
SpotSigs: Robust and Efficient Near Duplicate Detection in
Large Web Collections

Martin Theobald Jonathan Siddharth Andreas Paepcke
Stanford University

Department of Computer Science
353 Serra Mall, Stanford CA-94305

{theobald,siddharth.jonathan,paepcke}@cs.stanford.edu

ABSTRACT
Motivated by our work with political scientists who need
to manually analyze large Web archives of news sites, we
present SpotSigs, a new algorithm for extracting and match-
ing signatures for near duplicate detection in large Web
crawls. Our spot signatures are designed to favor natural-
language portions of Web pages over advertisements and
navigational bars.

The contributions of SpotSigs are twofold: 1) by com-
bining stopword antecedents with short chains of adjacent
content terms, we create robust document signatures with a
natural ability to filter out noisy components of Web pages
that would otherwise distract pure n-gram-based approaches
such as Shingling; 2) we provide an exact and efficient, self-
tuning matching algorithm that exploits a novel combina-
tion of collection partitioning and inverted index pruning for
high-dimensional similarity search. Experiments confirm an
increase in combined precision and recall of more than 24
percent over state-of-the-art approaches such as Shingling
or I-Match and up to a factor of 3 faster execution times
than Locality Sensitive Hashing (LSH), over a demonstra-
tive “Gold Set” of manually assessed near-duplicate news
articles as well as the TREC WT10g Web collection.

Categories and Subject Descriptors: H.3.7: Digital Li-
braries. Collection, Systems Issues.

General Terms: Algorithms, Experimentation, Performance,
Reliability.

Keywords: Stopword Signatures, High-dimensional Simi-
larity Search, Optimal Partitioning, Inverted Index Pruning.

1. INTRODUCTION
Detecting near-duplicate documents and records in large

data sets is a long-standing problem. Syntactically, near du-
plicates are pairs of items that are very similar along some
dimensions, but different enough that simple byte-by-byte
comparisons fail. On the World Wide Web, document du-
plication is particularly problematic, and in fact any of the
major search engines attempts to eliminate highly similar
documents from its search results.

Moreover, we encountered the problem in the related con-
text of our Web Sociologists Workbench [26]. This project
constructs tools for political scientists, historians, and soci-
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ologists to help them analyze large Web archives. Our users’
first project was to analyze news coverage around a Califor-
nia state election. We had crawled numerous online news
sites, and had filtered obviously uninteresting pages auto-
matically. The remaining pages were to be tagged manually
by content semantics, such as unions, feminism, celebrity, or
local issue. These semantic differences were subtle enough
that machine learning algorithms of sufficient accuracy could
not readily be constructed. Human coders went to work on
this collection, using a specially constructed visual tagging
tool. Unfortunately, they failed to complete the task. Exces-
sive amounts of near duplicates overwhelmed their efforts.

Figure 1: Near-duplicate Web pages 1): identical
core content with different framing and banners (ad-
ditional ads removed).

There are in fact two types of near duplicates for this ap-
plication. Figure 1 shows a pair of same-core Web pages that
only differs in the framing, advertisements, and navigational
banners added each by the San Francisco Chronicle and New
York Times. Both articles exhibit almost identical core con-
tents, reporting on presidential candidate Obama’s take on
faith during the 2008 U.S. pre-election phase, because both
were delivered by Associated Press. Figure 2 is an example
of the opposite case from Yahoo! Finance, showing two daily
summaries of the NASDAQ and Dow Jones indexes. In par-
ticular for domains like stock markets, news sites often use
very uniform layouts and the actual contents-of-interest only
constitute a fraction of the page. Hence, though visually
even more similar than the pair in Figure 1, the pair in Fig-



ure 2 should not be identified as near duplicates. Typically,
our sociologists would only consider Figure 1’s same-core
pair to be near duplicates, since the core articles are their
focus. Near duplicates would not be discarded but could be
collected into a common set which is then tagged in batch.

Figure 2: Near-duplicate Web pages 2): identical
framing but slightly different core content.

The frequent presence of many diverse semantic units in
individual Web pages makes near-duplicate detection par-
ticularly difficult. Framing elements for branding, and ad-
vertisements are often freely interspersed with other con-
tent elements. The branding elements tend to be deliber-
ately replicated across the pages of individual sites, creating
a “noise level” of similarity among pages of the same site.
Another difficulty that many Web pages present to near-
duplicate detection algorithms is that coherent units of text
are often small and lexically fragmented. This fragmenta-
tion occurs because HTML tables are used for layout control.
The insertion of images, ads, or entirely unrelated material
that is arranged to either side of a visually uninterrupted
text segment may thereby partition the text lexically: a lin-
ear scan through the page source finds the text interrupted
by all kinds of neighboring layout material. Algorithms for
duplicate detection must therefore be particularly robust.

Even if care is taken to avoid exact duplicates during the
collection of Web archives, near duplicates frequently slip
into the corpus. For example, while long-term archives for
news sites are usually closed, many news sites contain small
archives of material published during recent days. A crawler
that harvests such a site daily will keep stumbling into those
areas. However, rather than re-collecting identical pages,
the crawler is served with different framing ads upon each
access, which introduces near duplicates into the archive.

1.1 Contributions
• SpotSigs provides a robust scheme for extracting char-

acteristic signatures from Web documents, thus aiming
to filter natural-language text passages out of noisy Web
page components. While our approach is similar to Shin-
gling [7], it provides a more semantic pre-selection of shin-
gles. The SpotSigs parser only needs a single pass over an

incoming token stream, which is much more efficient, eas-
ier to implement, and less error-prone than sophisticated
and inherently expensive tools for layout analysis, and it
remains largely independent of the input format.

• We propose an exact and self-tuning, highly parallelizable
algorithm for similarity search in high-dimensional feature
spaces that yields no false negatives nor positives due to
the matching procedure itself. Yet we are able to show very
competitive runtimes to the fastest known but more error-
prone hashing schemes like I-Match [12, 22] and Locality
Sensitive Hashing (LSH) [20, 15]—if the similarity thresh-
old is high. Moreover, SpotSigs creates clustered output
in the form of all linked pairs of near duplicates.

• For low similarity thresholds, using our signature scheme
still significantly improves recall of potentially faster but
more “brittle” hashing approaches such as I-Match. It also
allows for a more effective and robust parameterization of
LSH which may decrease the amount of tuning required
for these methods [1, 23].

• We provide a thorough experimental evaluation over a very
challenging, manually curated“Gold Set”of near-duplicate
news articles and over a large-scale Web corpus, compar-
ing SpotSigs with state-of-the-art approaches such as Shin-
gling and Jaccard/Cosine similarity for measuring docu-
ment resemblance, as well as I-Match and LSH for efficient
matching.

2. RELATED WORK
Broder et al. [7] proposed a Shingling algorithm, coined

DSC, as a method to detect near duplicates by comput-
ing a sketch of the document. A subset of shingles, or n-
grams, from each document is chosen as its sketch, and sim-
ilarity between two documents is computed based on the
common Jaccard overlap measure between these document
sketches. To reduce the complexity of Shingling for pro-
cessing large collections, the use of “super shingles” (DSC-
SS) was later proposed by Broder in [5]. DSC-SS makes
use of meta-sketches, i.e., sketches of sketches, with only
a minor decrease in result precision. Hod and Zobel [17]
investigate a variety of approaches for filtering good shin-
gles, while Büttcher and Clarke [9] focus on information-
theoretic measures such as Kullback-Leibler divergence in
the more general context of search. Recently, Henzinger [16]
combined two algorithms for detecting near-duplicate Web
pages, namely Broder’s DSC and Charikar’s [10] random
projection algorithm. Henzinger improved on precision com-
pared to using the constituent algorithms individually. More-
over, sophisticated clustering schemes allow for incorporat-
ing additional knowledge in the form of explicit constraints
to the clustering process [21, 29]. Incorporating informa-
tion about document attributes or the content structure for
near-duplicate clustering [30] has also been suggested.

Another scheme for detecting similar documents is finger-
printing based on work by Manber [24], and subsequent work
by Brin, Davis and Garcia-Molina [27], Garcia-Molina and
Shivakumar [28], and more recently by Manku et al. [25].
A document fingerprint is typically a collection of integers
that represent some key content in the document, wherein
hashes of words or entire sentences are concatenated to some
bit string to generate a characteristic fingerprint of the doc-
ument. These fingerprinting schemes vary in the specific
hash function used, as well as in the choice of strings used
for hashing. Hash-value-based schemes like [7] pick strings
whose hash values are multiples of an integer. Position-
based schemes [4], on the other hand, select strings based on
their offset in a document. Conrad et al. [14] and Chowdhury
et al. [12] choose word strings with high inverse document
frequency (IDF) [2] using collection statistics. Their I-Match
algorithm [12, 22] makes use of external collection statistics



and improved on recall by introducing multiple fingerprints
(based on different lexica) per document.

Locality Sensitive Hashing (LSH), proposed by Indyk and
Motwani [15, 20], is an approximate similarity search tech-
nique that scales to both large and high-dimensional data
sets. LSH can be tuned by concatenating k signatures from
each data object into a single hash value for high precision,
and by combining matches over l such hashing steps—using
independent hash functions—for good recall. Min-hashing
investigated by [6, 13, 18] has the interesting property that
the probability of a match (i.e., a hash collision) between
two data objects exactly confirms to the Jaccard similarity
of their feature sets, which allows LSH in combination with
Min-hashing to converge quickly to the full recall over near-
duplicate documents with high Jaccard similarity. More
self-tuning, iterative LSH approaches like LSH-Tree [3] or
Hamming-LSH [13], however, typically increase the number
of signature extraction and hashing steps involved. While
behaving significantly more robust than a single LSH step,
the increased amount of hashing may become the actual de-
limiting factor for runtime performance.

3. SPOT SIGNATURE EXTRACTION
The points (or “spots”) in the page at which spot signa-

tures are generated are all the locations where one out of
a previously chosen set of anchor words occurs. We call
the anchor words antecedents, which are typically chosen to
be frequent within the corpus. The most obvious, largely
domain-independent choices for natural-language text are
stopwords, like is, the, do, have etc., which are likely to oc-
cur in every document and whose occurrences are distributed
widely and uniformly within any snippet of natural-language
text. Hence spot signatures are expected to achieve more
semantic-driven document surrogates than other signature
schemes in that they tend to occur mostly in the natural-
language passages of Web documents and skip over adver-
tisements, banners, and the navigational components.

3.1 Concepts and Notation
A spot signature sj of a location in a document simply

consists of a chain of words that follow an antecedent word
aj at a fixed spot distance dj . We use the notation aj(dj , cj)
to denote a spot signature that is computed by finding a
contiguous spot chain of cj words, each of which is not itself
a stopword. For example, the(2,3) denotes a spot signa-
ture that is computed wherever the antecedent the occurs
in a document. For a spot distance d = 2 and chain length
c = 3, the signature would then consist of the second, forth
and sixth word after the occurrence of this antecedent. If
one of these words after the antecedent is itself a stopword,
we move on to the next non-stopword and then continue
building the chain. We also allow the chain to be cut off
if the whole signature would exceed the boundary of the
document and at least one non-stopword is found after the
antecedent. Chains of spot signatures may also overlap if
further antecedents are contained within the range of the
previous chain.

We hence call the quantity A = {aj(dj , cj)} a spot set.
We may apply multiple types of spot signatures to a single
document. For example, is(3,1), that(5,2), and is(2,1) are
all proper spot signature specifications that can be applied
to each document. When evaluating whether document B is
a near duplicate of document A, their spot set resemblance
is computed using the common Jaccard similarity measure.

3.2 Signature Extraction Example
Consider the last sentence in each of the two pages of

Figure 1: “At a rally to kick off a weeklong campaign for
the South Carolina primary, Obama tried to set the record

straight from an attack circulating widely on the Internet
that is designed to play into prejudices against Muslims and
fears of terrorism.”

Choosing the articles a, an, the and the verb is as an-
tecedents with a uniform spot distance of 1 and chain length
of 2, we obtain the set of spot signatures S = {a:rally:kick,
a:weeklong:campain, the:south:carolina, the:record:straight,
an:attack:circulating, the:internet:designed, is:designed:play},
which already characterizes the core content of the page very
well. Note that the banners in Figures 1 and 2 hardly con-
tain any of these otherwise frequent antecedents. Moreover,
for the stock market example in Figure 2, no signatures at
all would be extracted, such that the algorithm would con-
servatively skip over considering this pair as duplicates.

4. SPOT SIGNATURE MATCHING
Our key observation is that for any given similarity thresh-

old τ , we can provide tight upper bounds for the Jaccard
similarity of two documents just by looking at a single doc-
ument property each, e.g., by comparing the cardinality of
their signature sets or the length of their signature vectors.
This lets us drastically prune the search space between a)
potentially matching documents and b) the vector dimen-
sions at which we need to compare potential matches—if
the similarity threshold is high. To address a), we show how
to derive an optimal partitioning of the collection into buck-
ets of potentially matching documents, which minimizes the
size of the partitions while guaranteeing not to miss any po-
tential match (thus ruling out false negatives and positives
due to the matching procedure). As for b), we introduce
an efficient approach for a two-dimensional inverted index
pruning with early termination of the index traversals. Both
steps are developed on the basis of the very same bounding
approach for (multi-)set Jaccard similarity.

Even though the worst-case complexity of our algorithm
remains quadratic, we empirically show that SpotSigs can
outperform linear but more error-prone approaches such as
LSH for sufficiently large ranges of similarity thresholds τ .
In contrast to LSH or I-Match, our approach is exact and
self-tuning as it automatically adapts to the best-possible
partitioning of the spot signature sets for any given threshold
τ , without the need for any further algorithm-specific tuning
parameters.

4.1 Upper Bounds for Jaccard Similarity

4.1.1 Jaccard Similarity for Sets
Let sim(A,B) = |A ∩ B|/|A ∪ B| be the default Jaccard

similarity as defined over two sets A and B, each consisting
of distinct spot signatures sj in our case. A simple, yet tight
upper bound for the Jaccard similarity is

sim(A,B) =
|A ∩B|
|A ∪B| ≤

min(|A|, |B|)
max(|A|, |B|) (1)

since |A ∩ B| ≤ min(|A|, |B|) and |A ∪ B| ≥ max(|A|, |B|).
Without loss of generality, for |A| ≤ |B|, we thus find:

sim(A,B) ≤ |A|
|B| (2)

We now switch to a vector representation of spot signa-
tures for documents, where the vectors d1 and d2 correspond
to the sets A and B, respectively. Two document vectors d1,
d2 have similar length if |d1|/|d2| ≥ τ ; hence only similar-
length pairs can be near duplicates with respect to the pre-
defined threshold τ . That is, the bound in Inequality (2)
tells us that if we would like to consider only document pairs
〈d1, d2〉 with similarity sim(d1, d2) ≥ τ , we can safely disre-
gard any such pair where sim(d1, d2) ≤ |d1|/|d2| < τ . This



is equivalent to omitting those pairs 〈d1, d2〉 from the pair-
wise vector comparisons, where

|d2| − |d1| > (1− τ)|d2| for |d1| ≤ |d2| (3)

without ever inspecting their spot signature sets or perform-
ing any vector operations for comparison. This observation
will be key for partitioning the collection, as it allows us to
efficiently map documents into buckets of similar signature
vector lengths in a single, linear pass through the collection.

4.1.2 Generalization for Multi-Sets
The default Jaccard similarity is defined over binary vari-

ables only, i.e., elements being present in a set or not. We are
now interested in generalizing Jaccard to also take weighted
variables, hence multi-sets of spot signatures, into account,
continuing to maintain tight upper bounds for the similar-
ity of two documents just given the lengths of their cor-
responding signature vectors. The rationale behind this is
that multi-sets of signatures may characterize a document
better, since they allow for capturing the frequency of in-
dividual signatures and hence the length of the document
more accurately. For two multi-sets A and B, we define the
weighted multi-set generalization of Jaccard to be

s̃im(A,B) =

∑
sj∈A∩B min (freqA(sj), freqB(sj))∑
sj∈A∪B max (freqA(sj), freqB(sj))

(4)

where freqA(sj) denotes the frequency of SpotSig sj in the

spot signature multi-set A. Then s̃im(A,B) can similarly
to sim(A,B) be upper-bounded by:

s̃im(A,B) ≤
min

(∑
sj∈A freqA(sj),

∑
sj∈B freqB(sj)

)
max

(∑
sj∈A freqA(sj),

∑
sj∈B freqB(sj)

) (5)

Again without loss of generality, for |d1| =
∑

sj∈A freqA(sj)

and |d2| =
∑

sj∈B freqB(sj), we get:

s̃im(d1, d2) ≤ |d1|
|d2|

for |d1| ≤ |d2| (6)

Here, d1 and d2 are frequency-weighted vectors represent-
ing multi-sets of spot signatures A and B, which allows for
a compact (and sparse) representation of these multi-sets.
Note that for the special case when A and B are sets, the
two Inequalities (2) and (6) provide exactly the same bound

for sim and s̃im, respectively; and in fact, both measures
yield exactly the same similarity value in this case.

4.2 Optimal Partitioning
According to the pruning condition in Inequality (3), we

may safely ignore all pairs of documents during the match-
ing process whose SpotSig vectors exceed a certain difference
in length. Consequently, before comparing any signature
sets, we partition the documents into buckets of potentially
matching pairs. Then only spot sets within the same or at
most two subsequent buckets are near-duplicate candidates
and need to be compared. We hence aim at finding a con-
tiguous partitioning [pk, pk+1) over the discrete distribution
of vector lengths |di| ∈ [1, ρ), such that all pairs 〈di, di′〉 with
similar vector lengths are “close” to each other. Note that it
is not possible to eliminate all borderline cases for any arbi-
trary distribution of |di| by a single contiguous partitioning
[pk, pk+1)—there could always be a borderline pair that is
highly similar but is spread across two different partitions—
but we can in fact find a partitioning such that any two
similar documents can at most be located in two contiguous
partitions. We thus define the following three conditions for
an optimal partitioning of documents in a collection.

For a given range of vector lengths |di| ∈ [1, ρ], find a
partitioning [pk, pk+1) with 1 ≤ pk ≤ ρ such that:

(A) For all pairs 〈di, di′〉 with |di| ≤ |di′ |, |di|/|di′ | ≥ τ and
|di| ∈ [pk, pk+1), di and di′ belong to either the same parti-
tion or two subsequent partitions, i.e., |di′ | ∈ [pk−1, pk+2)
(no false negatives).

(B) There is no pair 〈di, di′〉 with |di| ≤ |di′ |, |di|/|di′ | < τ
and |di| ∈ [pk, pk+1), that is mapped into the same parti-
tion, i.e., |di′ | /∈ [pk, pk+1) (no false positives).

(C) The width of all partitions pk+1 − pk is minimized (i.e.,
the amount of partitions is maximized) for 1 ≤ pk ≤ ρ with
respect to conditions (A) and (B) (minimality).

While (A) and (B) would suggest finding the partitions
by looking at all combinations of documents, which would
be expensive and could yield multiple valid partitions, there
is only one optimal partitioning that minimizes the parti-
tions’ widths as demanded by (C). This allows for a simple
constructive (but approximate) solution, using the pruning
condition as given by (3): Starting with p0 = 1, for any given
pk, choose pk+1 as the smallest integer pk+1 > pk such that
pk+1 − pk > (1− τ)pk+1, while pk+1 ≤ ρ.

Although the above series is not in closed-form, the pk

values can easily be found numerically by iterating over the
integer range [1, ρ). Then, according to (3), any SpotSig vec-
tor with length |di| = pk can at most have a distance to a
similar and larger vector di′ of |di′ |−|di| < (1−τ)|di′ |, which
is the case when |di′ | < pk+1 and thus |di′ | ∈ [pk, pk+1).
Hence di and di′ will be located in the same partition in this
case. More generally, for |di| ∈ [pk, pk+1), any larger Spot-
Sig vector di′ with length difference of at most |di′ | − |di| <
(1− τ)|di′ | will have at most a length of |di′ | < pk+2. Con-
versely, any shorter SpotSig vector di′ with length differ-
ence of at most |di| − |di′ | < (1 − τ)|di| will have at least
a length of |di′ | ≥ pk−1. Hence any possible pair of simi-
lar documents must either be within the same partition or
within two immediate neighbor partitions as demanded by
(A). Conversely, no pair of non-similar documents can be
within the same partition as demanded by (B).

By minimizing the partition widths according to (C), we
also minimize the number of documents being mapped into
the same partition (and thus the number of potentially match-
ing pairs). That is, for both variations of Jaccard simi-
larity defined in Subsection 4.1, the partition boundaries
pk ∈ [1, ρ) are merely a function of the threshold τ , regard-
less of the data. Note that this remains an approximate so-
lution as there could still be a smaller partitioning that does
not violate condition (B). However, with the above strategy,
conditions (A) and (B) will be satisfied for any distribution
of vector lengths |di| as a consequence of the bound provided
in (3), and the partitions can be created a priori without
knowing the actual data. Furthermore, this approximation
converges to—and finally reaches—the optimal solution as
the distribution gets more dense, i.e., it is equal to the opti-
mal solution when all distinct vector lengths |di| within the
given range [1, ρ) occur in the collection.

Further note that all documents di, which exceed the ex-
pected range of spot signature lengths ρ, can be mapped
into an additional partition [ρ,∞) for |di| ≥ ρ. Then ρ is a
fairly robust tuning parameter and can deliberately be cho-
sen large (or with ρ being just above the maximum spot
signature length of all documents in a given collection—if
known a priori).

4.3 Inverted Index Pruning
In addition to the above partitioning approach, which

breaks the overall quadratic runtime into much smaller sets
of candidates for pairwise comparisons, we can further ac-
celerate the deduplication step within the partitions through
the use of auxiliary inverted indexes. Using inverted indexes
for the actual deduplication instead of the vectors themselves
immediately reduces the amount of pairwise vector compar-



isons to only those pairs within a partition that share at
least one common spot signature. Furthermore, it allows for
a novel and elegant form of index pruning, again exploit-
ing the very basic similarity threshold as given by pruning
condition (3).

That is, for each partition k and spot signature sij in doc-
ument di, we store a list of pointers to all document vectors
di′ containing sij (including di itself) sorted in descending
order of vector lengths |di′ |. Then, starting with the least
frequent signature sij in di, we start processing these in-
verted lists until no yet unseen document di′ can still match
di with high similarity, which lets us reduce the amount
of necessary vector operations using several early breaking
conditions. Altogether, the expected performance can be
optimized by traversing the inverted lists for sij in ascend-
ing order of their length within each partition (hence by the
document frequency of sij in the given partition k) and by
processing multiple documents from different partitions in
parallel, e.g., in random order of vector lengths. The exact
behavior is captured by Algorithm 1. Note that in doing so,
SpotSigs already generates clustered output in the form of
a complete near-duplicate graph, with any document being
connected to all of its near duplicates, which might other-
wise require an expensive post-processing step.

4.3.1 SpotSigs Deduplication Algorithm
Algorithm 1 defines the exact behavior of the SpotSigs

deduplication step, which is in principle a highly optimized
nested loop with parallel processing of disjoint partitions
and various break conditions.

Algorithm 1 SpotSigs Deduplication

1: Input: document vectors di with weighted spot signatures sij ;
partitions P with boundaries [pk, pk+1) and inverted lists listkj

2: pairs← ∅
3: for all di in random order of |di| using t threads in parallel do
4: partitionk ← P.get(|di|)
5: sort all sij ∈ di by asc. document frequency in partitionk

6: δ1 ← 0
7: checkedi ← ∅
8: for all sij ∈ di do

9: listkj ← partitionk.get(sij)

10: δ2 ← 0
11: for all di′ ∈ listkj sorted by descending |di′ | do

12: δ2 ← |di| − |di′ |
13: if di = di′ or di′ ∈ checkedi then
14: continue
15: else if δ2 < 0 and δ1 − δ2 > (1− τ)|di′ | then
16: continue
17: else if δ2 ≥ 0 and δ1 + δ2 > (1− τ)|di| then
18: break
19: else if sim(di, di′ ) ≥ τ then
20: pairs← pairs ∪ {〈di, di′ 〉}
21: checkedi ← checkedi ∪ {di′}
22: end if
23: end for
24: δ1 ← δ1 + freqdi

(sij)

25: if δ1 ≥ (1− τ)max{|di′ |}d
i′∈partitionk−checkedi

then

26: break
27: end if
28: end for
29: if pk+1 − |di| ≤ (1− τ)pk+1 then
30: partitionk ← P.get(pk+1)
31: goto 6
32: end if
33: end for
34: return pairs

Here, the equality check di = di′ in line 13 may refer to
both, equal documents identified by some id or memory lo-
cation, or exact duplicates identified by a single checksum or
hash code comparison. Furthermore, remembering the set of
already checked documents checkedi for each di in lines 13
and 21 avoids potentially redundant Jaccard similarity com-

parisons. These could otherwise arise due to multiple spot
signatures pointing to the same document from different in-
verted lists.

Crucial for good runtime performance are the continue
and break conditions in lines 16, 18, and 26. That is, we
can apply a two-dimensional pruning of the inverted index
traversal using two additional bounds δ1 and δ2 for the dis-
tance | |di| − |di′ | | of di to any yet unseen document di′ lo-
cated in the same partition and/or inverted list. Thus, for
each di, δ1 is incremented by the frequency freq(sij) of sig-
nature sij in di whenever processing an index list listkj has
been finished; and δ2 is updated to |di| − |di′ | at each access
to the next di′ in listkj .
δ1 then is the minimum-possible distance of di’s length

to any other, yet unseen document in the same partition;
and δ2 is the distance to any other, yet unseen document in
the same inverted list. Both in turn provide lower-bounds
for the actual distances, which gives rise to multiple early
breaking conditions:

• δ1 ≤ |di|− |di′ | for di′ ∈ partitionk and di′ /∈ checkedi and
|di′ | ≤ |di| (line 26)

• δ1 + δ2 ≤ |di| − |di′ | for di′ ∈ partitionk and di′ ∈ listkj

and |di′ | ≤ |di| (line 18)

• δ1 − δ2 ≤ |di′ | − |di| for di′ ∈ partitionk and di′ ∈ listkj

and |di′ | > |di| (line 16)

The iteration into the next neighbor partition through
line 31 will occur at most once per document and hardly
affects runtime in practice. Note that the similarity check
for any 〈di, di′〉 pair is symmetrical, hence it suffices to check
each document only against its right neighbor partition.

Further note that we sort all sij ∈ di at most once by their
local document frequency in partition k. Then the obtained
ordering of signatures can be reused as approximation of the
document frequencies in the next neighbor partition k + 1
for the potential second iteration as well, which prevents
us from the overhead of a second sorting. In practice, this
strategy proved to outperform a sorting by global document
frequencies, which would in turn be an approximation of the
document frequencies in both the actual partition k as well
as the neighbor partition k + 1.

4.3.2 Deduplication Example
Suppose we have three documents d1 = {s1:5, s2:4, s3:4},

d2 = {s1:8, s2:4}, and d3 = {s1:4, s2:5, s3:5} with |d1| = 13,
|d2| = 12, and |d3| = 14, a threshold of τ = 0.8, and all three
documents are mapped into the same partition [pk, pk+1).
We can now deduplicate, for example, d1 using only a single
pairwise Jaccard computation on top of the index structures
as shown in Figure 3. Since s3 is the least frequent signature
in d1 with respect to this partition, we first navigate into the
inverted list for s3 to find d3 as a potential match. As this
is the first list considered, we get δ1 = 0, and in compari-
son to d3 we get δ2 = |d1| − |d3| = −1, such that none of
the continue/break conditions hold yet. We thus compute
sim(d1, d3) = (4+4+4)/(5+5+5) = 0.8 and indeed identify
〈d1, d3〉 as a near-duplicate pair. Now, as we finish process-
ing this list, we increment δ1 by freqd1(s3) = 4, such that
the break condition in line 26 already holds, which termi-
nates the index processing for d1. Note that a subsequent
processing of d3 will not be dispensable, since d3 might in
turn be similar to documents that do not necessarily have
to be similar to d1.

5. EXPERIMENTS
5.1 Implementation and Setup

SpotSigs is implemented as a compact Java prototype in
only about 500 lines of code. All experiments were per-
formed on a dual Xeon-3000 quad-core CPU with 32 GB
RAM. All processing steps for the SpotSigs, LSH, and I-
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Figure 3: Threshold-based inverted index pruning.

Match implementations, like parsing, sorting, and cluster-
ing are multi-threaded, using 8 threads to fully utilize the
machine’s 8 physical cores.

As for effectiveness, we report micro-averages for preci-
sion, recall, and/or F1-measure [2] as quality measures. We
distinguish absolute (i.e., user-perceived) precision and re-
call values obtained from manual judgments for the Gold
Set, thus showing the advantage of our signature extraction,
and relative recall evaluated against a synthetic recall base
for the much larger TREC collection, thus primarily aiming
to show the advantage of the efficient SpotSigs matcher.

For all runs, we consider normalized IDF values computed
separately for each signature scheme and corpus as idfj =
log(N/dfj)/log(N), where N is the corpus size, and dfj is
the document frequency of signature sj . The partitioning
range ρ is fixed to 1,000 for all runs as well, creating a static
partitioning of 501 partitions for τ = 1.0, still 41 partitions
for τ = 0.9, and only 3 partitions for τ = 0.1. As a simple
form of noise reduction, all HTML markup is removed from
both collections prior to signature extraction.

5.2 Competitors
• SpotSigs – Spot signatures in combination with the efficient

matching algorithm for multi-set Jaccard as described in
Section 4. SpotSigs by default performs a clustering step
within each partition (on top of the inverted index struc-
tures) to identify all near-duplicate pairs.

• LSH-S – Locality sensitive hashing (LSH) [20] using spot
signatures (S) which in turn serve as input for computing
the Min-hash [18] signatures. Since high-dimensional Min-
hash permutations are impractical (and in fact intractable)
for sparse data [18, 19], we use m random linear functions
of the form πi(x) = (αi · d + βi) modP , where αi and βi

are random integers drawn from the interval [0, D − 1],
and P is the first prime larger than the dimensionality D
of the signature vectors, similarly to the approach inves-
tigated by [6]. Candidates within each LSH bucket are
post-processed by an additional pairwise clustering step
(by calculating exact Jaccard similarities) to filter out false
positives and provide pairwise output similar to SpotSigs.

• I-Match – The original I-Match algorithm [22] using a sin-
gle SHA1 hash over a concatenation of tokens filtered by
stopwords, special-character tokens, and IDF. Because of
the single SHA1 hash used, I-Match does not need to fil-
ter out false positives in an additional clustering step but
merely returns all pairs of documents that get hashed to
the same SHA1 bucket to create comparable output to
SpotSigs and LSH.

• I-Match-S – An improved I-Match algorithm using sequenc-
es of spot signatures (S) instead of simple token sequences.

The runtime of the hashing-based LSH and I-Match ap-
proaches is linear in the number of documents n and dimen-
sions m, with O(k l nm) for LSH and O(nm) for I-Match,
versus O(n2m) in the worst case for SpotSigs. Despite our

unfavorable asymptotical behavior, we show that we are em-
pirically able to outperform the competitors in both runtime
and recall for high similarity thresholds τ .

5.3 Gold Set of Near Duplicate News Articles
Our first collection consists of 2,160 manually selected,

near-duplicate news articles distilled from a large Stanford
Web Base [11] crawl in 2006, with articles from SFGate.com,
Herald.com, Chron.com, MCClatchy.com, etc. The articles
have been clustered into 68 directories with an overall size of
102 MB. This “Gold Set” serves as our most valuable refer-
ence collection, since these near-duplicates have been man-
ually judged by human assessors which provides an ideal
recall base from an IR point-of-view. The huge variations
in the layouts used by different news sites makes this an
extremely difficult setting for any deduplication algorithm.
As shown in Figure 4, the macro-average Cosine similar-
ity of documents (using single tokens with TF·IDF weights)
across these directories is only 0.64. This demonstrates the
difficulty in processing this manually selected collection of
near-duplicate news articles, as even documents within the
same directory vary substantially in their overall content.
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Figure 4: Average Cosine similarity within near-
duplicate clusters in the Gold Set.

The processing time for parsing and extracting spot sig-
natures from these 2,160 news articles is I/O bound and
constantly takes 17 seconds for all algorithms. Runtime for
the actual deduplication step is then almost negligible and
takes 1.7 seconds at τ = 0.44 for SpotSigs and up to 9.4 sec-
onds at τ = 0.4 for Shingling, each at their best F1 spots.
That is, simple Shingling creates higher-dimensional signa-
ture vectors than SpotSigs (denoted as #Spots in Table 1).

5.3.1 SpotSigs vs. Shingling
Figure 5 compares F1 for SpotSigs (using our best sig-

nature scheme) against 3-Shingling and single-token signa-
tures, each for Jaccard similarity and Cosine measure (with
the latter using TF·IDF weights). Signatures exceeding an
IDF range of [0.2, 0.85] were filtered out for all competitors
as an effective means of noise- and dimensionality reduction.

Figure 5: SpotSigs vs. Shingling, each for Jaccard
(left) and Cosine (right), as functions of τ .

The plots show that SpotSigs with multi-set Jaccard con-
sistently performs best overall. Using the spot signatures
yields an impressive boost from 0.71 to 0.94 in F1 compared
to 3-Singling for Jaccard, and an increase from 0.53 to 0.89
for Cosine. For Jaccard this means a 24 percent relative in-
crease in F1, and even 40 percent for Cosine, respectively.



3-Shingling itself does not yield a conclusive improvement
in combined recall and precision over single tokens for this
hard setting. Note that using IDF statistics already provides
a more reliable filtering than the mod-p shingling proposed
by [7] that would simply keep only every pth shingle.

5.3.2 Choice of Spot Signatures
We now consider variations in the choice of SpotSigs an-

tecedents, thus aiming to find a good compromise between
extracting characteristic signatures while avoiding an over-
fitting of these signatures to particular articles or sites. Fig-
ure 6 shows that we obtain the best F1 result from a combi-
nation of articles and flexions of the verbs be, can, will, have,
do*, mostly occurring in text contents and less likely to oc-
cur in ads or navigational banners. Using a full stopword
list (e.g., the official 571 list used in SMART [8]) already
tends to yield overly generic signatures but still performs
significantly better than IDF-filtered Shingling. Similarly,
we find a chain length of 3 and a uniform spot distance of
2 to slightly increase F1 by about 1 absolute percent each
(figures omitted). Hence, although the spot signature ex-
traction is highly tunable, it proves to be fairly robust for
a variety of different stopword antecedents, spot distances,
and chain lengths.
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Figure 6: SpotSigs with different antecedents.

5.3.3 SpotSigs vs. Hashing
Table 1 summarizes our results for SpotSigs versus the

hashing-based LSH-S and I-Match(-S) variants. Recall that
our entire matching approach requires only the configurable
parameter τ and an optional IDF range, whereas LSH-S
additionally introduces k and l, and I-Match does not even
allow for setting a similarity threshold.

For LSH-S, we keep the IDF range fixed to [0.2, 0.85], thus
using exactly the same spot signatures as input for both
SpotSigs and LSH-S. With k fixed to 6, LSH-S needs about
l = 64 different hash tables to converge to the same recall
as SpotSigs (figures omitted). We choose l = 32 to achieve
about 90 percent absolute recall on the Gold Set, which
conforms to about 98 percent of relative recall compared to
the SpotSigs baseline, and we use this setting also for our
TREC experiments. Larger values of k, i.e., more specific
Min-hash signatures, would in turn require larger values of
l, i.e., more hash functions, for good recall.

For I-Match, we vary the bounds of the IDF interval, thus
significantly reducing the size of the feature spaces. We
achieve the best result for [0.4, 0.75] (essentially confirming
results from [12]), yielding 9,473 distinct spot signatures at
a perfect precision of 1.0, but a recall of only 0.03, and F1
of 0.05. Particularly remarkable is that recall for I-Match
increases by an order of magnitude when switching from
term-based feature vectors to the spot signatures used for I-
Match-S, with only a minor decrease in precision from 1.0 to
0.96. Overall, I-Match and I-Match-S achieve the highest ab-
solute (i.e., user perceived) precision but remain inherently
lossy in recall due to the single SHA1 hash function used
(coined “brittleness” in [12]). As discussed in [22], I-Match
recall may be improved by 40–60 percent by employing sev-

eral underlying lexica, which is in principle a similar effect
as the one LSH achieves by using multiple hash functions.

5.4 TREC WT10g
There is no manually curated gold set of duplicates for

larger benchmark collections such as WT10g, consisting of
1.6 Mio documents in 10 GB text data. Thus, based on our
Gold Set results, we employ I-Match-S as a highly precise
but relative recall base of near duplicates to evaluate Spot-
Sigs versus LSH with a focus on runtime. Furthermore, we
limit this setting to documents with at least 5 spot signa-
tures, i.e., documents with significant amounts of natural-
language text. This reduces the amount of documents con-
sidered from 1,691,565 to 1,171,960, as there are very many
short “junk” documents in the collection, and deduplicating
those is not in the scope of using spot signatures. We again
observe constant parsing and signature extraction times of
about 157 seconds for the WT10g collection.

5.4.1 SpotSigs vs. Hashing
Figure 7 shows that SpotSigs starts off by a factor of about

3 better runtimes than LSH-S at τ = 1.0, and it is still
2.6 faster than LSH-S at τ = 0.9 (see Table 2 for details),
until the plots cross at about τ = 0.78. This confirms to
a deduplication runtime of only 14.2 seconds at τ = 1.0
and 17.1 seconds at τ = 0.9 for SpotSigs. We also see that
the general runtime behavior of SpotSigs remains quadratic
after all, as the number of partitions and threshold-based
pruning effectiveness decreases with decreasing τ .

Table 2 also depicts two more baseline runs for SpotSigs at
τ = 0.9. Using only a single partition (NoPart) already ac-
counts with an overall runtime of 196.7 seconds, whereas a
run over this single partition without the threshold-based
pruning (NoPrune) even takes 2.8 hours. Note that full
pairwise vector comparisons without any index structure are
clearly intractable for a collection this size, and a respective
test run had to be stopped after several days.

Figure 7: Runtime (left) and relative recall (right)
for SpotSigs and LSH-S as functions of τ , using I-
Match-S as recall base.

For LSH-S, computing the k × l Min-hash signatures for
each document consumes a major amount of time, even
more than sorting the inverted lists in SpotSigs. Thus, both
methods generally yield comparable runtimes when LSH-S is
tuned to provide sufficient recall, e.g., at k = 6 and l = 32,
and the confidence threshold τ for SpotSigs is reasonably
high. Memory consumption (MB) is computed as a lower
bound for the data structures used, counting 4 bytes for an
integer and 2 bytes for a short integer (used for capturing
the frequency values for weighted Jaccard). For example,
for LSH-S with 25,033,143 overall spot signatures contained
in all vectors, we thus get 25,033,143×(4+2) bytes for the
SpotSig vectors, plus 32×1,171,960×4 bytes for the l Min-
hashes, and 1,171,960×4 bytes for the document ids. Spot-
Sigs, on the other hand, needs to keep the auxiliary inverted
indexes in memory instead of the Min-hash signatures, which
account with one additional 4-byte pointer for each spot sig-
nature. Tables 1 and 2 show that all setups considered here
easily fit into the main memory of current machines.



IDF τ k l #Spots MB Sort/Hash(msec) Clust.(msec) Total(msec) Prec. Rec. F1
SpotSigs [0.2,0.85] 0.44 n/a n/a 6,848 2.5 814 934 1,748 0.96 0.92 0.94

1-Shingles [0.2,0.85] 0.4 n/a n/a 16,097 24.8 1,167 8,284 9,451 0.81 0.64 0.71
3-Shingles [0.2,0.85] 0.4 n/a n/a 65,453 18.6 1,620 7,582 9,202 0.73 0.65 0.69

LSH-S [0.2,0.85] 0.44 6 32 6,848 2.0 345 365 710 0.96 0.90 0.93

I-Match [0.4,0.75] n/a n/a n/a 9,473 0.1 575 6 581 1.00 0.03 0.05
I-Match-S [0.4,0.75] n/a n/a n/a 4,575 0.1 274 10 284 0.96 0.23 0.37

Table 1: Summary of SpotSigs vs. Shingling (using Jaccard), LSH-S, and I-Match(-S) for the Gold Set.

IDF τ k l #Spots MB Sort/Hash(msec) Clust.(msec) Total(msec) Rel.Rec.
I-Match-S [0.4,0.75] n/a n/a n/a 86,579 49 10,741 1,554 12,295 1.00

SpotSigs [0.4,0.75] 1.0 n/a n/a 86,579 339 8,392 5,765 14,157 0.95
SpotSigs [0.4,0.75] 0.9 n/a n/a 86,579 339 7,051 10,085 17,136 0.96

LSH-S [0.4,0.75] 1.0 6 32 86,579 180 20,078 20,148 40,226 0.95
LSH-S [0.4,0.75] 0.9 6 32 86,579 180 20,213 24,301 44,514 0.97

NoPart [0.4,0.75] 0.9 n/a n/a 86,579 339 21,302 175,447 196,749 0.96
NoPrune [0.4,0.75] 0.9 n/a n/a 86,579 339 21,425 10,068,588 10,090,013 0.96

Table 2: Summary of SpotSigs and LSH-S for TREC WT10g, using I-Match-S as recall base.

6. CONCLUSIONS
SpotSigs proved to provide both increased robustness of

signatures as well as highly efficient deduplication compared
to various state-of-the-art approaches. We demonstrated
that for a reasonable range of similarity thresholds, sim-
ple vector-length comparisons may already yield a very good
partitioning condition to circumvent the otherwise quadratic
runtime behavior for this family of clustering algorithms.
Moreover, unlike other approaches based on hashing, the
SpotSigs deduplication algorithm runs “right out of the box”
without the need for further tuning, while remaining exact
and efficient. For low similarity thresholds or very skewed
distributions of document lengths, however, LSH remains
the method-of-choice as it provides the most versatile and
tunable toolkit for high-dimensional similarity search.

The SpotSigs matcher can easily be generalized toward
more generic similarity search in metric spaces, whenever
there is an effective means of bounding the similarity of two
documents by a single property such as document or sig-
nature length. Future work will focus on efficient access
to disk-based index structures, as well as generalizing the
bounding approach toward other metrics such as Cosine.
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