Sep, Oct 4.12213 0.42046 9.80374 0.00000

/C 0.53510 0.09341 5.72867 0.00000
Adjusted R2 0.83077
Mean square errors 26.26

2002 /D(t)
Feb, March, April �1.88930 0.77119 �2.44986 0.01496
Nov, Dec, Jan 2.82391 0.52457 5.38331 0.00000
May, June, July �8.36588 1.21832 �6.86671 0.00000
Aug, Sep, Oct �1.64332 0.68535 �2.39780 0.01721

/C 1.64332 0.68535 2.39780 0.01721
Adjusted R2 0.46172
Mean square errors 7.98

2003 /D(t)
Feb, March, April �2.04081 0.90864 �2.24599 0.02556
Nov, Dec, Jan 2.91950 0.61565 4.74211 0.00000
May, June, July �2.46126 1.34678 �1.82752 0.06879
Aug, Sep, Oct 2.89532 0.77203 3.75026 0.00022

/C 0.06715 0.16956 0.39604 0.69241
Adjusted R2 0.65149
Mean square errors 11.99

2004 /D(t)
Feb, March, April 0.10659 0.52472 0.20313 0.83920
Nov, Dec, Jan 1.29704 0.38219 3.39373 0.00080
May, June, July 0.42891 0.80338 0.53389 0.59388
Aug, Sep, Oct 2.87404 0.47051 6.10837 0.00000

/C 0.01141 0.10324 0.11052 0.91208
Adjusted R2 0.72906
Mean square errors 6.73

2005 /D(t)
Feb, March, April 0.89137 0.95574 0.93266 0.35190
Nov, Dec, Jan 2.78877 0.69506 4.01231 0.00008
May, June, July 0.86419 1.47663 0.58525 0.55891
Aug, Sep, Oct 5.87490 0.85131 6.90103 0.00000

/C 0.87961 0.19019 4.62484 0.00001
Adjusted R2 0.68631
Mean square errors 57.43

When estimating /D(t) and /C for different periods we keep all model parameters
unchanged, but restrict the forward data to the particular periods we want to focus
on.
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the different components that affect the seasonality, magnitude
and sign of the forward premium. In our model the seasonal trends
present in the volatility of demandrD(t) and in the market price of de-
mand risk/D(t), are the main drivers of the seasonal pattern exhibited
by the forward premium (recall that we have market price of capacity
risk is constant). The sign and magnitude of the forward premium on
the other hand, are driven by the signs and magnitudes of /D(t), /C,
rD(t) andrC. Tables 5–7 show our parameter estimates for the market
prices of risk in the PJM, E&W and Nord Pool.

To study the market prices of risk in the PJM market, we split
the data set into two sub-periods: 1999–2002; and 2002–2006.
We do so to reflect a structural change in the PJM which partly re-
sulted from its expansion to other territories, which commenced in
2002 (see FERC (2002)). Results for these two sub-periods can be
seen in Table 5. We find that the market price of capacity risk /C

is statistically significant for the periods 2002–2006, where
/C < 0, and the year 1999, where /C > 0. With regards to the market
price of demand risk, there are three points to note. First, for both
the periods, January 1999–March 2002 and April 2002–August
2006, the market prices of demand risk are statistically significant,
with the exception of the months August, September and October
in the sample April 2002–August 2006. Second, the signs of the sta-
tistically significant parameters /D(t) are positive in all cases.
Third, the periods with largest market price of demand risk coin-
cide with the periods of largest positive forward premium.
from the fitted model, and expected spot price based on the param-
eter estimates derived above. For example, from Table 2 we can
verify that the months with the highest volatility of demand in
the PJM market are June, July and August and those with the sec-
ond highest volatility value are September, October and November.
Moreover, in PJM during the sub-period 1999–2002 we can see
that the months of May, June and July,11 (which exhibit the largest
forward premium ranging between $30 and $75 as shown in Fig. 10)
coincide with the months where we found that the volatility of de-
mand was highest and the market price of demand risk was also
highest and Fig. 11 shows the PJM forward premium for the period
2002–2006.12

In PJM we also observe that the forward premium is negative
during the months of January, February, November and December
in 1999. In this year /C > 0 and hence the market price of capacity

11 We remark that the period with high volatility of demand aligns with that of high
forward premium because we are looking at monthly forwards that trade in May, June
and July, but with delivery period in June, July and August.

12 When we look at particular years or subsets of the data to estimate the market
prices of risk and capacity, we do not re-estimate the other parameters of the model.



risk exerts a downward pressure, whilst the market price of de-
mand risk applies an upward pressure, on the forward prices. It
is during the months where volatility of demand is relatively low
that we see a downward pressure due to capacity risk outweighing

price spikes is relatively low, buyers have fewer incentives to cover
their positions by purchasing power forward, but sellers still prefer
to
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Table 7
Nord Pool market prices of demand and capacity risk 2003–2006, 2004, 2005, 2006

Coefficient Std. error t-stat Significance

2003–2006 /D(t)
Feb, March, April 0.89836 0.11114 8.08325 0.00000
Nov, Dec, Jan 1.24279 0.09926 12.51998 0.00000
May, June, July 0.64019 0.14490 4.41825 0.00001
Aug, Sep, Oct 1.47927 0.10416 14.20239 0.00000

/C 0.50350 0.07246 6.94839 0.00000
Adjusted R2 0.80494
Mean square errors 24.76

2004 /D(t)
Feb, March, April 0.50788 0.08984 5.65321 0.00000
Nov, Dec, Jan 1.05481 0.08043 13.11525 0.00000
May, June, July 0.72267 0.11480 6.29509 0.00000
Aug, Sep, Oct 0.66691 0.08588 7.76537 0.00000

/C 0.37751 0.05749 6.56696 0.00000
Adjusted R2 0.12273
Mean square errors 3.51

2005 /D(t)
Feb, March, April 1.33298 0.24407 5.46135 0.00000
Nov, Dec, Jan 2.35596 0.21745 10.83446 0.00000
May, June, July 1.62829 0.31741 5.12995 0.00000
Aug, Sep, Oct 1.88832 0.23401 8.06941 0.00000

/C 1.01548 0.16274 6.23977 0.00000
Adjusted R2 0.26811
Mean square errors 20.21

2006 /D(t)
Feb, March, April 0.89782 0.12698 7.07055 0.00000
Nov, Dec, Jan 0.62746 0.11828 5.30476 0.00000
May, June, July 0.26146 0.16710 1.56474 0.11888
Aug, Sep, Oct 1.78522 0.11907 14.99295 0.00000

/C 0.37236 0.08267 4.50431 0.00001
Adjusted R2 0.80375
Mean square errors 19.46

When estimating /D(t) and /C for different periods we keep all model parameters
unchanged, but restrict the forward data to the particular periods we want to focus
on.
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the effects of a positive market price of demand risk. This results in
a negative forward premium. We provide an intuitive explanation
of the negative forward premium in two steps. First, since during
months of low volatility of demand the probability of observing
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Fig. 10. PJM forward premium J
sell forward contracts to reduce variability in their profits. This
asoning applies at all times when the volatility of demand is low,
t does not imply that the forward premium must be negative, it
ly implies that the contribution to the forward premium due to
mand risk and price spikes is not too large during periods of low
mand and low volatility of demand.
The second leg of the argument is based on the fact that sellers

ce variability of power prices due to unexpected changes in the
tal generation capacity of the system. Positive capacity shocks re-
ce power prices and negative shocks increase power prices. Dur-

g times of low demand and low volatility of demand, it is less
ely to see price spikes as a result of a fall in capacity. Hence,

though sellers would like to take advantage of possible price
ikes, due to negative capacity shocks, by selling spot rather than
rward, their fear of price falls, due to unexpected positive move-
ents in the total generation capacity, provides a much stronger
centive to sell forward contracts. Hence, this willingness to
dge risks, induced by random deviations in capacity, drives for-

ard prices down. In some circumstances, this downward pressure
strong enough to drive discounts up to the extent that expected
ot prices are higher than forward prices (thus generating a neg-
ive forward premium) (see Fig. 12).

We can compare our results for the years 1999 and 2000 with
ose of Bessembinder and Lemmon (2002), where our findings
e broadly in agreement (signs and magnitudes). From Figs. 12
d 13 we can observe that the lowest forward premium occurs
tween the months of January to May and September to
cember.
Similarly, we can interpret the results for the E&W market. In

ble 6 we present the estimation results for the market prices
demand and capacity risk. We employ forward contracts data

om April 2001 to December 2005 and present results for the
hole series and for the years 2002, 2003, 2004 and 2005. For
e entire data set we see that /C is positive and statistically signif-
ant and that the largest /D(t) are those encompassing the months
gust through January. During these months, a large positive

arket price of demand risk is also accompanied by a period of
gh volatility of demand. The combined effect of a large positive
(t) and large rD(t) exerts an upward pressure on the monthly

rward contracts trading in the months August through January,
ith delivery in September through February. Consequently,
ct 00 Apr 01 Oct 01

anuary 1999–April 02.
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Fig. 11. PJM forward premium 2002–2006.
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Fig. 12. PJM forward premium 1999.
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Fig. 13. PJM forward premium 2000.
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Fig. 14. E&W forward premium April 2001–December 05.
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Fig. 15. E&W forward premium 2002.
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Fig. 16. E&W forward premium 2003.
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Fig. 17. E&W forward premium 2004.
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Fig. 18. E&W forward premium 2005.
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Fig. 19. Nord Pool forward premium September 2003–December 2006.
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Fig. 20. Nord Pool forward premium 2004.
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Fig. 21. Nord Pool forward premium 2005.
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Fig. 22. Nord Pool forward premium 2006.
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monthly forward contracts trade significantly above the expected
prices of electricity; in other words, there is a substantial forward

2003–2006. The intuition behind this result is that during the peri-
ods of negative forward premium, monthly forwards trade at a

2518 Á. Cartea, P. Villaplana / Journal of Banking & Finance 32 (2008) 2502–2519 17
premium during these months.
Fig. 14 depicts the forward premium in E&W for the period April

2001 to December 2005. We observe that this premium is highest
between August and January of each year, ranging between £2 and
£9 per MWh, and that it also follows a seasonal pattern (due
mainly to the seasonality of the volatility of demand). On the other
hand, during the rest of the year, forward contracts trade at a con-
siderable discount, as revealed by a forward premium ranging be-
tween £-2 and £-9 per MWh. We can interpret this negative
forward premium in the same way as in the PJM. Moreover, Figs.
15–18 show the forward premium for 2002, 2003, 2004 and 2005.

Finally, Table 7 presents the market prices of demand and
capacity risk for the Nord Pool market. We focus on the period
2003–2006 and also look at the years 2004, 2005 and 2006. In all
cases the market prices of capacity and demand risk are statisti-
cally significant. Over the period 2003–2006 we observe that the
months with negative FP(t,T) are February, May, June and July;
the latter three months coinciding with the periods of lowest vol-
atility of demand. See Figs. 19–22 where we depict the forward
premium for the whole sample 2003–2006 and for the years
2004, 2005 and 2006.

6. Conclusions
The main objective of this article is to propose an electricity We have benefited from the helpful comments of Richard

12, 287–298.
Benth, F.E., Cartea, Á., Kiesel, R., in press. Pricing Forward Contracts in Power
price model that allows us to: understand the behavior of spot
prices; understand the connection between power prices and for-
ward contracts; and investigate the dynamics of the forward pre-
mium, defined as the difference between forward prices and
expected power prices.

We assume that wholesale electricity prices can be explained by
two state variables: demand and capacity. We model these two
variables, and their relationship with power prices, by employing
data from three different markets: PJM, E&W and Nord Pool. One
of the key requirements we impose on the model is that it must
be able to express, in an analytical way, expected spot prices and
the price of forward contracts. This allows us to express the for-
ward premium in closed-form.

We highlight five of our findings. First, in all markets, demand
or load follows a strong seasonal component and a demand model
with seasonal or time-varying volatility is preferred to one with
constant volatility.

Second, in all markets, monthly forward contracts trade at a
higher premium during months of high volatility of demand.
We saw that in PJM the months that showed the highest volatility
of demand also exhibited the largest forward premium. Our cal-
culations of the forward premium for the individual years of
1999 and 2000 are similar to those obtained by Bessembinder
and Lemmon (2002) and can reach levels ranging between $30
and $75 during periods of high volatility of demand in May, June
and July.

Third, in all markets, we found that in the majority of the cases
when data from monthly forwards were employed, months with
high volatility of demand were accompanied with statistically sig-
nificant positive /D(t).

Fourth, we also observed in all markets that the forward pre-
mium dynamics are seasonal. It is interesting to note that in PJM,
for the years 1999 and 2000, there are periods where the forward
premium achieves negative values. Similarly, in the E&W market
we saw that during the months of February to July in 2002–2005
the monthly forward contracts traded below the expected spot
price of power, a situation also present in the Nord Pool during
the months of February, April, May June and July during the period
large discount due to hedging pressure from sellers. Likewise, dur-
ing the months between August and January, forward contracts in
E&W were trading at a high premium, indicating hedging pressures
from buyers in this market.

Finally, our findings indicate that the market price of capacity
risk could be either positive or negative depending on the market
and period under study. For example, over the period 2001–
2005, we found that in E&W /C > 0, and over the period 2003–
2006 we found that in Nord Pool /C > 0, which applied a downward
pressure on the price of forward contracts. This pressure reflected
sellers’ willingness to offer forward contracts at a considerable dis-
count, especially during the months of February to July in E&W and
during the months of February to July, with the exception of March,
in Nord Pool. In these months, forward contracts traded below the
expected spot price as revealed by a forward premium ranging be-
tween £-2 and £-9 per MWh in E&W and between NOK-1 and
NOK-7 per MWh in Nord Pool. The intuition behind this result is
that during months of relatively low volatility of demand, shocks
to the supply side become more relevant to sellers who want to
hedge the unwanted outcome of price falls that result from unex-
pected positive shocks to generation capacity.
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