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ABSTRACT

How do we spot interesting events from e-mail or transportation

logs? How can we detect port scan or denial of service attacks

from IP-IP communication data? In general, given a sequence of

weighted, directed or bipartite graphs, each summarizing a snapshot

of activity in a time window, how can we spot anomalous graphs

containing the sudden appearance or disappearance of large dense

subgraphs (e.g., near bicliques) in near real-time using sublinear

memory? To this end, we propose a randomized sketching-based

approach called SpotLight, which guarantees that an anomalous

graph is mapped ‘far’ away from ‘normal’ instances in the sketch

space with high probability for appropriate choice of parameters.

Extensive experiments on real-world datasets show that SpotLight

(a) improves accuracy by at least 8.4% compared to prior approaches,

(b) is fast and can process millions of edges within a fewminutes, (c)

scales linearly with the number of edges and sketching dimensions

and (d) leads to interesting discoveries in practice.
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• Information systems → Data stream mining; • Theory of

computation → Graph algorithms analysis;
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1 INTRODUCTION

Time-evolving (or dynamic) weighted directed/bipartite graphs,

where both nodes and edges are continuously added over time, are

artifacts generated in many real-world contexts. Examples include

transportation logs (w cabs travel from location s to location d),

network communication logs (w packets sent by IP address s to
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Figure 1: Sudden appearance of a dense subgraph at t=3.

IP address d), instant-messaging, phone call, e-mail logs (w mes-

sages/calls/emails from user s to user d), collaborative editing logs

(w edits made by user s to page d) and so on.

We consider the problem of near real-time anomaly detection in

such settings. Due to the �uid nature of what is considered ‘nor-

mal’, prior works typically focus on detecting speci�c anomalous

changes to the graph, e.g., bridge edges [22, 26], hotspot nodes [31],

changes to community structure [27, 28], graph metrics [8, 10], etc.

In this work, we focus on detecting anomalies involving the sud-

den appearance or disappearance of a large dense directed subgraphs

(near bicliques), which is useful in numerous applications: detecting

attacks (port scan, denial of service) in network communication

logs, interesting/fraudulent behavior creating spikes of activity in

user-user communication logs (scammers who operate fast and in

bulk), important events (holidays, large delays) creating abnormal

tra�c in/out �ow to certain locations, etc. We are able to discover

several of the above phenomena in real-world data (e.g., Fig. 12).

We highlight two important aspects of the above de�nition. The

(dis)appearance of a large dense subgraph is anomalous only if it is

sudden, i.e., it has not been observed before or is not part of a slow

evolution (e.g., steadily growing communities). Similarly, the sud-

den (dis)appearance of a large number of edges is anomalous only

if the edges form a dense subgraph (the so-called lockstep behavior

indicating fraud [5]). Fig. 1 illustrates this. In the evolution of a

bipartite graph, e.g., user edits page, an anomalous dense directed

subgraph appears at t=3, indicating a possible edit-war between

users s3 and s4 w.r.t. pages d2,d3,d4,d5. In contrast, the appearance

of subgraph {s1, s2} → {d1,d2,d3} at t=4 is not anomalous, since

it has already been (partially) observed at t=1, 2.

The temporal aspect, i.e., near real-time detection, is crucial for

our problem. The value of a newfound surge of ridership requests

or network attack lies in the moment, not one week later. Moreover,

given that nodes and edges are added over time, we seek solutions

that can operate in sublinear memory, without storing a counter

for each edge/node. The problem we set out to solve is:

Problem 1. Given a stream of weighted, directed/ bipartite graphs,

{G1,G2, . . .}, detect in near real-time whether Gt contains a sud-
den (dis)appearance of a large dense directed subgraph using sub-

linear memory.
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The technical challenge in detecting the sudden (dis)appearance

of a large dense directed subgraph is computational. New edges

and nodes are continuously arriving and we have limited time and

space to process the changes. The approach that we take is to design

a short summary or sketch of the graph that both reveals newly

found anomalies and can be quickly updated and maintained on a

high-speed moving data stream.

Concretely, our contributions are: (a) Algorithm (Sec. 4): We

propose SpotLight, a simple randomized sketching-based approach

to solve Problem. 1. (b) Guarantees (Sec. 5): We prove that Spot-

Light is focus-aware in expectation, i.e., �ags focused addition or

deletion of edges as more anomalous than dispersed changes of the

same magnitude (Thm. 5.2) and maps anomalous graphs ’far’ away

from ‘normal’ instances in the sketch space with high probability

for appropriate choice of parameters (Thm. 5.3). (c) E�ectiveness

(Sec. 6): Extensive experiments on real-world data show that Spot-

Light outperforms prior approaches in terms of precision and

recall, is fast and scalable and leads to interesting discoveries.

2 RELATEDWORK

Anomaly detection in static graphs is well-studied (for survey,

see [4]). Unsupervised methods rely on node-level features [3],

spectral decomposition [21], �nding dense subgraphs signifying

fraud [5, 11], etc. In the presence of limited supervision, belief

propagation is known to work well [7].

Anomaly detection in time-evolving graphs can be reviewed

under the following categories (for survey, see [23]).

(i) Approaches comparing consecutive snapshots [14, 26]: The tra-

ditional approach is to compare adjacent graphs (Gt ,Gt+1) via a
similarity function based on, e.g., belief propagation [14], random

walks [26], etc., They do not consider evolutionary/periodic trends.

(ii) Dense subgraph detection based approaches [13, 25]: These

techniques model dynamic graphs as node×node×time tensors and

aim to approximately identify the top-k densest subblocks, e.g.,

persistent dense subgraphs. In contrast, we aim to detect only the

sudden appearance of dense subgraphs in near real-time.

(iii) Graph decomposition/partitioning based approaches [27, 28]:

These methods store a summary of the graph structure based on

tensor decomposition [28] or minimum description language [27]

and identify change points as anomalies. Their primary focus is on

the computationally hard problem of graph modeling.

(iv) Anomalous edge detection approaches [2, 17, 22]: The �rst

two methods score the likelihood of an edge based on the commu-

nity structure [2], prior occurrence preferential attachment and

homophily information [22]. By scoring edges independent of each

other, these methods miss complex structural (e.g., dense subgraph)

anomalies. They also cannot detect edges which are expected but

do not occur. [17] is closely related, but is applicable when only

multiple heterogeneous graphs are evolving simultaneously.

(v) Others: [10] o�ers a suite graph metrics to perform anomaly

detection at multiple temporal and spatial granularities. [12] de-

tects anomalous nodes using their activity vectors from principle

component analysis (PCA). [31] also uses PCA, but to detect anoma-

lous nodes (hotspots). [8] proposes density-consistent statistics to

compare graphs having signi�cantly di�erent edge counts.

A qualitative comparison is provided in Table 1.
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Directed/bipartite graphs ✔ ? ? ✔

Weighted/multi edges ✔ ✔ ✔ ✔ ✔ ✔ ✔

Sublinear memory ✔ ✔

Theoretical guarantee ✔

Table 1: Qualitative comparisonwith priorwork on anomaly

detection in streaming graphs.

Randomized graph streaming algorithms for testing con-

nectivity and bipartiteness, constructing sparsi�ers and spanners,

approximating the densest subgraph etc. in the semi-streaming

model (in O (n polylog n) space where n is the number of nodes)

are popular within the theory community [18, 19]. However, they

do not address graph anomaly detection using sublinear memory.

Randomized algorithms for anomaly detection: Perhaps,

the �rst known randomized anomaly detector is Isolation Forests

[16] for static multi-dimensional data. Due to its empirical suc-

cess, randomized algorithms for streaming multi-dimensional data

streams are recently gaining traction [9, 20, 29]. In this work, we

investigate a randomized algorithm for the streaming graph setting.

3 PRELIMINARIES

In this section, we introduce our streaming model and formalize

how to detect the sudden (dis)appearance of large dense subgraphs.

Streaming model. Let G = {Gt }∞t=1 be a graph stream. Each

graph Gt is a tuple (St ,Dt , Et ) where St and Dt are the possibly

time-evolving sets of source and destination nodes respectively

and each edge (s,d,w) in the edge set Et originates from a source

s ∈ St , ends at a destination d ∈ Dt and carries a weight w ∈ R+
(w=0 is equivalent to the absence of an edge). We assume each

node (source or destination) has a unique identi�er that is �xed

over time, i.e., the node-correspondence across graphs is known. Let

At = [At,sd ] be the adjacency of Gt where each At,sd denotes the

sum of weight of edges connecting a source s to a destination d in

graph Gt . While there are other ways of aggregating weights, this

is the most natural in the applications we consider (see Sec. 1) .

The above model allows us to represent a �exible range of graphs:

(i) weighted or unweighted (by lettingAt,sd = 1 ∀ s,d), (ii) bipartite

or unipartite (by allowing St and Dt to overlap) and (iii) directed

or undirected (by constraining At,sd = At,ds ) when s,d).

Problem Description. Given a graph G with adjacency A, let

G(S′,D ′) denote the directed subgraph induced by the source

set S′ and the destination set D ′. Its density ρ(G(S′,D ′)) can
be de�ned in several ways, e.g.,

∑
s ∈S′,d ∈D′ Asd/|S′ | |D ′ | – the

higher the total weight of edges in it, the greater its density [6].

In a nutshell, a graph Gt is said to be anomalous – i.e., contain a

sudden appearance or disappearance of a dense directed subgraph

– if there is a large directed subgraph which shows a signi�cant

change in density compared to the past graphs {Gt−1,Gt−2, . . .}.
For example, in Fig. 1, lettingS′ = {s3, s4} andD ′ = {d2,d3,d4,d5},
the subgraph G3(S′,D ′) has high density (=1) but G1(S′,D ′) and
G2(S′,D ′) have low densities, 0.125 and 0 respectively. Hence G3
is an anomaly. The next section presents the proposed method to

identify such anomalies.
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Figure 2: Overview of SpotLight

4 PROPOSED METHOD

The proposed method, called SpotLight, works in two main steps

as shown in Alg. 1. First, it extracts a K-dimensional (we show how

to choose K in Sec. 5) SpotLight sketch v(G) for every G, such
that graphs containing the sudden (dis)appearance of large dense

subgraphs are ‘far’ from ‘normal’ graphs in the sketch space (line

4). Second, it exploits the distance gap in the sketch space to detect

graphs yielding anomalous sketches as anomalous graphs (line 5).

A schematic is given in Fig. 2. We next elaborate on these two steps

in greater detail.

4.1 SpotLight graph sketching

A natural way to sketch a graph is by enumerating the total edge

weight of each directed subgraph G(S′,D ′) for su�ciently large

source and destination sets S′,D ′. However, this sketch has ex-

ponential number of dimensions and is infeasible to compute or

store. Hence, we propose to compose a sketch containing total

edge weights of K speci�c directed subgraphs (called query sub-

graphs henceforth) chosen independently and uniformly at random,

according to node sampling probabilities, p for sources and q for

destinations. This leads to (K ,p,q)-SpotLight graph sketching.

Conceptually, SpotLight sketching �rst chooses K query sub-

graphs {(S′
k
,D ′

k
)}K
k=1

by sampling each source (or destination)

into each S′
k
(resp. D ′

k
) with probability p (resp. q). This choice is

made only once per source or destination (the �rst time it is seen)

and is �xed throughout the graph stream. Next, for every graph G,
its sketch v(G) ∈ RK is computed as vk (G) =

∑
s ∈S′

k
,d ∈D′

k

Asd =

total_edge_weight(G(S′
k
,D ′

k
)). For example, in Fig. 3 showing a

graph G with unit-weight edges, there are three edges belonging to

the �rst query subgraph (red), one to the second (green) and none

to the third (blue). Hence, its sketch is v(G) = (3, 1, 0).

Figure 3: A (K=3,p=0.5,q=0.33)-SpotLight sketch v(G) of
a graph G with unit-weight edges. Each sketch dimension

vk (G) is the total weight of edges going from a random set

of sources S′
k
and to a random set of destinations D ′

k
.

Algorithm 1 SpotLight graph stream anomaly detection

Input: a streamG of weighted directed/bipartite graphs

Parameters: sketch dimensionality K , source sampling proba-

bility p, destination sampling probability q

Output: a stream of anomaly scores

1: procedure SpotLight(G,K ,p,q)

2: Initialize(K ,p,q)

3: for graph G ∈ G do

4: v← Sketch(G)
5: yield AnomalyScore(v)

6: procedure Initialize(K ,p,q)

7: for k = 1, . . . ,K do

8: Pick source hash hk : S → {1, . . . , ⌊1/p⌋} and destina-

tion hash h′
k
: D → {1, . . . , ⌊1/q⌋} independently at

random.

9: procedure Sketch(G)
10: v← 0K

11: for edge e = (s,d,w) in graph G do

12: for k = 1, . . . ,K do

13: if hk (s) == 1 and h′
k
(d) == 1 then

14: vk ← vk +w

15: return v

An e�cient implementation of SpotLight sketching using hash-

ing is given in Alg. 1. The hash functions ensure that the node to

query subgraph mapping remains �xed over time without explicitly

storing it. The choice of the �rst hash bucket in line 13 is arbitrary;

one can pick any value within the suitable range. Observe how this

algorithm is able to seamlessly process old and new nodes alike.

SpotLight sketching can be thought of in two alternative ways.

First, it can be regarded as a memory-limited and non-deterministic

generalization of two common used graph features – nodal degree

(K= |S| ,p=1/|S| ,q=1 or K= |D| ,p=1,q=1/|D|) and total edge

weight (K=p=q=1). Second, and more interestingly, each sketch

dimension can be considered as a spotlight which illuminates and

allows for monitoring a region of the graph (i.e., its query subgraph).

The central idea is that the (dis)appearance of a large and dense sub-

graph would be brought to light by at least one of these spotlights,

provided there are enough of them and each one is �ne-grained, il-

luminating a small enough region of the graph. In Sec. 5, we prove

high probability guarantees of exactly this nature.

4.2 Anomaly detection in the SpotLight space

Exploiting the distance gap between the anomalous graphs con-

taining the sudden (dis)appearance of large dense subgraphs and

‘normal’ instances in the SpotLight (sketch) space, wemay now em-

ploy any o�-the-shelf data stream anomaly detector (e.g., [9, 20, 29])

to carry out AnomalyScore procedure call (line 5 of Alg. 1). These

techniques require sublinear memory and output an anomaly score

for every data point (i.e., SpotLight graph sketch) in the stream.

5 THEORETICAL ANALYSIS

This section presents the distance guarantees o�ered by SpotLight

sketch space and also analysis of running time and memory.
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5.1 Guarantees for SpotLight sketches

How dowe theoretically analyze the distance between graphs in the

SpotLight space, even though the sketching algorithm is random-

ized? What properties should this distance function obey? How do

we choose the sketching parameters so that anomalous graphs lie

‘far’ from ‘normal’ instances with high probability in the SpotLight

space? These are the questions we set out to answer.

In the rest of this section, G is always an arbitrary weighted

directed/bipartite graph on Ns sources and Ns destinations. Adding

unit-weight edges to G increments corresponding edge weights by

one, even if these edges already existed. v(·) represents the (K ,p,q)-
SpotLight sketch. For simplicity, we let Ns=Nd=N and p=q. Also,

without loss of generality, we consider only the appearance of dense

subgraphs (disappearance can be argued in a similar way).

We begin by de�ning SL-distance (SL for SpotLight) between

graphsG1 andG2 in the SpotLight space as a deterministic function

of G1,G2 and the sketching parameters K ,p,q.

Definition 1 (SL-Distance). The SL-distance between graphs

G1 and G2 is the expected squared Euclidean distance between their

SpotLight sketches, i.e., d̄(G1,G2) = E
[
| |v(G1) − v(G2)| |22

]
, where

the expectation is taken over the random coin tosses of the sketching

algorithm1.

We devote the rest of this section to show (i) that SL-distance

is focus-aware, a desirable property for anomaly detection and (ii)

how to set sketching parameters so that ‘anomalous’ graphs lie far

from ‘normal’ ones according to SL-distance. All proofs are given

in the appendix.

5.1.1 Focus-awareness. Many highly dynamic settings, e.g., IP-

IP communication logs, present bursty tra�c leading to a high

variance in the total edge weight. Thus, it becomes easy for a sudden

appearance of dense subgraph, e.g., denial of service attack, to evade

detection, unless the distance function used has the so-called focus-

awareness property: ‘random [dispersed] changes in graphs are

less important [anomalous] than targeted [focused] changes of the

same extent’ [14]. In this section, we show that SL-distance has this

desirable property. Consider,

Example 1 (Star vs. Matching). Add an out-star graph (Fig. 4a)

ofm unit-weight edges (focused change) to G to obtain GS . Add a

matching graph (Fig. 4b) ofm edges (dispersed change) to G to create

GM . Intuitively, the appearance of a dense star subgraph is more

anomalous (e.g., potential port scan attack/ hotspot in road tra�c)

and accordingly, we desire d̄(G,GS ) > d̄(G,GM ). See Fig. 4c.

We show that SL-distance not only satis�es the condition above,

but even the distance gap increases with the number of edges

m and sketch dimensionality K . That is, GS is increasingly more

anomalous than GM asm grows. See Lem. 5.1.

Lemma 5.1 (Star vs. matching). Suppose G, GS and GM are as

de�ned in Ex. 1, with (K ,p,q)-SpotLight sketches v(·) ∈ RK and let

0 < p,q < 1. Then, d̄(GS ,G) > d̄(GM ,G) + O
(
Km2

)
.

The edge addition process in Ex. 1 was deterministic, in the

sense that the relative position of added edges was �xed. We now

consider the more general case wherem edges are added uniformly

1
d̄ (·, ·) is not a metric, but it obeys a relaxed triangle inequality.

(a) Star graph (b) Matching graph (c) Ideal sketches

Figure 4: Focus-awareness: Addition of dense star graph is

more anomalous than that of the sparse matching graph.

at random (i.e., non-deterministically) in regions of di�erent sizes.

Thm. 5.2 shows that the smaller the region in which edges are

added, the farther away the �nal graph lies from the initial graph

in the SpotLight space (in expectation). In other words, the more

focused the edge addition, the more anomalous the �nal graph is

expected to be in the SpotLight-space.

Theorem 5.2 (Focus-Awareness). Consider the distribution of

graphs F ′ obtained by addingm unit-weight edges (in expectation)

to any n′×n′ region of G by sampling each of the n′2 possible edges
with probabilitym/n′2. Let F ′′ be another distribution over graph

obtained by adding edges in a similar manner to any n′′×n′′ region.
Then,

n′′ < n′ =⇒ EG′′∼F′′
[
d̄(G,G′′)

]
> EG′∼F′

[
d̄(G,G′)

]
(1)

Thm. 5.2 guarantees a separation in the expected SL-distance,

(the expectation is taken over the random coin tosses of the edge

addition process), which is a necessary condition for anomaly detec-

tion to work. It is not su�cient, however: in order to detect F ′′ as
anomalies in the SpotLight space, a large distance gap with high

probability is crucial. Sec. 5.1.2 addresses precisely this.

5.1.2 Criterion for anomaly detection. To show that anomalous

graphs are mapped far from normal instances in the SpotLight

space, we need formal de�nitions for (i) what ‘far’ means in the

sketch space and (ii) what class of ‘normal’ graphs to use as a control

group. These are provided in Def. 2 and Def. 3 respectively.

Definition 2 (ϵ-SL-Farness). If d̄(G1,G) > d̄(G2,G) + ϵ , we
say that G1 is ϵ-SL-far from G compared to G2.

Definition 3 (Erdős-Rényi Control Group). Let G be a graph

on N sources and N destinations. An Erdős-Rényi (ER) control group

FER(G,m) is de�ned as a distribution of graphs, where each instance

GER is obtained by addingm unit-weight edges (in expectation) uni-

formly throughout the graph by sampling each of the N 2 possible

edges independently with probabilitym/N 2.

The choice of ER control group is motivated by focus-awareness:

we wish to distinguish the addition of a dense subgraph ofm edges

in any focused part of the graph from a case where the samem edges

are added uniformly at random throughout the graph. Thm. 5.3 as-

serts this is indeed the case: when sketching parameters are chosen

appropriately, it is possible to achieve an ϵ-separation between the

anomalous and normal graphs with high probability.

Theorem 5.3 (Anomaly Detection Criterion). Add n2 unit-

weight edges in any n×n region to get GBC (BC for BiClique). Let

1 ≪ n2 ≪ N 2 and p = q < 0.5. Then, GBC is ϵ-SL-far from G

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1381



SpotLight: Detecting Anomalies in Streaming Graphs KDD ’18, August 19–23, 2018, London, United Kingdom

compared to a GER drawn from FER(G,n2) with high probability

1−δ , i.e.,
PrGER∼FER(G,n2)

[
d̄(G,GBC) − d̄(G,GER) ≥ ϵ

]
≥ 1−δ (2)

where δ is the false positive rate on the ER control group, provided:

K >
(1 + p2n2)2
4p2n2δ

+

ϵ

p3n3
(3)

Observe from Eq. (3) that more sketch dimensions are required

if ϵ is high or δ is low which is intuitive: the higher the separation

needed between the anomaly and the control group or the lower the

permitted false positive rate on the control group, the more dimen-

sions we need. Another subtle point to note here is that Thm. 5.3

guarantees an isolation of anomalies in the sketch space, without

knowing a priori which n×n region contains the dense subgraph –

this is crucial because, in practice, anomalous dense subgraphs can

appear (or disappear) in any region. Further, Thm. 5.3 also guides

us in choosing parameters, as stated below.

Corollary 5.4 (Optimal Sketching Parameters). From Eq. (3),

the optimal value of p requiring the least sketching dimensionality

is obtained by solving n5p5∗ − np∗ = 6ϵδ . When ϵ=0, this reduces to

p∗=1/n i.e., sample exactly one added edge in expectation. Accord-

ingly, we require K∗ > 1/δ .

For example, with K=50,p=q=0.2, we may detect the addition

of n=5 biclique as an anomaly with ϵ=0 separation by incurring at

most δ=2% false positive rate on the ER control group.

5.2 Running time and memory analysis

SpotLight obeys the sublinear memory and linear time constraints

of Problem. 1, as stated below.

Lemma 5.5 (Linear Running Time). SpotLight takes O (|E| · K)
time to process each G = (S,D, E) in the stream.

Lemma 5.6 (SublinearMemory Reqirement). SpotLight takes

O (logNs + logNd + K) to process each graph in a stream having

Ns sources and Nd destinations.

SpotLight sketching runs in O (|E| · K) running time due to the

loops in lines 11-12 (Alg. 1), since the other steps require constant

time. The O (logNs + logNd ) space is a lower bound on memory

requirements, since each edge (including source and destination

identi�ers) needs to be read (one by one). An additional O (K) space
is needed to store the sketch. Anomaly detection in SpotLight

space takes O (K) time and sublinear space, e.g., using [9].

6 EXPERIMENTS

We empirically evaluate the proposed method on datasets where

the anomalies are veri�able and interpretable. We begin with the

details of datasets and experimental setup.

6.1 Datasets

We shortlist three real-world publicly available time-evolving graph

datasets, where the anomalies can be veri�ed by comparing to

manual annotations or by correlating with real-world events:

Darpa dataset [15] contains 4.5M IP-IP communications taking

place between 9484 source IPs and 23398 destination IPs over 87.7K

time steps (minutes). Each communication is a directed edge (srcIP,

dstIP, 1, time). We obtain a stream of 1463 graphs by aggregating

edges occurring in every hourly duration. The dataset contains

89 known network attacks – large or stealthy – e.g., portsweep,

ipsweep, mscan and snmpgetattack. Most attacks were large (>

100 edges), but were targeted at and/or engineered from a few hosts

and occurred in single/multiple bursts of time – thus, leading to

the sudden (dis)appearance of large dense subgraphs that we aim to

detect. Using the furnished ground truth (attack/not) for each edge,

we label a graph as anomalous if it contains at least 50 attack edges.

Enron dataset [24] contains ∼ 50K emails exchanged among

151 employees of the energy company over a 3 year period sur-

rounding the famous Enron scandal. Each email is a directed edge

(sender, receiver, 1, timestamp). We derive a stream of 1139 graphs by

treating each day as its own graph. As ground truth is not directly

available, we verify the detected anomalies by correlating with the

major events of the scandal.

NycTaxi dataset [1] contains taxi ridership data during a 3-

month period (Nov 2015–Jan 2016) obtained from New York City

(NYC) Taxi Commission. Each taxi trip is furnished with pick-up

(PU)/drop-o� (DO) times and (lon, lat) coordinates of PU/DO lo-

cations, which we process as follows. We manually click on the

centers of 57 geographically or conceptually distinguishable NYC

zones based on common knowledge – including parks, airports,

stadiums, bridges, residential neighborhoods, islands – on a map

and note their (lon, lat) coordinates. Every PU/DO location is then

assigned to the nearest zone. Thus, a directed edge (srcZone, dst-

Zone, 1, timestamp) is created for each taxi trip. These are further

aggregated into 2208 graphs, each containing trips that took place

in a given hourly duration. We verify the detected anomalies by

correlating with important occasions – holidays, events, unusual

weather conditions – which a�ect the normal rhythm of road tra�c.

6.2 Experimental Setup

We implement SpotLight (abbreviated as SL henceforth) in Python

and run experiments on MacOS with 2.7 GHz Intel Core i5 pro-

cessor and 16 GB main memory. By default, we use K=50 sketch

dimensions and p=q=0.2 source/destination sampling probabilities.

Mapping to Thm. 5.3, this corresponds to detecting a n=5 biclique

(or more) as an anomaly w.r.t. the control group by incurring less

than δ=2% false positives. This also ensures all edges are covered

twice in expectation. For the anomalous sketch detection step, we

use the state-of-the-art Robust Random Cut Forests (RRCF) [9] with

50 trees and 256 samples (unless speci�ed otherwise).

Baselines: We compare SpotLight to the following three base-

lines on the labeled Darpa dataset: (a) EdgeWeight (EW):We

consider a vanilla version of SL by setting K=p=q=1, i.e., sketch-

ing each graph using a single coarse-grained feature, namely, its

total weight of edges. Observe that EW tends to miss ‘small’ anom-

alies which do not alter the total edge weight signi�cantly com-

pared to usual. (b) RHSS [22], abbreviated based on the last names

of authors, processes each edge e in the stream individually, out-

putting a likelihood score ℓ(e). We compute the likelihood of a graph

G = (S,D, E) as the geometric mean of the per-edge likelihoods

(similar to [2]): ℓ(G) = (∏e=(s,d,w )∈E ℓ(e)w )1/W whereW is the

total edge weight. Finally, to re�ect the intuition that a more likely
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precision@ recall@

Method 100 200 300 400 100 200 300 400

Ideal 1.0 1.0 0.96 0.72 0.35 0.69 1.0 1.0

SL 0.96 0.79 0.64 0.57 0.34 0.55 0.67 0.80

EW 0.86 0.54 0.47 0.46 0.30 0.38 0.49 0.65

RHSS 0.31 0.28 0.32 0.36 0.11 0.19 0.33 0.50

STA 0.23 0.16 0.19 0.24 0.08 0.11 0.20 0.34

Table 2: SpotLight (SL) achieves better precision and recall

than baselines (EW, RHSS, STA). Bold indicates the highest

value in each column (excluding ideal). Underline shows sig-

ni�cant di�erences (p-value ≤ 0.01) w.r.t. baselines according

to a two-sided micro-sign test [30].

graph is less anomalous, we use anomaly_score(G) = − log ℓ(G).
We implement RHSS in Python without using the sketching-based

approximation2. (c) STA [28] scores the anomalousness of each

graph as the error incurred in reconstructing it based on a streaming

graph decomposition. We use 50 as the rank of decomposition.

Evaluation Metrics: Each method above outputs an anomaly

score (higher is anomalous) per graph. Sorting these in descending

order, we compute the number of anomalies caught TP(k) (true
positives) among the top k most anomalous graphs, for every k . If

the overall number of anomalies is N , we compute precision@k =

TP(k)/k and recall@k = TP(k)/N . We also summarize the overall

accuracy using the AUC (Area Under ROC Curve) score. Recall

that precision@k, recall@k and AUC lie in [0, 1] and a higher value

is better. In addition, we note the running time of all methods,

averaged over �ve runs.

Experimental Design: Our experiments are designed to an-

swer the following questions: [Q1] Accuracy: How well is Spot-

Light able to spot anomalies compared to baselines? What is the

trade-o� with respect to running time? How does the performance

vary with parameters? [Q2] Scalability: How does the running

time scale with the number of edges in the stream and sketch dimen-

sions K? [Q3] Discoveries: Does SpotLight lead to interesting

discoveries on real world data? We now present our �ndings.

Q1. Accuracy

Table 2, Fig. 5 and Fig. 6 compare the precision, recall, accuracy

(AUC) and running time of SL with baselines on the labeled Darpa

dataset. Fig. 7 shows the variation of accuracy with parameters. As

SL and EW are initialized based on the �rst 256 graphs, performance

is reported on the subsequent 1463− 256 = 1207 graphs, containing

288 ground truth anomalies (23.8% of total).

Precision and recall: Table 2 gives the precision and recall at

cut-o� ranks k ∈ {100, 200, 300, 400}. Ideal values are computed

based on an oracle which scores the ground truth anomalies higher

than all non-anomalies. We see that SL consistently outperforms all

baselines achieving 11−46% (statistically signi�cant) improvements.

Further, a plot of precision vs. recall for all methods, shown in Fig. 5,

reveals that SL’s curve (blue) lies completely above those of all

baselines, achieving higher precision for every recall value. Thus,

the performance gain of SL generalizes to all cut-o� ranks (k).

2We also tried computing the anomaly score as the negative average of the per-edge
likelihoods and obtained similar results.

Figure 5: SL outperforms

baselines in terms of preci-

sion and recall.

Figure 6: Accuracy-running

time trade-o� o�ered by SL.

(a) (b)
Figure 7: Variation of accuracy with (a) p = q for K = 10 and

(b) with K for p = q = 0.1.

Accuracy vs. running time: Fig. 6 plots the accuracy (AUC)

of each method vs. its running time (in seconds). We see that SL

achieves the highest accuracy (=0.91), 8.4% higher than EW (=0.83)

and 30% higher than RHSS (=0.70). This gain comes at a cost of

a mere 4× slow down compared to EW and RHSS. STA, which

computes graph decomposition, was considerably slower.

Accuracy w.r.t. sampling probabilities p,q: Fig. 7a shows

how the accuracy varies with source (p) and destination (q) sam-

pling probabilities forK=10 dimensions, after tying p=q for simplic-

ity. We see that the poor accuracy results from choosing very low

(anomalous dense subgraphs are easily missed as very few nodes

are sampled resulting in a sketch with mostly zeroes) and very high

(sketch dimensions are coarse-grained, similar to EW, as almost all

nodes are sampled) node sampling probabilities. The sweet spot lies

in between. Over a large interval [0.05, 0.4], the accuracy remained

fairly robust (insensitive) to the exact value of p.

Accuracy w.r.t. #dimensions K : Fig. 7b shows the variation of

accuracy with the number of sketch dimensions K ∈ {5, 20, 35, 50,
65, 80, 95} for p = q = 0.1. We see that accuracy increases rapidly

from 0.67 to 0.95 as K is increased from 5 to 50, beyond which

it stabilizes around 0.95. This is the classic ‘diminishing returns’

pattern we expect. When K is low, an added SpotLight sketch

dimension likely ‘illuminates’ a new part of the graph and detects

anomalies that were previously undetected, but once K crosses a

threshold (here, 50) when most of the graph is already ‘illuminated’,

a new sketch dimension gives little to no added bene�t.

Q2. Scalability

Fig. 8 shows the scalability of SL with the number of edges and

sketch dimensions. We use RRCF with 10 trees and sample size 128.

With #edges: We uniformly sample 100K − 2M edges from the

Darpa dataset in eight logarithmic steps and timed SL. Fig. 8a plots
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(a) (b)
Figure 8: SL scales linearly with the number of (a) edges in

the stream and (b) sketch dimensions K .

the running time (in seconds) vs. the number of edges in log-log

scales. We see that the points align with a line of slope 1, indicating

SL scales linearly with input size (as is desirable). Note also that SL

is fast and is able to process 2M edges in less than 2 minutes!

With #dimensions: We now vary the SpotLight sketch di-

mension K ∈ {10, 20, . . . 70, 80} and measure the time taken to

compute sketches for 0.5M edges. Fig. 8b, plotting the running time

(in seconds) with the number of dimensions, reveals that SL scales

linearly with the dimensionality of SpotLight sketch.

These are consistent with our expectations based on Lem. 5.5.

Q3. Discoveries

We provide a complete analysis of SL and baselines on the labeled

Darpa dataset; in the interest of space, we only summarize the

discoveries due to SL on Enron and NycTaxi datasets, omitting

baseline results.

6.2.1 Darpa. Leveraging ground truth, we now delve deeper

into why the baselines perform poorly compared to SL on Darpa

dataset. Fig. 9 plots the anomaly scores (higher is anomalous) of

all methods along with ground truth (spikes in the ‘ideal’ black

curve). Our explanation will use Fig. 10, which plots the number

of attack (red) and non-attack (green) edges over time t . In these

�gures, t < 0 corresponds to the initialization period for SL and EW,

resulting in zero anomaly score. We now examine each baseline

separately.

EW: Around t={150, 450, 650, 850, 1000}, Fig. 10 shows several
spikes (of height 104−105) in attack weight (red); these are sig-

ni�cantly higher than the non-attack weight (green) which never

exceeds 104. Hence, these ‘large’ anomalies are easily detected by

tracking only the total edge weight (green spikes in Fig. 9). How-

ever, EW fails to detect anomalous graphs in which the total weight

of edges is comparable to that observed at many prior graphs –

e.g., anomalies around t={1, 300, 500}. On the other hand, SL keeps

track of the total weight of edges in several local regions within the

graph; since attack edges are concentrated in regions of the graph

where non-attack edges typically do not occur, these are detected

by SL, even if the weight of attack edges is small, e.g., at t=1.

RHSS: RHSS scores each graph based on the likelihood of its

edges computed based on its prior occurrence, preferential attach-

ment and homophily. Simply put, (graphs containing) edges which

are seen before or which connect high degree nodes or nodes hav-

ing many common neighbors are non-anomalous. However, we �nd

that these assumptions are more suited to slowly-evolving social

Figure 9: Anomaly detection onDarpa dataset. Spikes in the

‘ideal’ black curve indicate ground truth anomalies.

Figure 10: Understanding (un)detected anomalies in Darpa

using the number of attack and non-attack edges over time.

networks rather than highly dynamic settings. To see why, consider:

(a) Repeated attacks: neptune3 attack occurs at 33 di�erent times,

including t = −204, which is within the initialization period. Once

RHSS has ‘seen’ all neptune attack edges, subsequent occurrences,

however rare and dense, are not found anomalous. (b) Repeatedly

attacking (victimized) nodes: Once a node has (been) attacked su�-

ciently many times, it attains a high degree; consequently, further

attacks by (or on) it are ‘likely’ (due to preferential attachment) and

non-anomalous.

STA: STA computes a single graph decomposition model to

summarize the data seen so far – admittedly, a much harder problem

than anomaly detection – and scores the anomalousness of each

3A SYN �ood denial of service attack to which every TCP/IP implementation is vul-
nerable to some extent. See www.ll.mit.edu/ideval/docs/attackDB.html.
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Figure 11: Anomaly detection on Enron dataset

graph as the error incurred in reconstructing it from the model. The

assumption of a single normal behavior does not apply to dynamic

settings (such as this) – e.g., in Fig. 10, it is as normal for the number

of non-attack edges to be around 1000 as it is to be 0 – consequently,

STA is very sensitive in practice and leads to numerous false alarms.

6.2.2 Enron. Fig. 11 plots the anomaly score vs. time for Enron

dataset, after initializing SL based on the �rst 256 days (05/12/99-

01/22/00) with shingle length 7 (weekly periodicity). We examine

the top 6 non-consecutive time durations having the highest anom-

aly scores. As we show below, these anomalies correspond to major

events – either company-wide emails or public announcements

triggering excitement or confusion – in the Enron time line4.

2000: (1) Dec 13-14: Skilling announced as CEO. 2001: (2) May

23: Enron completes its millionth transaction via Enron Online. (3)

Sep 28: Lay to employees: ‘Third quarter is looking great.’ (4) Oct

7-Nov 22: Wall Street Journal article reveals Enron’s precarious

state. One ton Enron documents shredded. Fastow ousted. SEC

launches formal investigation. Restructuring of $690M obligation

is announced. 2002: (5) Jan 23-30: Lay resigns as chairman and

CEO. Baxter commits suicide. Cooper takes over as CEO. (6) Feb

7-8: Fastow, Kopper and Skilling testify before Congress.

6.2.3 NycTaxi. Fig. 12 plots the anomaly score vs. time for Nyc-

Taxi dataset, after initializing SL based on the �rst 256 hours (∼ 10

days) of Nov 2015 with shingle length 24 (daily periodicity). As be-

fore, we examine the top 6 non-consecutive time durations having

the highest anomaly scores.

The most anomalous period (Jan 23-24) coincided with the Janu-

ary 2016 United States blizzard which produced a historic 3 feet of

snow and rendered normal tra�c operation impossible. The next

three anomalies (around Nov 27, Dec 25, Jan 1) corresponded to

festival periods – Thanksgiving, Christmas, New Year – presumably

due to unusual tra�c patterns around Manhattan (closed o�ces,

Macy’s Thanksgiving parade, New Year parties) and airports (peo-

ple �ying in/out of JFK and LaGuardia). The next two anomalies

(Nov 14, Nov 29-30) are more interesting because they do not co-

incide with holidays or weather conditions, and as such, are not

expected to be anomalous.

To further understand why Nov 14 and Nov 29-30 were �agged,

we derive an anomaly score per sketch dimension from RRCF and

propagate the anomalousness to NYC zones. Thus, the anomaly score

of a zone is the sum of anomaly scores of all dimensions it par-

ticipates in. The most anomalous zones during these dates turned

out to be Bedford on Nov 14 and LaGuardia airport on Nov 29-30.

Digging deeper, we discovered that these locations popped up in

several archived new articles on these dates. At 12pm Nov 14, ‘huge

4veri�ed using www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html

Figure 12: Anomaly detection on NycTaxi dataset

�re [ripped] through Bedford-Stuyvesant building’5 threatening

its collapse and creating unusual tra�c in/out of the area. On Nov

29-30 (Sunday after Thanksgiving), ‘thousands [were] delayed at

airport in an attempt to return home after Thanksgiving’6 caus-

ing the usual morning rush hour tra�c at LaGuardia to persist

throughout the day with over an hour-long wait times for taxis.

Thus, the sudden (dis)appearance of large dense subgraphs de-

tected by SL on real-world data have a practical signi�cance, from

network attacks in IP-IP communication logs to holidays, abnormal

weather or local tra�c conditions in transportation logs.

6.3 Discussion

Whydo SL/EWperformbetter than STA/RHSS? STA andRHSS

make strict modeling assumptions, e.g., stable community struc-

ture or homophily, restricting their scope to limited settings, e.g.,

slowly evolving graphs, friendship networks. In contrast, EW and

SL use a less restrictive de�nition of anomaly which is applicable

to a wider variety of highly dynamic settings. Can the detected

anomalies be attributed to few nodes? Yes, by explicitly main-

taining the node to sketch dimension mapping and following the

‘anomalousness propagation’ heuristic in Sec. 6.2.3.

7 CONCLUSION AND FUTURE WORK

We presented a simple, scalable, easy-to-code algorithm called Spot-

Light for sketching a graph. SpotLight sketches facilitate fast and

reliable identi�cation of anomalies, where an anomaly is the sudden

appearance (or disappearance) of a large dense directed subgraph.

Theoretical analysis provides concrete settings where there is a

provable distance gap in the sketch of a graph wherem edges are

scattered at random throughout the graph (dispersed) vs. the sketch

of a graph wherem edges are added in a smaller subgraph (focused).

The distance gap sets the stage for classic anomaly detection algo-

rithms to spot the more distant graph. Experiments on a variety

of real-world datasets demonstrate that SpotLight outperforms

prior approaches in terms of both precision and recall. Yet, many

new opportunities remain. Adaptive data-driven sketches, while

harder to analyze, may yield better results in practice. Interpretabil-

ity and anomaly attribution are also important questions. Finally,

the trajectory of an anomaly is vital to both understand and predict.
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APPENDIX (PROOFS FROM SEC. 5.1)

Let 1 ≤ k ≤ K be a sketch dimensionwith query subgraph (S′
k
,D ′

k
).

De�ne binary random variables rks = I[s ∈ S′k ] and ukd = I[d ∈
D ′
k
], where I[·] is the identity function.

Proof of Lem. 5.1. From Fig. 4a,vk (GS )−vk (G) =
∑
m

i=1 rks1ukdi .

Thus, d̄(GS ,G) =
∑
K

k=1
E

[
rks1 (

∑
m

i=1 ukdi )2
]
= Kmpq+Km(m−1)pq2.

From Fig. 4b, vk (GM ) − vk (G) =
∑
n

i=1 rksiukdi and so we have

d̄(GM ,G) =
∑
K

k=1
E

[
(∑m

i=1 rksiukdi )2
]
= Kmpq +Km(m − 1)p2q2.

Thus, d̄(GS ,G) > d̄(GM ,G) + O
(
Km2

)
. ■

The other results are based on Lem. .1 stated and proved below.

Lemma .1. Let G be an arbitrary graph and let G′ be obtained
by adding m(≤ n2) unit-weight edges (in expectation) uniformly

to any n×n region of G by sampling each of the n2 possible edges

independently with probabilitym/n2. Assuming n is large and p=q,

E
[
d̄(G,G′)

]
= Kp2m

(
1 +

2pm

n
+ p2m

)
(4)

Further, if n ≫m, Var
[
d̄(G,G′)

]
= O

(
Kp4m2

(
1 + 2p2m + p4m2

) )
,

where the expectation and variance have been taken over the random

coin tosses of the edge addition process.

Partial Proof. Let A = [Asd ] denote the adjacency of edges

added to G to get G′. Then, d̄(G,G′) = E
[
(∑s,d rksAsdukd )2

]
,

where the expectation is taken over the coin tosses of the algorithm,

i.e., {rks ,ukd } ∀ k, s,d . Using E [rks ]=E [ukd ]=p. This simpli�es to

d̄(G,G′) = p2 ∑
s,d Asd+p

3 ∑
s,d,d ′ AsdAsd ′+p

3 ∑
s,s ′,d AsdAs ′d+

p4 ·∑s,s ′,d,d ′ AsdAs ′d ′ . To get E
[
d̄(G,G′)

]
where the expectation

is now taken over the randomness of edge addition, i.e., Asd , we

substitute E [Asd ] = m/n2 for 1 ≤ s ≤ n, 1 ≤ d ≤ n (and other-

wise zero) to derive Eq. (4). Variance calculation, while similar and

straight-forward, is omitted in the interest of space. ■

Proof of Thm. 5.2 using Lem. .1. Eq. (4) is decreasing in n. ■

Proof of Thm. 5.3 using Lem. .1. Let µ = E
[
d̄(G,GER)

]
and

σ 2
= Var

[
d̄(G,GER)

]
. Invoking Chebyshev’s inequality, we have

with probability 1−δ : |d̄(G,GER) − µ | ≤
√
σ 2/δ . Thus, if we �ag a

graph G′ as anomalous if |d̄(G,G′) − µ | >
√
σ 2/δ , we erroneously

�ag δ fraction of the control group as anomalies (false positive

rate). In order to detect GBC as an anomaly at this threshold, we

need d̄(G,GBC) − µ − ϵ >
√
σ 2/δ . Under the stated assumptions,

d̄(G,GBC) − µ ≈ 2Kp3n3 and σ 2 ≈ Kp4n4(1 + 2n2p2 + n4p4). Thus,
we derive a quadratic inequality in K resulting in the following,

which can then be relaxed using a2 + b2 ≥ 2ab to obtain Eq. (3). ■

K ≥
©«
1 + n2p2

4pn
√
δ
+

√√√(
1 + n2p2

4pn
√
δ

)2
+

ϵ

2p3n3

ª®®¬

2

Proof of Cor. 5.4. Setting the �rst derivative of RHS of Eq. (3)

to zero, we get n5p5∗ − np∗ = 6ϵδ (second derivative at p∗ ≥ 0). ■
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