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Alzheimer’s disease is an emerging global epidemic that is becoming increasingly

unsustainable. Most of the clinical trials have been centered around targeting β-amyloid

and have met with limited success. There is a great impetus to identify alternative drug

targets. Iron appears to be the common theme prevalent across neurodegenerative

diseases. Iron has been shown to promote aggregation and pathogenicity of the

characteristic aberrant proteins, β-amyloid, tau, α-synuclein, and TDP43, in these

diseases. Further support for the involvement of iron in pathogenesis is provided by the

recent discovery of a new form of cell death, ferroptosis. Arising from iron-dependent

lipid peroxidation, ferroptosis is augmented in conditions of cysteine deficiency and

glutathione peroxidase-4 inactivation. Here, we review clinical trials that provide the

rationale for targeting ferroptosis to delay the pathogenesis of Alzheimer’s disease (AD),

potentially of relevance to other neurodegenerative diseases.

Keywords: Alzheimer’s disease, cystine/glutamate antiporter, ferroptosis, glutathione peroxidase-4, iron,

lipid peroxidation

INTRODUCTION

Alzheimer’s disease (AD) is increasing at an alarming rate and is an emerging epidemic. Current

incidence world-wide is ∼50 million and expected to triple by 2050. The economic costs of AD,

the most common cause of dementia, are $260 billion and projected to reach $1167 billion by 2050

(Alzheimer’s Disease International, 2019). Thus, there is a great impetus to develop treatments to

delay AD pathogenesis.

AD is classically defined by β-amyloid plaques and neurofibrillary tangles. Many clinical trials

directed at lowering β-amyloid have met with limited success. One reason for the failures could

be that 50% of AD patients exhibit α-synuclein pathology, while 30% show TDP43 pathology

(Robinson et al., 2018). We suggest sole targeting of β-amyloid or tau may not be fruitful in AD as

contributions from α-synuclein and TDP43 significantly modify disease pathogenesis—alternative

disease-modifying targets are crucial.

Iron dyshomeostasis appears to be a common theme, unifying neurodegenerative diseases

including AD, Lewy Body disease, and frontotemporal dementia (FTD). Iron has been shown to

promote the aggregation and pathogenicity of β-amyloid (Rottkamp et al., 2001), tau (Sayre et al.,

2000), α-synuclein (Xiao et al., 2018) and indirectly, TDP43 (Jeong et al., 2009; Joppe et al., 2019).

We hypothesize that iron dyshomeostasis is widespread in neurodegenerative diseases and ensuing
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mechanisms underlying iron toxicity may provide novel disease

targets. This unified and unique approach—targeting iron

dyshomeostasis—is likely to benefit dementia patients, the

majority of which are affected by AD, but also orphan diseases

e.g., FTD. Here, we review the evidence from clinical trials

concerning the rationale of targeting ferroptosis for AD.

IMPORTANCE OF IRON HOMEOSTASIS

Iron is an essential metal for neurons, required for mitochondria

respiration as well as other processes e.g., myelination and

neurotransmitter synthesis (Ward et al., 2014; Ashraf et al., 2018).

Iron can exist in oxidized and reduced states, ferric iron (Fe3+),

and ferrous iron (Fe2+), respectively. Ferrous iron predominantly

contributes to the cellular labile iron pool (LIP), participating

in key metabolic reactions but also toxic reactions that can lead

to oxidative stress and eventually cell death. Excessive build-up

of LIP is avoided by sequestration of iron, in a bioavailable yet

non-toxic form, by ferritin (Harrison and Arosio, 1996). Ferritin

works in concert with ferroportin, the only known cellular iron

exporter, aided by the ferroxidase, ceruloplasmin, to regulate LIP

(De Domenico et al., 2007). Tight regulation of iron metabolism

is pivotal to ensure neuronal homeostasis—both iron excess and

deficiency are associated with neurodegeneration (Goodman,

1953; Youdim, 2008; Ashraf et al., 2019).

LABILE IRON POOL AND ITS ROLE IN
FERROPTOSIS

Increased LIP can lead to the generation of reactive oxygen

species via Fenton reaction, eventually resulting in catastrophic

membrane rupture (Kakhlon and Cabantchik, 2002; Petrat et al.,

2002; Kruszewski, 2003). Coincident depletion of glutathione

(GSH) or inactivation of glutathione peroxidase-4 (GPX4) leads

to a newly characterized form of cell death, coined ferroptosis

(Dixon et al., 2012). Neuron-specific GPX4 depletion has been

shown to lead to neurodegeneration, highlighting this pathway

as a future therapeutic target (Seiler et al., 2008). GPX4 is a

master regulator of ferroptosis by functioning as a lipid repair

enzyme and detoxifying lipid hydroperoxides, utilizing GSH

as an essential cofactor. GSH synthesis/levels are reliant on

cellular cysteine availability. Cysteine is imported into cells in

its oxidized form, cystine, in exchange for glutamate by the

cystine/glutamate antiporter (systemX−

c ). Increased extracellular

glutamate in concert with glutaminolysis may contribute to

detrimental excitotoxicity (Dixon et al., 2012; Gao et al., 2015;

Stockwell et al., 2017; Ashraf et al., 2020), and possibly a feature

of ferroptosis.

System X−

c -inhibition attenuates GSH levels, inactivates

GPX4, and enhances lipid peroxidation (Dixon et al.,

2012). Polyunsaturated fatty acids (PUFAs), especially

arachidonic acid, in membrane lipids are preferentially

oxidized during ferroptosis. Arachidonic acid is activated

by Acyl-CoA Synthetase Long-Chain Family Member 4

(ACSL4) for incorporation into phosphatidylethanolamines

(and membranes). Oxidized phosphatidylethanolamines are

proximate executors of ferroptosis and hence ACSL4 expression

modulates ferroptosis susceptibility (Doll et al., 2017). Notably,

long-term use of pioglitazone, recently characterized to be an

ACSL4 inhibitor, is associated with attenuated risk of dementia

in type 2 diabetes mellitus patients (Heneka et al., 2015).

While iron enhances lipid peroxidation via the

non-enzymatic Fenton reaction, lipid peroxidation can also be

catalyzed by specific non-heme, iron-containing lipoxygenases,

such lipoxygenases also confer vulnerability to ferroptosis

(Yang et al., 2016). GPX4-ablation in mice and cells revealed

downstream 12/15-lipoxygenase-derived lipid peroxidation,

trigger apoptosis-inducing factor-mediated cell death, and

subsequent oxidative stress (Seiler et al., 2008). Moreover,

neuron-specific ablation of GPX4 in the forebrain (cerebral

cortex and hippocampus) was associated with an increase

in markers associated with ferroptosis including increased

lipid peroxidation, extracellular-regulated kinase (ERK) 4 and

neuroinflammation (Hambright et al., 2017). The susceptibility

of AD vulnerable neuronal populations to ferroptosis is

suggestive of its role in AD.

During ferroptosis, cytosolic ferritin may undergo

lysosomal breakdown (ferritinophagy) to further contribute

to LIP—ferritinophagy appears to augment cysteine deficiency-

induced ferroptosis (Gao et al., 2016; Hou et al., 2016). While

total cellular iron levels may be unchanged, an augmented

LIP renders cells more susceptible to ferroptosis. The

increased influx of iron into the mitochondria induces the

accumulation of reactive oxygen species and lipid peroxidation.

Lipid peroxidation is enhanced in cysteine deprivation via

hyperpolarized mitochondrial membrane potential (Gao

et al., 2019). The distinguishing features of ferroptosis are

evident cytologically, in the form of condensed mitochondrial

membrane and mitochondrial volume shrinkage (Yagoda

et al., 2007; Stockwell et al., 2017). Interestingly, genetic factors

including TDP43, amyloid precursor protein (APP), APOE may

play a pivotal role in modifying mitochondrial functionality.

Suppressing localization of TDP43 in the mitochondria

inhibited TDP43-mediated neurotoxicity (Wang et al., 2016).

Electron microscopic analysis of FTD and amyotrophic

lateral sclerosis patients with TDP43 pathology revealed

prominent mitochondrial impairment, including abnormal

and/or depleted cristae, concordant with ultrastructural

changes observed in both cellular and animal models of

TDP43 proteinopathy (Wang et al., 2019). Mechanistically,

TDP43 expression attenuated mitochondrial membrane

potential, suppressed mitochondrial complex I activity,

and impaired mitochondrial ATP synthesis. Moreover,

downregulation of LonP1 (mitochondrial protease) augmented

TDP43 levels which exacerbated TDP43-induced mitochondrial

damage and neurodegeneration (Wang et al., 2019).

Mitochondria isolated from AD brains show increased

accumulation of APP and β-amyloid associated with reduced

ability of mitochondria to import nuclear-encoded proteins

and impaired cytochrome c oxidase activity (Devi et al.,

2006; Hansson Petersen et al., 2008). Tau mutant mice and

triple transgenic mice harboring APP and tau mutations

demonstrated impaired mitochondrial respiration, increased

production of reactive oxygen species, and augmented oxidative
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stress (David et al., 2005; Rhein et al., 2009; Yao et al., 2009).

APOEε4 genotype is a major susceptibility risk locus particularly

in AD, associated with enhanced mitochondrial fusion and

decreased fission (Simonovitch et al., 2019). APOE4 has been

found to negatively modify effects of iron on brain functionality

before the manifestation of cognitive impairment (Kagerer et al.,

2020), and can regulate iron-homeostatic proteins like ferritin

to increase an individual’s risk of conversion to AD (Ayton

et al., 2015). Combining the different lines of evidence, a pivotal

involvement of proteinopathies is indicated in inducing iron

dyshomeostasis, lipid peroxidation, and mitochondrial damage

which are reminiscent of changes consistent with ferroptosis.

This proposition awaits experimental validation to elucidate a

direct role of the misfolded proteins in ferroptosis in the context

of neurodegenerative diseases.

EVIDENCE FOR FERROPTOSIS IN AD

Iron Chelators
A 2-year Phase II clinical trial reported desferrioxamine,

an iron chelator, attenuates cognitive decline in AD

(Crapper McLachlan et al., 1991). However, desferrioxamine

treatment was not further pursued owing to its lack of

blood-brain-barrier (BBB) penetrance. Intranasal deferoxamine

overcomes this problem and shown to improve cognition in

a mouse AD model (Fine et al., 2012, 2015). Iron chelation

attenuated oxidative stress, lowered β-amyloid load, and tau

hyperphosphorylation (by inhibition of cyclin-dependent

kinase-5 and glycogen synthase kinase activity; Guo et al., 2013a;

Guo et al., 2013b).

Deferiprone is an orally active, brain penetrant iron-chelator,

approved for use in β-thalassemia, currently, undergoing a Phase

II clinical trial in mild cognitive impairment (MCI) and AD

(Deferiprone to Delay Dementia—clinicaltrials.gov identifier:

NCT03235686; Nikseresht et al., 2019). This trial was preceded by

Phase II clinical trials on Parkinson’s disease (PD) which showed

reduced brain iron assessed by magnetic resonance imaging

(MRI) and cerebrospinal fluid (CSF) ferritin and concomitant

ameliorated motor deficits (Table 1, Devos et al., 2014; Martin-

Bastida et al., 2017).

Although chelating the LIP in the brain is a tempting strategy,

many challenges warrant mention. Since iron is an essential

cofactor in multi-fold cellular processes, iron-chelation can

have off-target effects and potentially cause untoward effects.

TABLE 1 | Clinical trials involving iron-chelators in Alzheimer’s disease (AD) and Parkinson’s disease (PD).

Study Study

population

Treatment Dose Duration

(years)

Outcome measures Results

Crapper

McLachlan

et al. (1991)

48 AD cases Iron-chelator

Desferrioxamine

125 mg twice daily

for 5 days/week

Intramuscular

2 Videorecorder home-behavioral

assessment for activities of daily

living

Wechsler Adult Intelligence

Scale-revised

Wechsler Memory Scale form 1

Western Aphasia Battery

Significant reduction in rate of

decline in activities of daily living

(p = 0.03).

Subjects suffered appetite loss

(4) or had gradual weight loss (1).

Devos et al.

(2014)

40 PD cases Iron-chelator

Deferiprone

15 mg/kg twice

daily Oral

2 Movement Disorders

Society—Unified Parkinson’s

Disease Rating Scale

(MDS-UPDRS)

T2* MRI (surrogate measure for iron)

Serum iron, ferritin, transferrin and

ceruloplasmin

CSF iron and ferritin

Plasma and CSF oxidative stress

markers including malonaldehyde,

8-oxo-7,8-dihydro-2′-

deoxyguanosine and carbonylated

proteins

Plasma and CSF antioxidant

markers including glutathione

peroxidase and superoxide

dismutase

Improved motor performance

(p = 0.002).

Reduced iron in substantia nigra

(p = 0.001).

Reduced CSF and blood ferritin,

and oxidative stress (p < 0.05).

Improved CSF antioxidant levels

(p < 0.05).

Subjects suffered agranulocytosis

(1) and neutropenia (2).

Martin-Bastida

et al. (2017)

22 PD cases Iron-chelator

Deferiprone

10 or 15 mg/kg

twice daily

Oral

0.5 MDS-UPDRS

Mini-mental State of Folstein

(cognitive function)

Montgomery Asberg dementia

rating scale

Parkinson’s disease

questionnaire-39 (quality of life)

T2* MRI

Serum iron, hemoglobin and

transferrin

Plasma ferritin, interleukin-6 tumor

necrosis factor alpha

A trend of improved MDS-UPDRS

score, indicative of improved motor

performance.

Reduced dentate and caudate

nucleus iron content (p < 0.001).

Subjects reported exacerbation of

pre-existing muscular/joint pain (7),

mild gastro-intestinal upset (3),

neutropenia and were withdrawn

from the study (2) and had

increased liver enzymes (1).
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The most frequent side-effects are gastrointestinal discomfort

including nausea, abdominal pain, vomiting, and diarrhea, which

range from mild to moderate (Borgna-Pignatti and Marsella,

2015). The most severe adverse effect experienced by patients on

iron-chelator therapy is neutropenia (8.5%) and agranulocytosis

(0.9%; Borgna-Pignatti and Marsella, 2015). Regular weekly

monitoring of blood counts (especially of white blood cells) in

patients taking deferiprone is essential to monitor side-effects

particularly neutropenia and agranulocytosis, and the dosage

titrated accordingly. Moreover, periodic hepatic and renal

functions should be evaluated, as these organs are major sites of

iron metabolism.

Antioxidants

Vitamin E
Vitamin E is the most potent biological lipophilic chain-breaking

antioxidant (Stocker, 2007), actually comprising α-, β-, γ-, and

δ-tocopherols and α-, β-, γ-, and δ-tocotrienols. All react with

free radicals to yield a non-radical product and a vitamin E

radical with a delocalized and stabilized unpaired electron. The

latter then reacts with another free radical or is regenerated by

vitamin C (Maguire et al., 1989). Vitamin E neutralizes peroxyl

radicals and terminates lipid peroxidation, especially of PUFAs

(Brigelius-Flohé, 2009). PUFAs are particularly susceptible to

peroxidation due to their high degree of unsaturation and are

greatly enriched (25–30% of total fatty acids; Joffre et al., 2019)

in brain cell membranes. Long-term PUFA-supplementation

during midlife is associated with decreased AD risk in

pre-symptomatic (Laitinen et al., 2006; Yassine et al., 2017),

although a shorter duration study reported no benefits

(Andrieu et al., 2017). By protecting cellular membranes against

lipid peroxidation, vitamin E can be considered a disruptor

of ferroptosis.

Vitamin E in plasma, serum, and CSF are reduced in AD (de

Wilde et al., 2017). Vitamin E (α-tocopherol) supplementation

delayed functional decline and reduced caregiver burden in mild

to moderate AD (Table 2, Sano et al., 1997; Dysken et al.,

2014). Epidemiological studies using older cohorts from the

Netherlands and the Cache County (Utah, USA) concluded

vitamin E intake is associated with a lower risk of developing

AD (Engelhart et al., 2002; Zandi et al., 2004). A Rotterdam

study andCanadian health and aging (1991–2002) study reported

attenuated risk of cognitive decline in AD patients on high

vitamin E supplementation (Devore et al., 2010; Basambombo

et al., 2017). Conversely, numerous studies have reported vitamin

E does not reduce AD risk or slow AD pathogenesis (Masaki

et al., 2000; Luchsinger et al., 2003; Petersen et al., 2005; Gray

et al., 2008; Kryscio et al., 2017).

Why has vitamin E shown mixed results in clinical trials?

While vitamin E supplementation could simply restore vitamin

levels in AD, baseline vitamin E levels are often not checked.

Also, vitamin E bioavailability can be variable due to differential

gut absorption from competing nutrients e.g., plant sterols;

variable brain levels arising from different vitamin E forms

with varying pharmacokinetics and circulating high-density

lipoproteins levels, the latter transports and mediates brain

TABLE 2 | Clinical trials involving Vitamin E in Alzheimer’s disease (AD), amnestic mild-cognitive impairment (MCI) and cognitively normal.

Study Study

population

Treatment Dose Duration

(years)

Outcome measures Results

Sano et al.

(1997)

341 AD cases Vitamin E

(α-tocopherol)

2000 IU daily

Oral

2 Alzheimer’s Disease Cooperative

Study/Activities of Daily Living

(ADCS);

Mini-mental state examination

(MMSE)

Blessed-Dementia scale

Delayed time to occurrence of

clinical outcomes that reflect

substantial functional deterioration

(p = 0.001).

Patients suffered a fall (12); had

syncope (6) and had a dental event

(1).

Petersen et al.

(2005)

769 Amnestic MCI cases Vitamin E 2000 IU daily

Oral

3 Conversion to AD

MMSE Alzheimer Disease

Assessment Scale–Cognitive

Subscale (ADAS-cog)

ADCS

Clinical dementia rating (CDR)

Global Deterioration Scale (GDS)

Neuropsychological battery tests

No clinical benefit.

Lloret et al.

(2009)

33 AD cases Vitamin E

(α-tocopherol)

800 IU daily

Oral

0.5 MMSE

Blessed-Dementia Scale

Clock drawing test

Blood total glutathione levels and

oxidized glutathione Blood

malondialdehyde

Vitamin E responders showed

significantly decreased oxidative

stress and improved cognitive

performance (p < 0.05).

Non-responders to Vitamin E

showed significant decline in

cognition (p < 0.02).

Dysken et al.

(2014)

613 AD cases Vitamin E

(α-tocopherol)

2000 IU daily

Oral

2 ADCS

MMSE ADAS-cog

Caregiver Activity Survey

Slowed functional decline

(p = 0.03).

Kryscio et al.

(2017)

7,540 cognitively normal Vitamin E 400 IU daily

Oral

6 Memory Impairment Screen

Consortium to Establish a Registry

in Alzheimer’s Disease

No significant cognitive benefits.

Frontiers in Aging Neuroscience | www.frontiersin.org 4 July 2020 | Volume 12 | Article 196

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ashraf and So Spotlight on Ferroptosis in Alzheimer’s Disease

import of vitamin E. Differential responses of AD patients to

vitamin E supplementation has led to stratification of individuals

into respondents and non-respondents in one study (Lloret

et al., 2009). Vitamin E effectively lowered oxidative stress

and maintained cognitive status in respondents. Surprisingly,

non-respondents experienced a sharp decline in cognition, to

levels even lower than patients receiving a placebo (Lloret et al.,

2009). Further investigations are required to successfully exploit

vitamin E supplementation.

N-Acetylcysteine
GSH is diminished in the hippocampus and frontal cortex

in AD (Mandal et al., 2015), while lower plasma GSH is

associated with severe cognitive impairment (McCaddon et al.,

2003). Restoration of brain GSH with oral supplementation

is ineffective as GSH rapidly hydrolyzes and insufficiently

BBB-penetrant (Witschi et al., 1992). Similarly, L-cysteine

(rate-limiting substrate for GSH synthesis) is inadequate

due to extensive metabolism (Borgström and Kågedal,

1990). However, N-acetylcysteine, a precursor of L-cysteine,

can efficaciously cross the BBB into the brain (Tardiolo

et al., 2018). N-acetylcysteine mediates restoration of brain

GSH levels and GPX4 activity in an AD mouse model,

counteracting lipid peroxidation (Pocernich et al., 2000; Fu

et al., 2006; Hsiao et al., 2012). A small trial showed 6-months

N-acetylcysteine treatment did not improve Mini-Mental

State Examination (MMSE) scores or daily living (Adair

et al., 2001). Midpoint evaluation did show a trend towards

a beneficial effect on the MMSE score though (p = 0.056),

particularly on the letter fluency task (Table 3). N-acetylcysteine

therapy may be more robust by increasing bioavailability,

e.g., by using N-acetylcysteine amide (Hara et al., 2017).

This N-acetylcysteine derivative has augmented permeability

through cellular and mitochondrial membranes, as shown

in the PD mouse model (Bahat-Stroomza et al., 2005).

Interestingly, MCI and AD subjects supplemented with

combined N-acetylcysteine, α-tocopherol, folate, vitamin B12,

methionine, acetyl-L-carnitine demonstrated either stable

or improved cognitive performance and mood/behavior

(Remington et al., 2015a,b, 2016).

Selenium
Selenium is decreased in the hippocampal, temporal, and cortical

regions in AD, consistent with attenuated antioxidant capacity

and augmented oxidative stress (Varikasuvu et al., 2019).

Selenium, as selenocysteine, is essential for GPX4 synthesis.

Six-months of consumption of Brazil nuts (high selenium) by

MCI subjects replenished selenium levels (Table 4), improving

verbal fluency and constructional praxis (Cardoso et al., 2016).

Sodium selenate (over 24-weeks) lessened brain deterioration as

TABLE 3 | Clinical trials involving N-acetylcysteine in Alzheimer’s disease (AD) and mild-cognitive impairment (MCI).

Study Study

population

Treatment Dose Duration

(years)

Outcome measures Results

Adair et al.

(2001)

47 AD cases N-Acetylcysteine (NAC) 50 mg/kg daily

Oral

0.5 Mini-mental state examination

(MMSE)

Activities of daily living (ADL)

Boston naming test

Gesture to command

Wechsler memory scale figure

reproduction (immediate)

Hopkins verbal learning test recall

(immediate) and recognition

Letter and category fluency

Judgement of line orientation

Significantly improved performance

on letter fluency (p = 0.008).

A trend of improved MMSE

(p = 0.056).

Remington

et al. (2015a)

106 AD cases NAC

Folate

Alpha-tocopherol

B12

S-Adenosyl methionine

(SAM)

Acetyl-L-carnitine

600 mg

400 µg

30 IU

6 µg

400 mg

500 mg, twice daily

Oral

1 Clox-1 and the age- and

education-adjusted (AEMSS)

Dementia Rating Scale (DRS)

Behavioral and psychological

symptoms of dementia (BPSD)

Neuropsychiatry inventory (NPI)

ADL

Improved cognitive performance

(p < 0.008).

Remington

et al. (2015b)

34 MCI cases NAC

Folate

Alpha-tocopherol

B12

SAM

Acetyl-L-carnitine

600 mg

400 µg

30 IU

6 µg

400 mg

500 mg, twice daily

Oral

1 AEMSS

Dementia Rating Scale (DRS)

Improved cognitive performance

(p < 0.05).

Remington

et al. (2016)

24 AD cases NAC

Folate

Alpha-tocopherol

B12

SAM

Acetyl-L-carnitine

600 mg

400 µg

30 IU

6 µg

400 mg

500 mg, twice daily

Oral

1 AEMSS

DRS

BPSD

NPI

ADL

No significant improvements or

decline observed.
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TABLE 4 | Clinical trials involving Selenium in Alzheimer’s disease (AD) and mild-cognitive impairment (MCI).

Study Study

population

Treatment Dose Duration

(years)

Outcome measures Results

Cardoso et al.

(2016)

31 MCI cases Selenium (from Brazilian

nuts)

288.75 µg daily

Oral

0.5 Consortium to Establish a Registry

in Alzheimer’s Disease

Selenium status

Erythrocyte glutathione peroxidase

(GPX4) activity

Oxygen radical absorbance

capacity (ORAC)

Plasma malondialdehyde

Improved verbal fluency (p = 0.007)

and constructional praxis (p = 0.03).

Increased blood selenium

(p < 0.001) and GPX4 (p = 0.006).

Malpas et al.

(2016)

40 AD cases Selenate (sodium salt) 30 mg daily

Oral

2 Alzheimer’s Disease Assessment

Scale cognitive subscale

(ADAS-Cog)

Mini-mental state examination

(MMSE)

Controlled oral word association

test (COWAT)

Category fluency test (CFT)

Cogstate computerized battery

Structural and diffusion-weighted

MRI

FDG-PET (glucose metabolism)

Biomarker analysis (β-amyloid, total

and phosphorylated tau)

Less deterioration observed on the

diffusion-weighted MRI (p < 0.05).

Mild pre-syncope (1) or dropped

out of the study due to skin rash

and nail changes (2).

Cardoso et al.

(2019)

40 AD cases Selenate (sodium salt) 30 mg daily

Oral

0.5 ADAS-Cog

MMSE

COWAT

CFT

Cogstate computerized battery

Total selenium serum and CSF

concentrations

Responders to treatment showed

increased serum (p = 0.007) and

CSF selenium (p = 0.03), and

showed no significant cognitive

decline.

assessed by diffusion tensor MRI, but did not impact cognitive

performance (Malpas et al., 2016). Interestingly, on stratification

into responders and non-responders based on the elevation of

CSF levels, MMSE scores did not deteriorate in responders

compared to non-responders (Cardoso et al., 2019). Conversely,

in the PREADVISE clinical trial, selenomethionine did not

reduce the incidence of dementia in cognitively healthy males,

aged >60 years (Kryscio et al., 2017), but subjects were not

stratified according to their CSF selenium status. Furthermore,

the incidence of dementia on follow-up was low, possibly

attributable to selection bias as participants were more educated

than the general population and exhibited greater cognitive

reserve. The absence of biomarkers for target engagement of

supplements renders the translation of basic scientific findings

into robust prevention trials difficult.

TARGETING FERROPTOSIS—THE FUTURE
OF AD?

Despite rigorous clinical testing of pharmaceutical agents

in AD, only four have been licensed: anticholinesterase

inhibitors (donepezil, galantamine, and rivastigmine) that

increase synaptic acetylcholine to aid learning and memory;

and an NMDA-receptor antagonist (memantine). Interestingly,

the neuroprotective effects of memantine were reported to

be mediated by enhancing the astroglial system X−

c activity

(Okada et al., 2019). The increased glutamate export appears to

activate inhibitorymetabotropic glutamate receptors to attenuate

cognitive impairment from hyperactivation of thalamocortical

glutamatergic transmission (Okada et al., 2019). However, the

beneficial effects may result from inhibition of ferroptosis arising

from the concomitant increased intracellular cystine/GSH

(see above).

Animals fed with excess iron demonstrate increased

lipid peroxidation, BBB breakdown, altered mitochondrial

dynamics, β-amyloid deposition, tau hyperphosphorylation,

and loss of dendritic spine density—reminiscent of AD

pathology (Sripetchwandee et al., 2014, 2016). Combinatorial

therapy with deferiprone and N-acetylcysteine, exerted greater

neuroprotection from iron-induced toxicity than monotherapy,

including restored dendritic spine density, mitochondrial

balance and ameliorated AD pathology (Sripetchwandee et al.,

2014, 2016). Furthermore, the concept of targeting ferroptosis

is supported by evidence of iron dyshomeostasis, altered system

X−

c dynamics (diminished GSH/GPX4 activity) and enhanced

lipid peroxidation in AD (Ashraf et al., 2020; Figure 1).

The challenges of conclusively identifying ferroptosis in vivo

and post-mortem brain samples are hindered by the lack of

specific markers for cells undergoing ferroptosis. It is important

to state that different cell death patterns happen in parallel

contributing to disease pathology. For example, it is known

that ferroptosis and other types of cell deaths (necroptosis and

apoptosis) occur concurrently following ischemic and traumatic

brain injury (Zille et al., 2017; Magtanong and Dixon, 2018). The
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FIGURE 1 | Overview of ferroptosis in Alzheimer’s disease (AD). During the process of ferroptosis, autophagy of ferritin (ferritinophagy) contributes to an increased

labile iron pool, leading to elevated lipid peroxidation and oxidation of polyunsaturated fatty acids. This is aggravated by inhibition of the cystine/glutamate antiporter

(system X−

c ), rendering the cell-deficient of cysteine, which has a domino effect of lowering glutathione (GSH) levels and impairs the activity of a selenium-dependent

lipid repair enzyme, glutathione peroxidase-4 (GPX4) — a master regulator of ferroptosis. Combinatorial therapies targeted at maintaining iron homeostasis and

restoring GSH levels/GPX4 will help to lower iron-induced lipid peroxidation and inhibit ferroptosis in AD.

detection ofmarkers that may indicate the presence of ferroptosis

does not preclude the presence of other types of cell death.

There are no established biomarkers that can detect ferroptosis

in humans although different lines of evidence implicate a role

for ferroptosis in AD. Development of a ‘‘ferroptosis-specific’’

antibody would be very informative in examining the effects of

ferroptosis in multiple contexts including post-mortem samples

and in vivo experiments.

Unlike clinical trials targeting β-amyloid, ferroptosis-

modulating clinical trials have been exploratory and dose

optimization still required as well as replication on a larger

scale (Nikseresht et al., 2019). Concomitant identification

of biomarkers for ferroptosis is also required for more

rigorous inclusion/exclusion into clinical trials and robust

evaluation/formal testing of novel therapies targeting the

ferroptotic cascade. Many outstanding questions remain

though—what are the individual contributions from microglia,

astrocytes, oligodendrocytes, and neurons to ferroptosis? Is iron

and its proteins differentially expressed in glia and neurons?

What is the role of other transition metals, zinc, and copper, in

ferroptosis and possible interactions with iron?

Mitochondria is the major site of energy production

but coincidently for iron metabolism also. Mitochondrial

dysfunction is thought to occur early in AD pathogenesis

(Horowitz and Greenamyre, 2010). Damaged mitochondria are

cleared by mitophagy to maintain mitochondrial homeostasis

and shown to inhibit AD pathology in animal AD models (Fang

et al., 2019). Furthermore, mitochondria depletion by Parkin-

mediated mitophagy inhibited cysteine-deprivation induced

ferroptosis (Basit et al., 2017). How iron metabolism relates

to mitophagy, is mitophagy related to ferroptosis or a distinct

phenomenon in AD remains to be addressed.

Neuroinflammation is a major characteristic of AD and

represents a useful therapeutic target (Ong and Farooqui,

2005). Although crosstalk exists between neuroinflammation

and iron metabolism (Urrutia et al., 2014), the relationship

and contribution of ferroptosis to inflammation remains to

be addressed.

Our discussion so far has focused on the cellular LIP, but 95%

of functional iron in the body is in heme. Heme from hemoglobin

breakdown can be a redox-active iron source, to induce/enhance

lipid peroxidation and ferroptosis (NaveenKumar et al.,

2018). AD is characterized by perturbed BBB permeability

(Sripetchwandee et al., 2014, 2016). It will be pivotal to

delineate the relationship between plasma and brain heme/iron

homeostasis, and peripheral contributions to ferroptosis at

different stages of the disease. Such knowledge will potentially

identify peripheral ferroptosis biomarkers needed for future
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anti-ferroptosis trials to formally test ferroptosis contributions

to AD and possibly other neurodegenerative diseases.

CONCLUSION

Iron dyshomeostasis, impaired antioxidant defense, and lipid

peroxidation are features of ferroptosis that could offer successful

therapeutic targets in AD. Research on ferroptosis in the context

of AD and other neurodegenerative diseases is still in its infancy.

Exploration of the mechanism of ferroptosis and its role in

AD has the potential to propose novel therapeutic approaches

for, hitherto absent, highly effective treatments against AD and

possibly, other neurodegenerative diseases.
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