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Abstract: We present a new technique for the characterization of non-
Gaussian laser beams which cannot be described by an analytical formula. 
As a generalization of the beam spot area we apply and refine the definition 
of so called effective area (Aeff) [1] in order to avoid using the full-width at 
half maximum (FWHM) parameter which is inappropriate for non-Gaussian 
beams. Furthermore, we demonstrate a practical utilization of our technique 
for a femtosecond soft X-ray free-electron laser. The ablative imprints in 
poly(methyl methacrylate) - PMMA and amorphous carbon (a-C) are used 
to characterize the spatial beam profile and to determine the effective area. 
Two procedures of the effective area determination are presented in this 
work. An F-scan method, newly developed in this paper, appears to be a 
good candidate for the spatial beam diagnostics applicable to lasers of 
various kinds. 
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1. Introduction 

Rapid development of short-wavelength lasers in recent years opened new areas in the field of 
the laser-matter interaction research. The optimization as well as the use of these new light 
sources in numerous experiments requires a careful characterization of their output 
parameters. In dealing with such ultra-intense beams at short wavelengths, new laser beam 
diagnostics have to be developed and an extensive research in this area is needed. 

Up to now, a few methods have been reported for determination of the beam profile of soft 
X-ray lasers [2–4]. These tools are being frequently used for aligning the X-ray optics and 
improving the beam profile of short-wavelength lasers. However, it is difficult, and in most 
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cases it is almost not feasible to obtain a perfect Gaussian beam since in extreme ultraviolet 
(XUV), soft X-ray, and X-ray spectral regions the laser beam is often exhibiting severe 
imperfections in its wavefront. Such wavefront distortions can originate in the source itself; 
they are very typical of ASE (Amplified Spontaneous Emission) and/or SASE (Self-
Amplified Spontaneous Emission) mechanisms of lasing. In addition, when dealing with 
coherent laser beams, the wavefront can be affected by imperfections in beamline optical 
elements. 

In the soft X-ray and X-ray spectral domain, the coherent radiation reflecting from a 
mirror feels more sensitively the surface roughness (usually measured in fractions of the 
wavelength). Firstly, rough and imperfect mirror surfaces may introduce additional unwanted 
wavefront distortions into the beam hindering from the diffraction limited focusing. Secondly, 
the reflecting surface roughness leads also to some light to be scattered off the original laser 
beam direction. Therefore, precise and well polished optical surfaces are required. Besides the 
surface roughness limitations, the reflectivity of all routinely used optical materials is 
inherently dropping for shorter X-ray wavelengths, corresponding to photon energies above 
the K-edge of these materials (in the range of hundreds eV up to few keV). Hence, grazing 
incidence techniques and multi-layer coatings are used in order to partially compensate for the 
insufficient reflectance. These effects, resulting in energy density losses, are enhancing as the 
photon energy increases and are unavoidably setting limits on the reflective optics. 
Consequently, no additional flux losses are acceptable and, therefore, a huge emphasis is 
being placed on a perfect aberration-free mirror alignment [5]. Hence, good techniques of the 
beam visualization are indispensable for the alignment of the soft X-ray and X-ray focusing 
optics. 

 

Fig. 1. A non-Gaussian beam profile of FLASH at 13.5 nm reconstructed from a non-thermal 
ablative imprint in PMMA. 

There are several possibilities to assess the quality of the incident beam. The most 
important parameters of the transverse (lateral) irradiance distribution in a Gaussian beam 
(TEM00) are those measuring the beam size as, for example, full-width at half maximum 
(FWHM), a diameter (2ρ) at 1/e of its maximum, a diameter at any other chosen level of the 
peak irradiance (arbitrary clip level), or diameters related to 2nd order statistical moments  
(4σ, root mean square) [6–8]. Their values are deterministically mutually related in this 
particular case. Subsequently, if the pulse energy Epulse is known, the peak fluence can be 
expressed as F0 = Epulse/πρ2. However, the value of F0 cannot be retrieved from the preceding 
formula in case of non-Gaussian (distorted, non-homogeneous) beams as, for example, the 
one illustrated in Fig. 1. This beam profile, measured at beamline BL2 [9] of the FLASH 
(Free-electron Laser in Hamburg) facility [10] tuned at 13.5 nm, clearly indicates a deviation 
from an ideal Gaussian beam preventing the standard spot size description by means of the 
FWHM, the 1/e, or the 1/e2 clip level. A method reported in [2] has been utilized to retrieve 
the beam profile in Fig. 1. 
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Finally, it is to be pointed out that a profound knowledge of the peak fluence F0 or the 
peak irradiance is of high importance for many irradiance-dependent short-wavelength laser-
matter interaction experiments, e.g., warm-dense matter experiments [5,11], ion and photon 
emission spectrometry [12,13], various pump-probe experiments [14] etc. Routinely used 
beam spot size definitions (FWHM, 2ρ) are to be regarded as an approach for non-Gaussian 
beams; therefore, a reliable formalism is needed for accurate spot size and peak fluence 
determination. In the following (section 2), we aim at the theory of the effective area which 
might be considered as a quantity of interest for non-Gaussian beam diagnostics. We compare 
the effective area with other well-known spot size definitions (FWHM, 1/e clip level, and 
diameters related to 2nd order statistical moments). Section 3 deals with our experimental 
methods and the results of measuring the focused non-Gaussian X-ray laser beam. Section 4 
concludes the paper. 

2. Theory 

Non-Gaussian beams cannot be characterized by means of FWHM reliably; nevertheless, it is 
worth mentioning that the so called effective area Aeff [1] is still applicable. Let us first define 
a general spatial time-integrated fluence distribution of a propagating beam at any point 
(x,y,z) in the Cartesian coordinate system as: 

      0, , , , .F x y z F z f x y z   (1) 

Here, F0(z) is a z-dependent peak fluence and f(x,y,z) is a spatial beam profile. The  
z-coordinate denotes the direction of the beam propagation (optical axis) and the (x,y) plane 
corresponds to the transverse plane. For example in a Gaussian beam, the function F0(z) is 
represented by a Lorentzian curve forming a longitudinal envelope of transverse Gaussian 
profiles f(x,y,z). We can apply Eq. (1) to any beam propagating in the space since any beam 
must have a global transverse maximum (peak fluence) at a certain arbitrary z-position. 

The existence of the global maximum F0(z) and the non-negativity of F(x,y,z) implies that 
the beam profile function fulfills 0  f(x,y,z)  1 throughout the (x,y) plane at each z-position. 
In more details, we may state that for each z-position there exists at least one point in the (x,y) 
plane for which f(x,y,z) = 1. In an ideal Gaussian beam, the geometrical solution of this 
implicit equation represents a straight line overlapping the optical axis. In real beams, the 
maximum may move around the optical axis, and multiple maxima may appear; hence, the 
solution of this equation can be no longer described by a straight line. 

In order to retrieve the beam profile function f(x,y,z), we normalize the fluence 
distribution F(x,y,z) at each z-position by so called uniform norm which is represented by 
F0(z). The spatial beam profile function f(x,y,z), therefore, still contains important information 
about the beam spot size since the surface integral throughout the (x,y) plane does not equal to 
the dimensionless unity. Let us first calculate the pulse energy Epulse as a two-dimensional 
integral of F(x,y,z) over the x,y variables in the transverse direction: 

        
2

0 0

R

, , .,
pulse eff

E F z f x y z dxdy F z A z const     (2a) 

featuring the effective caustic curve Aeff(z), i.e., the effective area Aeff at an arbitrary  
z-position, as: 

      
20 R

, , .pulse

eff

E
A z f x y z dxdy

F z
     (2b) 

The first equality in Eq. (2)b) is representing the definition of the effective area in [1]. The 
effective area can be understood as a generalization of the beam spot area defined as the 
cross-section area at 1/e of the peak fluence. Applying Eq. (2b) to a circular Gaussian beam 
defined as f(x,y,z) = exp(-(x2 + y2)/ρ2(z)), we obtain Aeff(z) = πρ2(z) which corresponds 
exactly to the beam spot area at 1/e of the peak fluence. Here, ρ(z) = ρ0(1 + z2/z0

2)1/2 denotes 
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the beam radius at an arbitrary z-position (ρ0 - diffraction limited beam waist radius at 1/e of 
maximum; z0 – Rayleigh range). This is, however, solely valid for Gaussian beams. It is 
reasonable to use the effective area for non-Gaussian beams since it is applicable to any beam 
profile and it is fully mathematically correct. On the contrary to the beam RMS (root mean 
square or 2nd order statistical moments), routinely used in synchrotron communities, the 
effective area relates directly (see Eq. (2a) or Eq. (2b)) the peak fluence and the pulse energy 
as F0(z) = Epulse/Aeff(z). As no approximations are used in the definition of Aeff, it can be used 
as a fundamental parameter to which all the other spot size definitions refer when an exact 
knowledge of the peak fluence is needed. In the following, we compare the most utilized spot 
size definitions with the effective area. 

The short-wavelength lasers are, owing to the decreasing diffraction limit, focusable to 
small, usually micron- or submicron-sized, spots. Such spots can, however, exhibit complex 
spatial structures due to intrinsic wavefront properties and/or distortions induced along the 
beamline. Modeling and numerical analysis of such non-Gaussian beams is not an easy task 
since complex numerical wavefront propagation algorithms are required [15]; such a topic is 
beyond the scope of this paper. However, for the sake of illustration, we may study artificially 
constructed non-Gaussian beams as an approach to real situations. 

Table 1. Parameters of the interfering Gaussian modes 

Mode parameters  1st Gaussian 
mode 

2nd Gaussian 
mode 

Wavelength λ [nm]          13.5        13.5 
Electric field intensity E [a.u.]          7        4 
Centroid position xc [μm]          0        0.7 

yc [μm]          0        1.1 
Waist position zcx [μm] 100        400 

zcy [μm]          100        600 
Rayleigh range z0x [μm]          300        200 

z0y [μm]          150        300 

To model such a non-Gaussian beam, two astigmatic mutually fully coherent diffraction 
limited and collinearly polarized Gaussian modes (TEM00) were superposed. The parameters 
of the interfering modes are listed in Table 1. The electric field amplitudes E1 and E2 are, 
without loss of generality, given in arbitrary units. As the modes are simple astigmatic, each 
aligned with the x, y axes, two Rayleigh ranges and two longitudinal waist positions must be 
introduced for the respective x and y electric field components. The waists’ locations of the 
modes are longitudinally separated by 500 μm. By analogy to a real situation, the first mode 
may represent an image of a laser source and the second mode (focalized further from the 
focus) may stand for an image of some obstacle (aperture, wire, mirror edge, etc.) inserted 
into the beam. The second mode is displaced off the optical axis by ~1.3 μm which is leading 
to an asymmetric beam shape shown in Fig. 2(a). Both particular modes E1(r) and E2(r) 
represent a solution of the paraxial Helmholtz equation (PHE) [16], hence, modal 
superposition E1(r) + E2(r) is to be regarded as a valid PHE solution as well. 

The simulated beam, i.e., the fluence profile F(r) ~|E1(r) + E2(r)|2 at a z-position close to 
the focus, is shown in Fig. 2(a). Even though only two modes were involved in the simulation, 
we may observe a relatively complicated evolution of the beam profile when scanning through 
the focus along the z-axis (from z = 800 μm to z = 1200 μm) as shown in Media 1. In Fig. 
2(b), four distinct caustic curves, corresponding to four different spot size definitions, are 
plotted. Here, the black circles stand for the effective caustic curve Aeff(z); according to the 
theory, it is to be regarded as a baseline for the other caustic curves. Blue open circles and 
dark gray asterisks represent calculated spot areas at 1/e and 1/2 of the maximum fluence 
F0(z), respectively. All three curves Aeff(z), S1/e(z), and S1/2(z) exhibit two local minima 
corresponding to the tightest focalization of the two participating modes, whereas the caustic 
curve SRMS(z) = πσx(z)σy(z) (red bars), calculated according to the ISO standards for simple 
astigmatic beams [6–8], tends to a nearly parabolic shape with one local minimum. The 
squared radii σx

2(z) and σy
2(z) are both represented by perfect parabolic functions of z which 
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are, owing to the astigmatism, mutually slightly separated. This, in fact, confirms Siegman’s 
statement [17] that these parabolic caustic curves should hold for an arbitrary beam (Gaussian 
or non-Gaussian) if and only if the radii are measured in terms of 2nd order statistical 
moments. The difference between the caustic curves in Fig. 2(b) is apparent and must be taken 
in account in order to avoid underestimation or overestimation of the real peak fluence F0(z). 

The utilization adequacy of each particular spot size definition should be premeditated 
first to meet the requirements of the experiment. The effective area provides the best results 
for the peak fluence, whereas the spot size related to 2nd order statistical moments (especially 
4σ and/or d86 definition) is the best approach to evaluate the averaged fluence and the beam 
propagation factor (M-squared) [6–8,17]. Finally, we should point out that for an ideal 
astigmatic single mode Gaussian beam all caustic curves overlap if rescaled by multiplication 
factors: Aeff(z) = 2SRMS(z) = S1/e(z) = S1/2(z)/ln(2). In case of a non-Gaussian beam, however, 
no deterministic relation between these quantities is known. 

 

Fig. 2. A simulation of a non-Gaussian beam consisting of two interacting Gaussian modes 
propagating alongside the optical z-axis. (a) An asymmetric two-dimensional irradiance profile 
at one of the simulated positions z = 900 μm (Media 1). (b) Four characteristic caustic curves 
corresponding to different spot area definitions. 

3. Experimental methods 

In this section, we focus on experimental methods to measure the transverse beam profile and 
the spot size, based on ablation imprints in various materials. We first recall methods 
published earlier in [2,18] dealing with ablation imprints in solid state materials. Next, we 
apply all above formalism to PMMA beam profile measurements and, finally, we develop a 
new method to measure the effective area. 

3.1 Liu’s analysis 

One of the methods, which was used to characterize the focal spot area (spot size) of soft  
X-ray laser beams, was first proposed by Liu [18]. Nevertheless, this method is restricted to 
Gaussian beams only. In brief, plotting the ablation imprint areas, created by single laser shots 
in a solid material, in relation to the pulse energy logarithm should provide a linear sequence 
to be fitted by a line. The beam spot area is then given by the slope of the linear fit and the 
ablation threshold pulse energy (Eth) is to be determined by linear extrapolation to zero 
imprint area, i.e, no surface damage. 

In case of a non-Gaussian beam, however, the dependence of the crater (imprint) pedestal 
areas on the pulse energy logarithm may become non-linear as illustrated in Fig. 3(b). Such a 
non-linear behavior could be incorrectly attributed to material properties and might introduce 
severe inaccuracies into the results leading to an undesirable misinterpretation of the laser-
matter interaction experiment. Figure 3(a) is depicting one of the non-Gaussian ablative 

#136453 - $15.00 USD Received 14 Oct 2010; revised 3 Dec 2010; accepted 6 Dec 2010; published 17 Dec 2010

(C) 2010 OSA 20 December 2010 / Vol. 18,  No. 26 / OPTICS EXPRESS  27841

http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-18-26-27836-1


imprints in PMMA (fabricated by Silson, UK) created by FLASH tuned at 13.5 nm. In Fig. 
3(b), two linear fits have been performed both showing different and ambiguous results. The 
slope at the low pulse energy end of the data is much less than the slope at the high pulse 
energy end. Basically, this indicates that the incident beam was surrounded by wings being 
responsible for the beam profile pedestal broadening and, consequently, for the non-linear 
nature of the Liu’s plot. 

 

Fig. 3. (a) A non-Gaussian ablative imprint in PMMA showing a presence of wings broadening 
the beam profile. (b) A non-linearity in the Liu’s plot preventing determination of both the 
ablation threshold (Eth) and the beam spot size (slope). 

3.2 Transverse beam profile reconstruction 

The beam profile shown in Fig. 1 was reconstructed using the PMMA ablative imprint method 
reported in [2]. This method allows the visualization of the transverse fluence distribution 
F(x,y) at a chosen z-position down to the limiting threshold fluence. Let us omit the  
z-dependence in order to abbreviate the following equations. 

Primarily, the method of the transverse beam profile F(x,y) retrieval is based on the 
Lambert-Beer law of the radiation attenuation in a solid state material. Furthermore, it needs 
to be assumed that the attenuation length of the material is much shorter than the Rayleigh 
range of the beam (lat << z0); this, in other words, means a negligible variation of the beam 
profile with the depth coordinate in the crater interior. The complex refractive index of 
PMMA approaches to (1 + 0i) for the short-wavelength radiation [19]; the surface reflectivity 
is, thereby, negligible under normal incidence conditions. Accordingly, the fluence inside the 
material is below the PMMA surface distributed as: 

      , , , exp .
PMMA at

F x y d F x y d l    (3) 

Here, d denotes the longitudinal coordinate originating at the sample surface being located at 
position z. Due to the fact that the laser ablation occurs solely above some ablation threshold 
Fth, we obtain a boundary condition (implicit equation) for the ablated crater surface 
morphology d(x,y): 

        , , , , exp , .
PMMA th at

F x y d x y F F x y d x y l     (4) 

Consequently, the transverse beam profile F(x,y) at the target plane is to be retrieved directly 
from the measured spatial morphology d(x,y) of the beam imprint in PMMA analyzed by 
AFM (Atomic Force Microscope), as: 

     , exp , .
th at

F x y F d x y l   (5) 
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Our experimental measurements performed at FLASH tuned at 13.5 nm have shown that 
the PMMA attenuation length and the non-thermal ablation threshold are lat = 175 nm and 
Fth~30 mJ/cm2, respectively. The peak-to-threshold fluence ratio  

 0 ,
th

p F F   (6) 

determined from the maximum of the reconstructed profile in Fig. 1, was p~100. 
It confirms that the major part of the beam profile was visualized. Nevertheless, the feasibility 
of the reconstruction has an upper limit given by thermal ablation threshold of PMMA 
(~300Fth at 13.5 nm) which should not be exceeded by the peak fluence F0. Non-thermal  
(p = 1) and thermal (p~300) ablation thresholds define the dynamic range of PMMA for 
reliable beam profile analysis at 13.5 nm. 

The transverse beam profile reconstruction utilizing PMMA ablative imprints, has been 
used successfully in the soft X-ray spectral domain at 21.7 nm [2] and 13.5 nm [5]. However, 
going to shorter wavelengths (higher photon energies) brings difficulties in the sense of 
roughening the ablated PMMA surface. The effect of the surface roughening is a direct 
consequence of the increasing attenuation length when the X-ray photon energy approaches 
the carbon K-edge at ~285 eV [19]. Therefore, new generally high-Z materials need to be 
used in order to extend the available spectral range deeper to soft X-ray domain. 

3.3 Effective area measurement (F-scan) 

It follows from Eq. (2b) that the effective area is to be calculated directly as a numerical 
integral of the transverse beam profile. For the sake of simplicity, let us focus again on a 
certain (x,y) plane at a chosen z-position. Applying the beam profile reconstruction method to 
a PMMA ablative imprint as reported in [2], we obtain a non-normalized beam profile  
f(x,y)  exp(d(x,y)/lat) which has to be first modified before the numerical integration is done. 
Primarily, the truncated part below the PMMA non-thermal ablation threshold, where  
d(x,y) = 0, has to be excluded from the integration by setting to zero, otherwise a non-physical 
value would be added to the result. Next, the whole profile has to be normalized by the factor 
p = exp(dmax/lat) = F0/Fth, where dmax denotes the maximum crater depth, to obey the condition 
that f(x,y)  1 throughout the (x,y) plane. Such a normalization could be, however, a source of 
an inaccuracy for noisy beams; therefore, data smoothing needs to be applied to the crater or 
beam profile to prevent an underestimation of the result. The truncation effect, associated with 
the threshold-like behavior of PMMA, is responsible for a systematic error in the effective 
area estimation scaling approximately as 1/p; thus, the best results should be obtained for the 
peak-to-threshold fluence ratio as high as possible, whilst not exceeding the thermal ablation 
threshold. 

The normalized reconstructed beam profile provides information about the cross-section 
area at any level of fluence down to the ablation threshold level 1/p. Figure 4 shows the 
dependence f(S) of the normalized fluence level f on the cross-section area S as determined 
from the beam profile plotted in Fig. 1. Furthermore, an exponential curve corresponding to 
an ideal Gaussian beam, having the same cross-section area at 1/e of maximum as the 
measured profile, is introduced. Apart from a small contribution of the beam profile below the 
non-thermal ablation threshold (truncated part), the effective area is represented by the area 
below this curve and is to be expressed as the one-dimensional integral of the following form: 

  
0

,
MAXS

eff
A f S dS    (7) 

where the integration limit SMAX denotes the crater pedestal area enclosed by the threshold 
contour. Let us conclude the part concerning the effective area measurement utilizing ablative 
imprints in PMMA with a brief summary of steps to be followed: 

1. Record an ablative imprint of the beam at the desired z-position in PMMA. 

2. Perform an AFM measurement of the imprint. 
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3. Smooth the crater profile if necessary. 

4. Reconstruct the beam profile using formula: f(x,y)  exp(d(x,y)/lat). If the attenuation 
length lat is not known, use the tabulated value [19]. 

5. Set the truncated part, where d(x,y) = 0, to zero. 

6. Calculate the peak-to-threshold ratio as p = exp(dmax/lat) and estimate the truncation 
error (~1/p). 

7. Normalize the beam profile: f(x,y) = p1exp(d(x,y)/lat). 

8. Calculate the effective area using Eq. (2b). 

 

Fig. 4. Normalized fluence level in relation to the corresponding cross-section area of the 
reconstructed beam profile (black solid line), ideal Gaussian beam (black dashed line), and the 
dependence of the threshold-to-peak fluence ratio f = 1/p = Eth/Epulse on the ablated crater area S 
in a-C (open circles). 

In fact, the definition of the effective area given by Eq. (7) opens up another way of the 
beam spot size measurement. Any solid state material with a sharp irradiance-independent 
single-shot ablation threshold Fth visualizes the beam contour at level  
f = 1/p = Fth/F0 = Eth/Epulse since only the part of the beam profile above the threshold 
contributes to the ablation. Such a measurement was performed using 890 nm thick layer of 
amorphous carbon (a-C) on a silicon substrate (fabricated by GKSS, Germany). 
Measurements using PMMA (see Fig. 1) and a-C were conducted at the same time under the 
same beam conditions to get a comparison between these two different materials. Several 
imprints were created by FLASH focused on the surface of a-C at various pulse energies Epulse 
acquired by a gas monitor detector (GMD) [20]. The ablated crater areas were ex situ 
determined using the Nomarski microscope; Fig. 5. The areas were plotted as a function of the 
measured pulse energy logarithm, and the threshold pulse energy Eth~0.36 μJ was evaluated 
by a linear extrapolation of such a plot to zero (S = 0 μm2) where no ablation occurs. Usually, 
the low energy part of the data is to be involved into the extrapolation since the high energy 
part may be affected by nonlinearities related to the non-Gaussian nature of the beam. Open 
circles in Fig. 4 show the dependence of the threshold-to-peak fluence ratio f = 1/p = Eth/Epulse 
on the corresponding crater pedestal area S. Such a plot is, in fact, representing an F-scan 
(fluence scan) through the beam profile. Although not measured, the data point f(0) = 1 may 
be artificially but legally added to the measured data set. By analogy with Eq. (2b), the 
effective area is to be calculated as a numerical integral of the data set applying, for example, 
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the trapezoidal rule of integration (summation). The upper limit of the summation is given by 
the maximum observed crater area. The measurements carried out with these two materials 
are in a good agreement even though an increased variance in a-C measurement is indicating 
relatively high shot-to-shot fluctuations of the beam profile. The effective areas were 
evaluated and the error bars estimated as Aeff, PMMA = (71 ± 5) μm2 and Aeff, aC = (70 ± 10) μm2 
for PMMA and amorphous carbon, respectively. 

 

Fig. 5. Nomarski micrograph of an imprint of the focused FLASH beam in a-C; the ablated 
area is highlighted and measured (P stands for the contour circumference and A for its area). 

Using the F-scan, i.e., visualization of the beam contours at various fluence levels, has 
certain advantages against the direct beam profile reconstruction. First, any time-consuming 
AFM measurement is not needed. Second, the contour measurement is less sensitive to high-
irradiance thermal and other transverse effects which occur mainly in the crater interior. 
Third, this method might be extended to other wavelength regions and used for different pulse 
durations when an appropriate material is chosen. 

4. Conclusions 

In conclusion, a new technique for an analysis of focused non-Gaussian (i.e., distorted, 
fragmented, non-homogeneous) laser beams has been reported. A general beam parameter 
called effective area has been utilized to characterize the real beam spot area. The effective 
area analysis has been employed in the beam profile characterization using an ablative imprint 
of FLASH beam in PMMA. Finally, it has been found that the F-scan method, applied to 
ablative imprints in amorphous carbon, provides comparable results to the PMMA beam 
profile reconstruction. 

Acknowledgments 

This work was partially funded by the Czech Ministry of Education (Projects LC510, LC528, 
ME10046, and LA08024), Czech Science Foundation (GD202/08/H057 and P208/10/2302) 
and by Academy of Sciences of the Czech Republic (Grants AV0Z10100523, 
IAAX00100903, and KAN300100702). The support for access to FLASH by DESY and by 
the European Community under contract RII3-CT-2004-506008 (IA-SFS) is gratefully 
acknowledged. We finally thank the whole FLASH team at DESY for supporting this work. 

#136453 - $15.00 USD Received 14 Oct 2010; revised 3 Dec 2010; accepted 6 Dec 2010; published 17 Dec 2010

(C) 2010 OSA 20 December 2010 / Vol. 18,  No. 26 / OPTICS EXPRESS  27845


