
RESEARCH ARTICLE

SPOTting Model Parameters Using a Ready-

Made Python Package

Tobias Houska1*, Philipp Kraft1, Alejandro Chamorro-Chavez1, Lutz Breuer1,2

1 Institute for Landscape Ecology and Resources Management, Research Centre for BioSystems, Land Use

and Nutrition (IFZ), Justus Liebig University, Giessen, Germany, 2 Centre for International Development and
Environmental Research, Justus Liebig University, Giessen, Germany

* tobias.houska@umwelt.uni-giessen.de

Abstract

The choice for specific parameter estimation methods is often more dependent on its avail-

ability than its performance. We developed SPOTPY (Statistical Parameter Optimization

Tool), an open source python package containing a comprehensive set of methods typically

used to calibrate, analyze and optimize parameters for a wide range of ecological models.

SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can

sample from eight parameter distributions. SPOTPY has a model-independent structure

and can be run in parallel from the workstation to large computation clusters using the Mes-

sage Passing Interface (MPI). We tested SPOTPY in five different case studies to parame-

terize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based

soil moisture routine, where we searched for parameters of the van Genuchten-Mualem

function and a calibration of a biogeochemistry model with different objective functions. The

case studies reveal that the implemented SPOTPY methods can be used for any model

with just a minimal amount of code for maximal power of parameter optimization. They fur-

ther show the benefit of having one package at hand that includes number of well perform-

ing parameter search methods, since not every case study can be solved sufficiently with

every algorithm or every objective function.

Introduction

Ecological models are often very complex and contain many parameters that need to be opti-

mized prior to model application. Reliable parameter estimation is highly dependent on vari-

ous criteria, including the selected algorithm, the objective function and the definition of the

prior parameter distribution. Difficulties involved in calibrating for example hydrological mod-

els have been partly attributed to the lack of robust optimization tools [1]. Numerous parame-

terization methods have been developed in the past (e.g. [2–6]), often published without access

to the source code. They are widely accepted to determine the values of non-measureable

parameters for a model [7]. Many of the methods have been established as part of the parame-

terization problem in hydrological modeling as early as in the 1990s [8,9]. The application of

these methods has now become more widespread in other ecological disciplines and therefore,

PLOSONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 1 / 22

OPEN ACCESS

Citation: Houska T, Kraft P, Chamorro-Chavez A,

Breuer L (2015) SPOTting Model Parameters Using a

Ready-Made Python Package. PLoS ONE 10(12):

e0145180. doi:10.1371/journal.pone.0145180

Editor: Dafeng Hui, Tennessee State University,

UNITED STATES

Received: July 28, 2015

Accepted: November 30, 2015

Published: December 17, 2015

Copyright: © 2015 Houska et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information files.

The source code of SPOTPY is available at: https://

pypi.python.org/pypi/spotpy/.

Funding: This work was funded by the LOEWE

excellence cluster FACE2FACE of the Hessen State

Ministry of Higher Education, Research and the Arts.

Further support was received by the DFG for Tobias

Houska (BR2238/13-1) and Alejandro Chamorro-

Chavez (BR2238/5 2). Lutz Breuer would like to

acknowledge funding of the Marie Curie Training

Network: Quantifying Uncertainty in Integrated

Catchment Studies (QUICS), PITN-GA-2013-607000.

The funders had no role in study design, data

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0145180&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://pypi.python.org/pypi/spotpy/
https://pypi.python.org/pypi/spotpy/


the methods proposed here, are in fact applicable to a large variety of models in ecology and

beyond.

The main goal of parameter optimization is to find one or more sets of parameters, which

enables a model to simulate an output with a quasi-optimal objective function. There have

been extensive discussions about the best way of model parameterization and calibration [10–

12], including dispute about whether there is one optimal parameter set or whether there are

several parameter sets of equal behavior (equifinality, [13]). The same is true for the discussion

of the best likelihood function to be used [14], how it is determined [15] and the parameter dis-

tribution from which parameters should be sampled [16]. Furthermore, improper application

of calibration methods can result in misleading parameter estimations [17]. However, nearly

no guidance exists which parameter estimation method should be used under specific optimi-

zation problems [18]. We want to contribute to these open questions by providing a package

that allows investigation of various aspects in model calibration, parameterization and uncer-

tainty analyses. The goal is to help users in testing and finding an efficient technique for their

specific parameter search problem.

Numerous ad hoc solutions for the combination of a single calibration/uncertainty method

and a single model exist. If one is interested in testing different methods, every solution has to

be searched, understood and adopted. This is why in recent years packages where published,

providing multiple methods for multiple models. Important ones are: Parameter ESTimation

and uncertainty analysis (PEST) [19], the Monte Carlo Analysis Toolbox (MCAT), a parameter

estimation toolbox [20] for the Soil Water Assessment Tool (SWAT), OpenBUGS (Bayesian

inference Using Gibbs Sampling) [21], STAN [22] and PYMC [23]. However, most of these

packages only allow usage of two or three multiple stochastic probabilistic methods. Packages

like STAN and PYMC concentrate on Markov Chain Monte Carlo (MCMC) methods. PEST

bridges the gap to evolutionary computation methods, a second group of probabilistic global

optimization methods [24], like e.g. Shuffled Complex Evolution (SCE-UA) [1], but has no

possibility to use e.g. the Generalized Likelihood Uncertainty Estimation method (GLUE)

[10,25], which is widely used to address the equifinality problem. MCAT helps to use the

GLUE methodology for models. None of these packages covers the wide range of available

parameter search methods. Further, no common criteria exist that place the development of

such packages in a formal framework. We therefore define five criteria, inspired by the criteria

for modern hydrological models [26], which we think are important:

1. Broadness: The available parameter estimation methods should cover a broad range of

method families, ranging from path-oriented optimizations to global parameter behavioral

uncertainty assessments. This is even more important as no single parameter estimation

technique is perfect [27,28] and just very small guidance exists, which parameter estimation

approach should be used under specific circumstances [18].

2. Modularity: Parameter estimation packages consist of several modules: the parameter

search algorithm, the objective function, a module to save the results of the model runs to

disk and the used model. By using a strict modular approach, any given search algorithm

can easily be combined with any objective function, giving the user the maximum freedom

to adopt a method to a given scientific question.

3. Independency: A model independent package facilitates widespread applications. While a

method that is bound to a given model can be used to explore parameter uncertainty, struc-

tural model uncertainty remains unquestioned. A model independent method allows the

comparison of different model structures using the same parameter space exploration tech-

nique and hence the comparison of model structural errors.

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 2 / 22

collection and analysis, decision to publish, or

preparation of the manuscript. There was no

additional external funding received for this study.

Competing Interests: The authors have declared

that no competing interests exist.



4. Scalability: This requirement is an extension of the portability claim [26]. While we agree,

that published codes should run both onWindows PC for method testing, as well as on

Linux based high performance computing (HPC) systems, scalability goes beyond the por-

tability claim. Scalability means on the one hand, a simple parallelization of the parameter

search, where the algorithm allows parallel computation. A package should allow using the

parallel power of HPC systems without the need for extensive knowledge of parallel systems.

On the other hand, scalability means the possibility to optimize the computational perfor-

mance of the model. The runtime of models that are fast to evaluate, like e.g. HBV [29] is

often dominated by the time needed to load the parameters and input data from disk, and

not by the CPU time. Tweaking the model to accept input data through memory can speed

up the model evaluation by a magnitude. A scalable package should therefore allow such

optimizations and not rely on input file manipulation as an interface between the parameter

estimation method and the model alone, as it is the case for most model independent esti-

mation packages.

5. Accessibility: Since a broad, modular package for parameter-estimation carries already a

generalized infrastructure for parameter estimation, publishing the package as a free soft-

ware enables method developers to extend it, without the need to reinvent for example like-

lihood definitions or parallelization structures. As such, new methods using the existing

infrastructure can easily use all existing methods without further development. However,

making the source code available for the public is not sufficient for accessibility. The source

must also be modular in its structure and well documented, to simplify the adoption of the

underlying infrastructure.

We have developed the parameter-spotting package SPOTPY in agreement with these five

criteria. We have implemented and tested a wide range of commonly used algorithms into

SPOTPY, to allow a user-friendly access to these powerful techniques, and to give an overview,

which algorithms and which objective functions can be useful under specific parameter search

problems.

Methods

Concept of SPOTPY

SPOTPY is broad as it comes along with different global optimization approaches. We included

the Monte Carlo (MC), Latin Hyper Cube Sampler (LHS) [3] and Robust Parameter Estima-

tion (ROPE) [5] methods that belong to the first group of stochastic probabilistic methods.

They are all-around algorithms, applicable for uncertainty and calibration analysis. MC and

LHS can furthermore be utilized within the GLUE methodology. Simulated Annealing (SA) is

a heuristic subgroup of the stochastic probabilistic methods. We included a version by Kirckpa-

trick et al. [6]. The Maximum Likelihood Estimation method (MLE) belongs to the subgroup

of hill climbing algorithms and is suited for monotonic response surfaces. Markov Chain

Monte Carlo (MCMC) methods, a subgroup of the probabilistic methods, support the ability

to jump away from local minima. We implemented the standard Metropolis MCMC sampler

[4]. To cover the second group of probabilistic methods (evolutionary algorithms) we included

the evolution strategy of SCE-UA. It is suited to calibrate models with high parameter space.

Furthermore, the Differential Evolution Markov Chain (DE-MCZ) was included to provide a

Bayesian solution suited for optimization problems in high parameter space.

SPOTPY is modular since prior parameter distributions, model inputs, evaluation data and

objective functions can be selected and combined by the user. The user-defined combination of

the inputs can be run with the parameter search algorithms and results are saved either on the

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 3 / 22



working storage or in a csv file. The database structure enables the analyses of the results in

SPOTPY with pre-build plotting functions and statistical analyses like Gelman-Rubin diagnos-

tic [30] or the Geweke test [31]. The database can also be used for any other external statistical

software or computer language.

SPOTPY is independent as the model is wrapped in a “black box”. One parameter set is

defined as input; the model results are defined as output. Both deterministic and stochastic

models can be analyzed.

SPOTPY scalability is realized by using the Python programming language, since it has an

increasing support from the scientific community and is a recommended programming lan-

guage for scientific research [32]. Pure Python code can run on every operating system without

any complicated building mechanism. Parallel computing on HPC systems is supported by

using a Message Passing Interface (MPI) code. Five of the eight implemented algorithms are

suitable to for parallel computing (MC, LHS, SCE-UA, DE-MCZ, ROPE). The MPI code

depends on the open source python package mpi4py [33]. A sequential run does not have any

dependencies to non-standard python libraries.

SPOTPY is accessible as open-source on the Python package index PyPI and comes along

with tutorials to allow a user-friendly start without the need of a graphical user interface and

the benefit that everyone can use the most recent version of the code [34]. The code follows

object-orientated style, where it supports modularity and is conform to the Open Source Defi-

nition [35].

Structure of SPOTPY

The design of SPOTPY brings different parameter estimation approaches within one set-up to

allow users testing a variety of different combinations and methods. Fig 1 shows the main pro-

cesses of this package, consisting of six consecutive steps when applying SPOTPY.

The different steps included are the following:

Step 1) Parameter distribution. Let θ = {p1, p2,. . .pn} be the initial input set of parameters

of a (ecological-) modelM. The fpig
n

i¼1
random variables are selected from a joint probability

prior distribution. This can be any user-defined distribution. We have pre-built the distribu-

tions Uniform, (log-) Normal, Chi-square, Exponential, Gamma, Wald andWeilbull with

Fig 1. Flow diagram of the main processes captured with SPOTPY.Multiple cycle black arrows indicate
the possibility of parallelization of the iterating algorithms. The black box returning the simulation and
evaluation data can be filled with any model.

doi:10.1371/journal.pone.0145180.g001

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 4 / 22



NumPy [36]. Each parameter pi is marked with a user defined name, step size and optimal

guess (initial parameter set), which are used as prior information by the algorithms and the

database. The parameter name is used by the database, while the step size is an information

needed for MCMC, MLE and SA to jump to the next point of the prior distribution. The opti-

mal guess is the start point for all algorithms. The better this value is chosen, the faster conver-

gence can be achieved.

Step 2) Simulation and evaluation. The output ofM given a parameter set θi is defined as

simulation S. The observed data X is characterized as evaluation. The simulation function is

designed to call a model, returning a list of simulated values. The observation data is loaded in

the evaluation function. One can also analyze a model with SPOTPY, which is only returning

an objective function. Both functions and the following objective function offer the user flexi-

bility to analyze almost every model with SPOTPY.

Step 3) Objective function. The objective function (also known as cost-function or good-

ness-of-fit-measure) quantifies how well the simulated data fits the evaluation data. Various

objective functions are available (e.g. [37,38]) and have been proposed to account different

sorts of errors in the simulation [39,40]. A guidance, which objective function to take under

specific circumstances, is given by [41]. Hence, SPOTPY comes along with a wide set of objec-

tive functions, from which the user can select one or more for a specific issue (BIAS; Nash-Sut-

cliff efficiency (NSE); logarithmized Nash-Sutcliff efficiency (logNSE); Correlation Coefficient

(r); Coefficient of Determination (r2); Covariance (cov); Decomposed (dRMSE), Relative

(rRMSE) and Root Mean Squared Error (RMSE); Mean Absolute Error (MAE); Wilmott

Agreement Index (AI)). The user has the option to combine different objective functions as

only one function can be inaccurate [42]. A detailed description of the objective functions

implemented in SPOTPY can be found for example in [43].

Step 4) Parameter estimation methods. The algorithms included in SPOTPY cover

widely used parameter estimation methods from different approaches in recent publications.

They can be connected with setup files containing the above-mentioned information about

parameter distribution, simulation- and evaluation data as well as the objective functions. The

simplest automatic parameter estimation method included is the MC method. It is used to

sample random parameter values from a prior distribution. The structural LHS algorithm sub-

divides the distribution of each parameter intom equally probable non-overlapping intervals

and creates a matrix by sampling from all created intervals. The algorithm has shown good

projection properties [44–47]. MC and LHS can form the basis for the GLUE method [10,25],

to get information about the posterior distribution of input parameters. GLUE has been widely

applied in hydrology, but also in many other ecological disciplines, such as biogeochemistry or

crop growth modeling [48–50]. If one is just interested in a fast calibration of a simple model

(with nearly monotonically response function), the MLE is an efficient choice. To test whether

the MLE algorithm is applicable for calibrating the desired model, it is recommend to test the

model with MC first [51]. MLE maximizes the likelihood during the sampling, by adapting the

parameter only in directions with an increasing likelihood. The famous Metropolis MCMC

method can also deal with non-monotonically response functions. Nevertheless, it works simi-

lar as MLE. After each sampling, the likelihood is compared with last one. If the likelihood is

better, the sampler jumps to the new sampled point. If not, it samples from the old position.

Depending on a Metropolis decision, the sampler can also accept worse likelihoods (in order to

avoid trapping at local optima). The MCMC algorithm can find a (quasi-) global optimum, but

with a still remaining risk to stuck in local minima. The risk can be reduced by starting several

chains/complexes that evolve individually in the parameter space. This technique is used in the

global optimization strategy SCE-UA [1]. Each complex evolves independently to optimize the

parameter. The population is periodically shuffled and new complexes are created with

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 5 / 22



information from the previous complex. SCE-UA has found to be very robust in finding the

global optimum of hydrological models and is one the most widely used algorithm in hydrolog-

ical applications today [44]. Another robust method is SA. Thyer et al. [52] reported SA to be

not as robust as the SCE-UA algorithm, but SA can be very efficient, when it is adopted to an

optimization problem. After each step, a better objective function results in a new position. A

worse objective function can be accepted with a Boltzman decision. If the new point is not

accepted, the sampler jumps to a new parameter value. A variable controls a decreasing possi-

bility to accept worse objective functions with increasing iterations. Thus, the risk to jump

away from a global optimum is reduced. One of the most recent algorithms we present here is

the DE-MCZ. It requires a minimal number of three chains that learn from each other during

the sampling. It has the same Metropolis decision as the MCMC algorithm and has found to be

quite efficient compared with other MCMC techniques [53]. Like SCE-UA and SA, DE-MCZ

does not require any prior distribution information. Another non-Bayesian approach is to

determine parameter uncertainty estimations with the concept of data depth. This has the ben-

efit, that the resulting parameter sets have proven to be more likely giving good results when

space or time period of the model changes, e.g. for validation [54]. This approach is realized in

the ROPE algorithm.

Step 5) Database. The database can store results from every parameter estimation

method. Either in the working storage, which is fast, or in a csv file, which is comfortable.

Saved information for every iteration are the objective function (-s), every parameter setting,

optional the simulation results and the chain number (for algorithms with multiple threads

like SCE-UA and DE-MCZ). The database can be analysed in any statistical software, program-

ming language or the SPOTPY extension Analyser.

Step 6) Analyser. The Analyser module is an optional, but very powerful extension, which

can read the SPOTPY database. Prebuild plots are provided for objective function and parame-

ter traces, parameter interactions and best model runs. Posterior parameter sets can be selected

and basic statistical analysis of the samples can be performed with Gelman-Rubin diagnostic

[30] or the Geweke test [31].

To install SPOTPY, one just has to type pip install spotpy into the OS console. After that,

SPOTPY can be used from any Python console:

import spotpy #Import the package

from spotpy_setup_rosenbrock import

spotpy_setup #Import an example setup

sampler = spotpy.algorithms.sceua

(model_setup()) #Initialize an algorithm

sampler.sample(10000) #Run the model 10000 times

results = sampler.getdata() #Load the results

from spotpy import analyser #Import optional extension

spotpy.analyser.plot_parametertrace

(results) #Plot the results

Set up of algorithms

The setting of the algorithms for the following case studies are depicted in Table 1. Two things

are changed during the case studies: 1) The number of repetitions. 2) For efficiency reasons the

set-up of the algorithms was slightly changed when, sampling from the Ackley function in the

third case study: SA with Tini = 30, Ntemp = 30, SCE-UA with ngs = 2 and DE-MCZ with

nChains = dim.

All settings of the algorithms should be adjusted, when dealing with other optimization

problems.

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 6 / 22



For further detailed description of the SPOTPY package and the presented case studies see

the download page (https://pypi.python.org/pypi/spotpy/ and the online documentation

http://www.uni-giessen.de/cms/faculties/f09/institutes/ilr/hydro/download/spotpy).

Case Studies

We show five different case studies to depict the capability of the different algorithms inte-

grated in SPOTPY under different parameter optimization problems. Three of these case stud-

ies cover classical numerical optimization problems with a known posterior target distribution,

one a hydrological model simulating real-world measured soil moisture values and one a bio-

geochemistry model where we tested the influence of different objective functions.

Rosenbrock function

The Rosenbrock function [55] is often used to test and compare the performance of optimiza-

tion methods [56–59]. It can be described as a flat parabolic valley (Fig 2) and is defined by

fRosenðx; yÞ ¼ ð1� xÞ2 þ 100ðy � x2Þ2; ð1Þ

where we set the parameter space of the control variables to x 2 [−10,10] and y 2 [−10,10]. The

global minimum is located at (xopt,yopt) = (1,1). At this point the function value is fRosen(x,y) =

0. Due to its shape, it is an easy playground for optimization algorithms to find the flat valley,

but it is hard to find the deepest point.

Trace plots were created after sampling n = 5,000 times from parameter space of the Rosen-

brock function. Fig 3 depicts the behavior of the algorithms. MC and LHS sample from the

complete parameter distribution over the whole time. These algorithms find a few parameter

Table 1. Settings of the algorithms used in the case studies.

Algorithm Setting Source

Description Abbreviation Value

MC Normal random sampling

LHS Normal sampling along the HyperCube matrix [3]

MLE Percentage of repetitions dedicated as initial samples burn-in 10%

MCMC Percentage of repetitions dedicated as initial samples burn-in 10% [4]

SCE-UA Number of parameters dim [1]

Number of complexes ngs 2(dim)

Maximum number of evolution loops before convergence kstop 50

The percentage change allowed in kstop loops before convergence pcento 10−5

Convergence criterion peps 10−4

SA Starting temperature Tini 10 [6]

Number of trials per temperature Ntemp 10

Temperature reduction alpha 0.99

DE-MCZ Number of different chains to employ nChains 2(dim) [2]

Number of pairs of chains to base movements DEpairs 2

Interval to save status thin 1

Factor to jitter the chains eps 0.04

Convergence criterion 0.9

Automatic adaption True

ROPE Number of optimization cycles subsets 5 [5]

Acceptance ratio percentage 0.05

doi:10.1371/journal.pone.0145180.t001

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 7 / 22

https://pypi.python.org/pypi/spotpy/
http://www.uni-giessen.de/cms/faculties/f09/institutes/ilr/hydro/download/spotpy


Fig 2. Three-dimensional surface plot of the Rosenbrock function. Colors from red (bad) to violet (optimal) represent the corresponding objective
function (RMSE) for a parameter setting of x and y.

doi:10.1371/journal.pone.0145180.g002

Fig 3. Trace plot of the two dimensional Rosenbrock function. The trace is shown as a blue line and the global optimum of the function as a broken red
line. The x-axes show the number of iterations, while the y-axes show the value of the parameters x and y from -10 to 10.

doi:10.1371/journal.pone.0145180.g003

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 8 / 22



distributions around the global optimum, which are masked by the overall large spread of

selected parameter sets. All other algorithms show improved performances with increasing

iterations. After 500 runs of burn-in, the MLE algorithm is very fast in finding the region

around the global optimum. The MCMC works similar to the MLE, but with the possibility to

jump away from the optimum. The algorithm finds the global optimum after 800 iterations

and remains with a relative high uncertainty of x = 4 and y = 4. SA is fast in finding the valley

and returns samples with a smaller uncertainty than MCMC. SCE-UA and DE-MCZ sample in

the first iterations over the whole range and converge at the global optimum after 800 and

1,000 iterations, respectively. SCE-UA stops after finding the exact global optimum. DE-MCZ

continues to produce parameter combinations close to the optimum with x 2 [−0.5,0.5] and y

2 [−0.5,1]. ROPE converges systematic closer to the optimum. The y variable range is reduced

rather quickly to only positive values. For the x variable range the convergence works overall

better. Overall, it turns out that MLE, MCMC, SCE-UA and DE-MCZ are the most suited algo-

rithms in finding the global optimum of the Rosenbrock function.

Griewank function

The two dimensional Griewank function [60] is defined as

fGriewankðx; yÞ ¼ x2 þ y2

4000
� cos

x
ffiffiffi

2
p

� �

cos
y
ffiffiffi

3
p

� �

þ 1; ð2Þ

where we selected the parameter space for x 2 [−50,50] and y 2 [−50,50]. One of the character-

istics of the function is that it has many regularly distributed local minima (Fig 4), which

makes it challenging to find the global optimum located at (xopt,yopt) = (0,0). The demanding

function has been used for algorithm performance testing by others [61–63]. The surface of

this function allows the investigation the algorithm performance under equifinality.

The different algorithms were applied to the Griewank function (n = 5,000 iterations). The

parameter interactions are shown as combined dotty plots (Fig 5). We added a surface plot of

the Griewank function to show the locations of the various local minima. We conducted the

GLUE methodology to MC and LHS by selecting the 10% best runs. One can see samples for

MC and LHS on almost every local minima and the global optimum. The random walk of the

MLE jumps between three local minima after the burn in, without finding the global optimum.

The MCMC algorithm reaches several local minima in intermediate steps and found the global

minimum. Nevertheless, the samples orientate not on the local minima and form clouds

around the optimum. The SCE-UA samples parameter combinations from the whole range

and reduces the range more and more to the global optimum. It stops the search after 4,000

iterations; nevertheless, the remaining parameter uncertainty is still high. SA did not find the

optimal value and samples only negative values for the parameter y. DE-MCZ found many

local minima and the global optimum, which is representing the hilly response surface very

good. ROPE reduced the investigated parameter range gradually centered to the optimal point.

Ackley function

The Ackley function is defined as

fAckleyðxÞ ¼ �20expð�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

d

X

d

i¼1

x2i

v

u

u

t Þ � expð1
d

X

d

i¼1

cosð2ttxiÞÞ þ 20þ expð1Þ; ð3Þ

where x = (xi,..,xd) and the domain is defined as xi 2 [−32.768,32.768] [64]. The function has

many regularly distributed local minima in the outer region, and a large funnel as the global

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 9 / 22



Fig 5. Surface plot of the Griewank function. Background colours showed from orange (bad response) to
yellow (optimal response). Black dots show the sampled 5,000 parameter combinations. The x-axis shows
the range of parameter x and the y-axis of parameter y.

doi:10.1371/journal.pone.0145180.g005

Fig 4. Three-dimensional surface plot of the Griewank function.Colors from red (bad) to violet (optimal) represent the corresponding objective function
(RMSE) for a parameter setting of x and y.

doi:10.1371/journal.pone.0145180.g004

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 10 / 22



optimum in the center located at fAckley(0,. . .,0) = 0 (Fig 6). The function is widely used for

algorithm testing [65–67]. We used setups with 2, 3, 5, 10, 20, 30 and 50 domains to investigate

the algorithms behavior when dealing with an increasing number of parameters, while finding

a very small global optimum.

We used n = 15,000 iterations for every setup testing the algorithm’s performance (Fig 7).

All algorithms perform worse with increasing dimensions. MC and LHS struggle even with

two domains to find the exact optimum. With five domains, MLE, MCMC, SA and ROPE get

close to the global optimum but do not find the exact position. With 10 domains DE-MCZ

does not reach the exact global optimum during the 15,000 iterations, but got close with a

remaining RMSE of 2–5. With 20 and 30 domains MLE, MCMC and DE-MCZ still give rea-

sonable results, and can gather information during the iterations to get close to the optimum.

Only SCE-UA is able to find the global optimum of the Ackley function with 50 domains dur-

ing the given number of iterations.

Fig 6. Three-dimensional surface plot of the Ackley function. Colors from red (bad) to violet (optimal) represent the corresponding objective function
(RMSE) for a parameter setting of x and y.

doi:10.1371/journal.pone.0145180.g006

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 11 / 22



Catchment Modelling Framework

We used the Catchment Modelling Framework (CMF) developed by [68] to investigate the

performance of the algorithms when dealing with a real measured world optimization problem.

CMF is a toolbox to build water transport models from a set of pre-built process descriptions.

The toolbox has been used before to model different catchments in one and two dimensions

[45,49,69,70] and enables the test of hypotheses in hydrology [71]. In the application presented

here, CMF is set up to simulate soil moisture in a one-dimensional soil column. Evapotranspi-

ration is predicted by the Shuttleworth-Wallace method and soil water fluxes are modeled with

the Richards equation. We searched for parameter sets to describe the shape of the water reten-

tion curve according to van Genuchten-Mualem [72] with four parameters: alpha, porosity, n

and ksat. The prior parameter distributions are based on results from [49], where soil moisture

was simulated with CMF for an agricultural site in Muencheberg. We used data from a Free

Air Carbon dioxide Enrichment (FACE) grassland study site A1 in Linden, Germany [73]. The

soil is classified as a Fluvic Gleysol. Meteorological data was used for the weather simulation

Fig 7. Objective function traces of the Ackley function. Setup with 2, 3, 5, 10, 20, 30 and 50 domains from the vector x of the Ackley function. All
algorithms sampled 15,000 parameter combinations. The shown objective function on the y-axis is the root mean squared error (RMSE). The x-axis shows
the number of iterations.

doi:10.1371/journal.pone.0145180.g007

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 12 / 22



and groundwater table data for the groundwater influence on this site. For the model evalua-

tion, we utilized daily measured soil moisture data from the topsoil layer (0–0.1 m). The simu-

lation time was from 01/06/1998 to 01/01/1999 as burn-in and simulation results until 01/01/

2000 were used for evaluation.

We started 10,000 iterations with a MPI structure. Twenty parallel threads on a HPC were

used, resulting in a nearly linear speed up. The minimal RMSE was used to evaluate model per-

formance. The best model runs of CMF found with the different algorithms are shown in Fig 8.

All algorithms performed almost equally well. The ROPE, SCE-UA and MLE found the best

parameter sets for predicting soil moisture with an RMSE as low as 3.2096. All other algorithms

performed only slightly worse with RMSE between 3.2098 and 3.2153. Overall, the model sim-

ulations follow the main trend of the observations, especially during the first seven months

when soil moisture decreased from 45 to 20%. The following flashy soil moisture curve is indi-

cating that the model has deficiencies in simulating rapid changes in soil moisture of the upper-

most soil layer, at least with the given forcing precipitation data and available information on

soil parameters. This is a problem, which cannot be solved with parameter calibration and

needs further investigation, e.g. by improving the model structure, adding more prior informa-

tion into the process based model, or by testing other models.

Fig 9 shows the parameter distribution of the best performing parameter sets as well as the

prior and posterior distribution (derived by selecting the best 10% of the sampling). The cali-

bration algorithms MLE and SCE-UA resulted in a small posterior distribution. MCMC and

DE-MCZ reduced the parameter uncertainty of the posterior distribution by over 90% for

parameter n and by 20% for parameter ksat. The other algorithms failed in reducing the param-

eter ranges. The optimal parameter setting for ksat was found on a wide range from 0.8 (MLE)

to 1.9 (MC) m day-1 and not in the center of the posterior distributions. Optimal settings for

the parameter porosity were found in the upper range of the prior distribution, with small pos-

terior distributions. The optimal parameter settings found for alpha, porosity and n are close to

the center of the posterior distribution.

We do not know the true optimal parameter set of our hydrological model, or whether it

exists at all. The optimal parameter sets we found differ from each other, indicating a high

equifinality of the model. The optimal parameter settings for porosity were found in a small

range from 0.6 to 0.63 for all algorithms. This values are in line with measured porosity of 0.60

Fig 8. Best CMF runs for simulating soil moisture. Found with 10,000 iterations of the different algorithms
realized with SPOTPY. The resulting different curves are very similar and overlap most of the time.

doi:10.1371/journal.pone.0145180.g008

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 13 / 22



to 0.65 [74]. The tested algorithms resulted all in similar best fits, with an RMSE = 3.2 Vol. %

soil moisture. A direct comparison to other models is not possible, as this is the first study

modelling soil moisture on the Linden FACE site. Nevertheless, results are not as good as oth-

ers, e.g. [75] who used SCE-UA and found after 6,000 HYDRUS simulations remaining errors

of RMSE = 0.03 Vol. % soil moisture on a different site. However, we attribute our relatively

high remaining error to model deficiencies in capturing all natural effects, which might be a

changing ksat in the upper most soil layer after heavy rainfall on this site [76].

LandscapeDNDC

We used LandscapeDNDC (LDNDC) developed by Haas et al. [69] to investigate the influence

of the chosen objective function on the best selected model run. LDNDC is a biogeochemistry

model to simulate greenhouse gas emissions and nutrient turn over processes. We used the

model to simulate CO2 emissions from the soil of the Linden FACE site. The emissions were

measured with the closed chamber method [74]. We setup the model with a warm-up period

of one year and simulated the time from 01/01/1999 to 13/06/2006. Thirty parameters were

sampled in a LHS with 50,000 runs. We selected four different widely used objective functions

from SPOTPY to quantify the fit of the resulting simulations to the observations (Fig 10). The

selected objective functions were the BIAS (ranging from -1 to +1, with 0 indicating an unbi-

ased simulation), coefficient of determination (r2 ranging from 0 total disagreement, to 1 per-

fect regression), Root Mean Squared Error (RMSE ranging from -1 total disagreement to 0

Fig 9. Prior distribution (blue line) of input parameters of CMF. Posterior distribution (green line) as the best 10% of the samples, plotted only for the
Bayesian approaches. The optimal parameter setting is marked with a vertical red line.

doi:10.1371/journal.pone.0145180.g009

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 14 / 22



perfect fit) and the Wilmott Agreement Index (AI, ranging from 0 total disagreement to 1 per-

fect fit). The best BIAS found has a value of 0.03, which is close to its optimum of zero. How-

ever, soil emissions are overestimated in winter with 20 kg C ha-1 and underestimated in the

summer months with 20 kg C ha-1. Looking at the distribution of the residuals, over- and

underestimations are nearly Gaussian, resulting in a mean error near zero over the whole simu-

lation period. The simulation with the best r2 has a relative high value of 0.75, but the simula-

tions substantially underestimate the emissions from the soil during the whole model run.

Nevertheless, the simulations follow the seasonal trend well, reflecting a reasonable timing of

the model (Fig 10). To improve the fit of absolute emissions with the model, RMSE and AI are

good options in SPOTPY. The distribution of the residual errors RMSE are narrower than the

ones for AI, which indicates that the observations are better represented by the RMSE opti-

mized model. In contrast, AI optimized simulations are superior in matching the absolute

peaks of observed emissions.

Discussion

All algorithms work well in SPOTPY, which was shown by the different case studies. Our

intention was not to accept or reject algorithms but rather show their functionality within

SPOTPY. Our results show reasonable effects, which have been reported in other algorithm

comparison papers. The Rosenbrock case study showed us well performing algorithms when

searching for a single optimal parameter set, like MLE and SCE-UA. Vrugt et al. [42] tested

SCEM-UA (similar to SCE-UA) and MCMC on the Rosenbrock function, and reported that

the first algorithm was faster in convergence. We found SA struggling in finding the optimum

of the Rosenbrock, an observation also reported by Wang et al. [56]. When dealing with many

Fig 10. Comparison of measured and observed CO2 emission simulated with LDNDC (top panels). Best model runs were derived with four different
objective functions using a Latin Hypercube sampling approach (n = 50,000 model urns). The objective function BIAS is shown in red, r2 in green, RMSE in
light blue and AI in dark blue. Observed values are shown as black dots. Middle panels depict classified residual error counts of simulated CO2 emissions for
each model. The dashed black lines in the correlation plots of observed versus simulated CO2 emissions (bottom panels) show the theoretical optimal fit.

doi:10.1371/journal.pone.0145180.g010

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 15 / 22



local minima like it is true for the Griewank function, we got good results, when we conducted

MC and LHS with the GLUE concept. They represent best the surface of the function. SCE-UA

needed 4,000 iterations to stop the parameter search on the function, Jung et al. [28] found the

optimum during 40,000 iterations. This difference in efficiency is most likely due to the setting

of the algorithm. With an increasing amount of parameters on the Ackley function, we have

seen good results for MLE, MCMC and DE-MCZ and very good results for SCE-UA. Karaboga

et al. [77] tested the swarm intelligence algorithm ABC on the Ackley function with 30

domains. They found after the optimum after 1,000 iterations, which is even better than the

best performing algorithm of SPOTPY (SCE-UA). This algorithm could be a nice extension for

the SPOTPY package. Behrangi et al. [78] used SCE-UA in a similar set up and found the opti-

mum of a 30 dimensional Ackley function after around 4,000 iterations, exactly as we found it.

Genetic algorithms give poor results on the Ackley function with 30 domains [77]. Madsen

et al. [79] calibrated a hydrological model with SCE-UA and SA, showing that the first one

worked better—similar to our case studies. Huang et al. [80] recommend MCMC to deal with

many parameters. Our findings on the Ackley function show that evolution algorithms are

even better suited for higher dimensional search problems. Ter Braak and Vrugt [2] showed

that the evolution algorithm DE-MCZ can be 5–26 times more efficient than MCMC. Gong

[81] come to the same conclusion when testing the evolution algorithm SCEM-UA against the

stochastic algorithmMLE. Good results were reported when using MC on a hydrological

model with small parameter space [80]. We found that the rather simple MC and LHS often

performed worse when searching the exact global optimum, but give reliable results under

equifinality, like it is the case for our hydrological model build with CMF. We recommend

using these simple search algorithms with the GLUE concept.

The LDNDC case study revealed that conclusions based on the model performance can be

flawed when it is analysed with a not well-suited objective function. For example, the BIAS can

reduce the overall model error, but it does not guarantee that the model fits the temporal varia-

tions of the observed data. The r2 is suited to find good parameter sets to predict timing of the

system, but this objective function does not take the absolute values into account. RMSE and

AI are well suited to find model realizations fitting the absolute values of the observed data.

Legates and McCabe [40] pointed out that the coefficient of determination (r2) is inappropriate

for model quantification because it is oversensitive to high flow but insensitive to additive and

proportional differences between model simulations and observations. They recommended

RMSE as the model evaluation tools.

Guinot et al. [82] generally classified objective functions into two types: distance-based

objective function (e.g. RMSE) and weak form-based objective function (e.g. BIAS and r2).

They concluded that although the distance-based objective functions have the advantage to

search an identifiable model-parameter set, they may cause the local extremes in the response

surface and lead to mis-calibration i.e. being trapped around secondary optima. By contrast,

the weak form-based objective functions are more monotone than the distance-based objective

functions. Depending on the aim of the model approach, it can be beneficial to combine several

objective functions to find reliable posterior simulations [49]. While this is not a surprising or

new result, the advantage of SPOTPY is, that it facilitates an easy comparison of currently

eleven objective functions in a pre- and post-processing mode.

In general, the findings reveal that not every algorithm is suited for every parameter search

problem. Even more, every algorithm has its advantages and disadvantages. Therefore, the over-

view in Table 2 showing the main capabilities of the algorithms might help the end-user to select

a suited and efficient algorithm, without the need to understand and test every possible optimiza-

tion technique. The approximate Bayesian compute techniques MC and LHS are very well suited

to calibrate the model on multiple outputs with different objective functions. Nevertheless, they

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 16 / 22



are very inefficient in high parameter space, like shown in the Ackley case study. Contrasting, the

Metropolis MCMCmethod can be very efficient. However, it has the disadvantage that it is not

possible to be used in parallel computing systems. DE-MCZ is suited to be used in parallel, but

gets inefficient when too many chains need to converge. ROPE is fully parallelizable but the gen-

eration of the parameter space after each subset needs a long computation time. All implemented

non-Bayesian techniques (MLE, SCE-UA and SA) search only for one optimal parameter set,

which makes them in general more efficient than the Bayesian approaches, but the outcome is

very dependent on the used objective function and the parameter space, which is why they have

to be chosen carefully. Furthermore, SCE-UA and SA need a pre-testing of the algorithm set-

tings. They should not be used, without an adaption to a specific parameter search problems.

MLE can be used straightforward, but the user has a higher risk to get stuck in a local optima.

Unfortunately, there is no perfect algorithm and no perfect objective function. It depends. In this

regard, SPOTPY was developed to help users to find their specific optimal solution.

Conclusion

As a final aspect, we want to check, if our five defined criteria are met by SPOTPY. We conclude

that SPOTPY is a broad package, combining several optimization approaches. We hope that it is

helpful to users, as no other parameter estimation package provides such a wide range of imple-

mented techniques and is so easy to use. Optimization experts can still accessed and adopted the

complexity of the algorithms. Modularity is given as the entire package is coded in Python. The

independency of SPOTPYmakes it applicable to every model; in contrast to other packages, e.g.

the presented toolbox of the SWAT [20]. The scalability claim of SPOTPY is valid. The straight-

forward MPI support results in a nearly linear time boost when analyzing time-consuming model

runs and is as easy as tipping: parallel = ‘mpi’. Finally, the open-source accessibility of SPOTPY

makes it available for everyone to every field of science, where parameter optimization is useful.

We will maintain the code at least for the next two years and expand the functionality systemati-

cally. For instance, the most recent version comes along with a sensitivity analysis algorithm

(FAST) andmore possibilities to structure the simulation data in the database. Finally yet impor-

tantly, we welcome new contributors to share their results or to provide new ideas for features.

Supporting Information

S1 File. Simulation results of the Rosenbrock function. Contains the objective function

traces for the 5,000 iterations with MC, LHS, MLE, MCMC, SA, SCE-UA. DE-MCZ and ROPE.

(ZIP)

Table 2. Capabilities of the different algorithms implemented in SPOTPY.

MC LHS MLE MCMC SCE-UA SA DE-MCZ ROPE

Suited to investigate parameter uncertainty ✓ ✓ ✓ ✓ ✓

Allows considering multiple objective functions ✓ ✓

Possible to test prior parameter distributions ✓ (✓)a (✓)a (✓)a (✓)a (✓)a

Default algorithm-settings are all-round suited ✓ ✓ ✓ ✓ ✓

Suited for parallel computing ✓ ✓ (✓)b (✓)b ✓

Algorithm learns during sampling ✓ ✓ ✓ ✓ ✓ ✓

Checked fields indicate positive answers, fields with brackets are partly positive.
a Only true during warm-up/burn-in
b Only true up to the number of used chains/complexes. They are separated on different CPU cores.

doi:10.1371/journal.pone.0145180.t002

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 17 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145180.s001


S2 File. Simulation results of the Griewank function. Contains the objective function traces

for the 5,000 iterations with MC, LHS, MLE, MCMC, SA, SCE-UA. DE-MCZ and ROPE.

(ZIP)

S3 File. Simulation results of the Ackley function. Contains the objective function traces for

the 15,000 iterations with MC, LHS, MLE, MCMC, SA, SCE-UA. DE-MCZ and ROPE.

(ZIP)

S4 File. Simulation results of the CMF model with MC, LHS and MLE. Contains the objec-

tive function value, the corresponding parameters and the soil moisture simulations for the

10,000 model iterations with the algorithms MC, LHS and MLE.

(ZIP)

S5 File. Simulation results of the CMF model with MCMC, SCE-UA and SA. Contains the

objective function value, the corresponding parameters and the soil moisture simulations for

the 10,000 model iterations with the algorithms MCMC, SCE-UA and SA.

(ZIP)

S6 File. Simulation results of the CMF model with DE-MCZ and ROPE. Contains the objec-

tive function value, the corresponding parameters and the soil moisture simulations for the

10,000 model iterations with the algorithms DE-MCZ, and ROPE.

(ZIP)

S7 File. Best model runs of the LDNDCmodel. Contains the different objective function val-

ues and the corresponding CO2 emissions simulations.

(TXT)

Acknowledgments

The authors thank their colleagues for continuing support and discussion around the coffee

breaks. We further thank Christoph Müller and Ludger Grünhage for providing the dataset of

the FACE project.

Author Contributions

Conceived and designed the experiments: TH PK. Performed the experiments: TH PK AC.

Analyzed the data: TH LB. Contributed reagents/materials/analysis tools: TH PK AC LB.

Wrote the paper: TH PK AC LB.

References
1. Duan Q, Sorooshian S, Gupta VK. Optimal use of the SCE-UA global optimization method for calibrat-

ing watershed models. J Hydrol. 1994; 158: 265–284.

2. ter Braak CJ, Vrugt JA. Differential evolution Markov chain with snooker updater and fewer chains. Stat
Comput. 2008; 18: 435–446.

3. McKay MD, Beckman RJ, Conover WJ. Comparison of Three Methods for Selecting Values of Input
Variables in the Analysis of Output from a Computer Code. Technometrics. 1979; 21: 239–245. doi: 10.
1080/00401706.1979.10489755

4. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by
fast computing machines. J Chem Phys. 1953; 21: 1087–1092.

5. Bárdossy A, Singh SK. Robust estimation of hydrological model parameters. Hydrol Earth Syst Sci Dis-
cuss. 2008; 5: 1641–1675.

6. Kirkpatrick S, Gelatt CD, Vecchi MP, others. Optimization by simmulated annealing. science. 1983;
220: 671–680. PMID: 17813860

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 18 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145180.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145180.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145180.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145180.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145180.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145180.s007
http://dx.doi.org/10.1080/00401706.1979.10489755
http://dx.doi.org/10.1080/00401706.1979.10489755
http://www.ncbi.nlm.nih.gov/pubmed/17813860


7. Schuëller GI, Pradlwarter HJ. Benchmark study on reliability estimation in higher dimensions of struc-
tural systems–an overview. Struct Saf. 2007; 29: 167–182.

8. Efstratiadis A, Koutsoyiannis D. One decade of multi-objective calibration approaches in hydrological
modelling: a review. Hydrol Sci J. 2010; 55: 58–78. doi: 10.1080/02626660903526292

9. Matott LS, Babendreier JE, Purucker ST. Evaluating uncertainty in integrated environmental models: A
review of concepts and tools. Water Resour Res. 2009; 45: W06421. doi: 10.1029/2008WR007301

10. Beven K, Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of
complex environmental systems using the GLUEmethodology. J Hydrol. 2001; 249: 11–29.

11. Montanari A, Shoemaker CA, van de Giesen N. Introduction to special section on Uncertainty Assess-
ment in Surface and Subsurface Hydrology: An overview of issues and challenges. Water Resour Res.
2009; 45: W00B00. doi: 10.1029/2009WR008471

12. Vrugt JA, Ter Braak CJ, Gupta HV, Robinson BA. Equifinality of formal (DREAM) and informal (GLUE)
Bayesian approaches in hydrologic modeling? Stoch Environ Res Risk Assess. 2009; 23: 1011–1026.

13. Beven K. A manifesto for the equifinality thesis. J Hydrol. 2006; 320: 18–36. doi: 10.1016/j.jhydrol.
2005.07.007

14. Smith T, Sharma A, Marshall L, Mehrotra R, Sisson S. Development of a formal likelihood function for
improved Bayesian inference of ephemeral catchments. Water Resour Res. 2010; 46: W12551. doi:
10.1029/2010WR009514

15. Smith T, Marshall L, Sharma A. Modeling residual hydrologic errors with Bayesian inference. J Hydrol.
2015; 528: 29–37. doi: 10.1016/j.jhydrol.2015.05.051

16. Haan CT, Storm DE, Al-Issa T, Prabhu S, Sabbagh GJ, Edwards DR. Effect of parameter distributions
on uncertainty analysis of hydrologic models. Trans Asae. 1998; 41: 65–70.

17. Kavetski D, Kuczera G, Franks SW. Bayesian analysis of input uncertainty in hydrological modeling: 1.
Theory. Water Resour Res. 2006; 42: W03407. doi: 10.1029/2005WR004368

18. Wagener T, Gupta HV. Model identification for hydrological forecasting under uncertainty. Stoch Envi-
ron Res Risk Assess. 2005; 19: 378–387. doi: 10.1007/s00477-005-0006-5

19. Doherty J, Johnston JM. Methodologies for Calibration and Predictive Analysis of a Watershed Model1.
JAWRA J AmWater Resour Assoc. 2003; 39: 251–265. doi: 10.1111/j.1752-1688.2003.tb04381.x

20. Yang J, Reichert P, Abbaspour KC, Xia J, Yang H. Comparing uncertainty analysis techniques for a
SWAT application to the Chaohe Basin in China. J Hydrol. 2008; 358: 1–23. doi: 10.1016/j.jhydrol.
2008.05.012

21. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS-a Bayesian modelling framework: concepts,
structure, and extensibility. Stat Comput. 2000; 10: 325–337.

22. Hoffman MD, Gelman A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
Monte Carlo. ArXiv11114246 Cs Stat. 2011; Available: http://arxiv.org/abs/1111.4246

23. Patil A, Huard D, Fonnesbeck CJ. PyMC: Bayesian stochastic modelling in Python. J Stat Softw. 2010;
35: 1. PMID: 21603108

24. Weise T. Global optimization algorithms-theory and application. Self-Publ. 2009; Available: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.8184&rep = rep1&type = pdf

25. Beven K, Binley A. The future of distributed models: Model calibration and uncertainty prediction.
Hydrol Process. 1992; 6: 279–298. doi: 10.1002/hyp.3360060305

26. Buytaert W, Reusser D, Krause S, Renaud J-P. Why can’t we do better than Topmodel? Hydrol Pro-
cess. 2008; 22: 4175–4179. doi: 10.1002/hyp.7125

27. Sorooshian S, Duan Q, Gupta VK. Calibration of rainfall-runoff models: Application of global optimiza-
tion to the Sacramento Soil Moisture Accounting Model. Water Resour Res. 1993; 29: 1185–1194. doi:
10.1029/92WR02617

28. Jung BS, Karnev BW, Lambert MF. Benchmark tests of evolutionary algorithms: mathematic evaluation
and application to water distribution systems. J Environ Inform. 2006; 7: 24–35.

29. Bergström S, Singh VP, others. The HBVmodel. Comput Models Watershed Hydrol. 1995; 443–476.

30. Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;
457–472.

31. Geweke J. Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior
Moments. IN BAYESIAN STATISTICS. University Press; 1992. pp. 169–193.

32. Perkel JM. Programming: Pick up Python. Nature. 2015; 518: 125–126. doi: 10.1038/518125a PMID:
25653001

33. Dalcín L, Paz R, Storti M, D’Elía J. MPI for Python: Performance improvements and MPI-2 extensions.
J Parallel Distrib Comput. 2008; 68: 655–662. doi: 10.1016/j.jpdc.2007.09.005

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 19 / 22

http://dx.doi.org/10.1080/02626660903526292
http://dx.doi.org/10.1029/2008WR007301
http://dx.doi.org/10.1029/2009WR008471
http://dx.doi.org/10.1016/j.jhydrol.2005.07.007
http://dx.doi.org/10.1016/j.jhydrol.2005.07.007
http://dx.doi.org/10.1029/2010WR009514
http://dx.doi.org/10.1016/j.jhydrol.2015.05.051
http://dx.doi.org/10.1029/2005WR004368
http://dx.doi.org/10.1007/s00477-005-0006-5
http://dx.doi.org/10.1111/j.1752-1688.2003.tb04381.x
http://dx.doi.org/10.1016/j.jhydrol.2008.05.012
http://dx.doi.org/10.1016/j.jhydrol.2008.05.012
http://arxiv.org/abs/1111.4246
http://www.ncbi.nlm.nih.gov/pubmed/21603108
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.8184&rep�=�rep1&type�=�pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.8184&rep�=�rep1&type�=�pdf
http://dx.doi.org/10.1002/hyp.3360060305
http://dx.doi.org/10.1002/hyp.7125
http://dx.doi.org/10.1029/92WR02617
http://dx.doi.org/10.1038/518125a
http://www.ncbi.nlm.nih.gov/pubmed/25653001
http://dx.doi.org/10.1016/j.jpdc.2007.09.005


34. Moeck C, Hunkeler D, Brunner P. Tutorials as a flexible alternative to GUIs: An example for advanced
model calibration using Pilot Points. Environ Model Softw. 2015; 66: 78–86. doi: 10.1016/j.envsoft.
2014.12.018

35. The Open Source Definition | Open Source Initiative [Internet]. [cited 20 Jul 2015]. Available: http://
opensource.org/docs/osd

36. Oliphant TE. A Guide to NumPy [Internet]. Trelgol Publishing USA; 2006. Available: http://ftp.sumy.
volia.net/pub/FreeBSD/distfiles/numpybook.pdf

37. Nash JE, Sutcliffe JV. River flow forecasting through conceptual models part I—A discussion of princi-
ples. J Hydrol. 1970; 10: 282–290. doi: 10.1016/0022-1694(70)90255-6

38. Willmott CJ. On the validation of models. Phys Geogr. 1981; 2: 184–194.

39. Li L, Xia J, Xu C-Y, Singh VP. Evaluation of the subjective factors of the GLUEmethod and comparison
with the formal Bayesian method in uncertainty assessment of hydrological models. J Hydrol. 2010;
390: 210–221. doi: 10.1016/j.jhydrol.2010.06.044

40. Legates DR, McCabe GJ. Evaluating the use of “goodness-of-fit”measures in hydrologic and hydrocli-
matic model validation. Water Resour Res. 1999; 35: 233–241.

41. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. Model evaluation guidelines
for systematic quantification of accuracy in watershed simulations. Trans Asabe. 2007; 50: 885–900.

42. Vrugt JA, Gupta HV, Bastidas LA, BoutenW, Sorooshian S. Effective and efficient algorithm for multiob-
jective optimization of hydrologic models. Water Resour Res. 2003; 39: n/a–n/a. doi: 10.1029/
2002WR001746

43. Wallach D. Evaluating crop models. Work Dyn Crop Models Elsevier Amst Neth. 2006; 11–53.

44. Over MW,Wollschläger U, Osorio-Murillo CA, Rubin Y. Bayesian inversion of Mualem-van Genuchten
parameters in a multilayer soil profile: A data-driven, assumption-free likelihood function. Water Resour
Res. 2015; 51: 861–884. doi: 10.1002/2014WR015252

45. Windhorst D, Kraft P, Timbe E, Frede H-G, Breuer L. Stable water isotope tracing through hydrological
models for disentangling runoff generation processes at the hillslope scale. Hydrol Earth Syst Sci.
2014; 18: 4113–4127. doi: 10.5194/hess-18-4113-2014

46. Murphy C, Fealy R, Charlton R, Sweeney J. The reliability of an “off-the-shelf” conceptual rainfall runoff
model for use in climate impact assessment: uncertainty quantification using Latin hypercube sampling.
Area. 2006; 38: 65–78. doi: 10.1111/j.1475-4762.2006.00656.x

47. Hossain F, Anagnostou EN, Bagtzoglou AC. On Latin Hypercube sampling for efficient uncertainty esti-
mation of satellite rainfall observations in flood prediction. Comput Geosci. 2006; 32: 776–792. doi: 10.
1016/j.cageo.2005.10.006

48. Shafii M, Tolson B, Shawn Matott L. Addressing subjective decision-making inherent in GLUE-based
multi-criteria rainfall–runoff model calibration. J Hydrol. 2015; 523: 693–705. doi: 10.1016/j.jhydrol.
2015.01.051

49. Houska T, Multsch S, Kraft P, Frede H-G, Breuer L. Monte Carlo-based calibration and uncertainty
analysis of a coupled plant growth and hydrological model. Biogeosciences. 2014; 11: 2069–2082. doi:
10.5194/bg-11-2069-2014

50. Ortiz C, Karltun E, Stendahl J, Gärdenäs AI, Ågren GI. Modelling soil carbon development in Swedish
coniferous forest soils—An uncertainty analysis of parameters and model estimates using the GLUE
method. Ecol Model. 2011; 222: 3020–3032. doi: 10.1016/j.ecolmodel.2011.05.034

51. Kitanidis PK, Lane RW. Maximum likelihood parameter estimation of hydrologic spatial processes by
the Gauss-Newton method. J Hydrol. 1985; 79: 53–71. doi: 10.1016/0022-1694(85)90181-7

52. Thyer M, Kuczera G, Bates BC. Probabilistic optimization for conceptual rainfall-runoff models: A com-
parison of the shuffled complex evolution and simulated annealing algorithms. Water Resour Res.
1999; 35: 767–773. doi: 10.1029/1998WR900058

53. Smith TJ, Marshall LA. Bayesian methods in hydrologic modeling: A study of recent advancements in
Markov chain Monte Carlo techniques. Water Resour Res. 2008; 44: W00B05. doi: 10.1029/
2007WR006705

54. Krauße T, Cullmann J. Towards a more representative parametrisation of hydrologic models via syn-
thesizing the strengths of Particle Swarm Optimisation and Robust Parameter Estimation. Hydrol Earth
Syst Sci. 2012; 16: 603–629. doi: 10.5194/hess-16-603-2012

55. Rosenbrock HH. An automatic method for finding the greatest or least value of a function. Comput J.
1960; 3: 175–184.

56. Wang S, Chen M, Huang D, Guo X, Wang C. Dream Effected Particle Swarm Optimization Algorithm. J
Inf Comput Sci. 2014; 11: 5631–5640. doi: 10.12733/jics20104829

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 20 / 22

http://dx.doi.org/10.1016/j.envsoft.2014.12.018
http://dx.doi.org/10.1016/j.envsoft.2014.12.018
http://opensource.org/docs/osd
http://opensource.org/docs/osd
http://ftp.sumy.volia.net/pub/FreeBSD/distfiles/numpybook.pdf
http://ftp.sumy.volia.net/pub/FreeBSD/distfiles/numpybook.pdf
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/j.jhydrol.2010.06.044
http://dx.doi.org/10.1029/2002WR001746
http://dx.doi.org/10.1029/2002WR001746
http://dx.doi.org/10.1002/2014WR015252
http://dx.doi.org/10.5194/hess-18-4113-2014
http://dx.doi.org/10.1111/j.1475-4762.2006.00656.x
http://dx.doi.org/10.1016/j.cageo.2005.10.006
http://dx.doi.org/10.1016/j.cageo.2005.10.006
http://dx.doi.org/10.1016/j.jhydrol.2015.01.051
http://dx.doi.org/10.1016/j.jhydrol.2015.01.051
http://dx.doi.org/10.5194/bg-11-2069-2014
http://dx.doi.org/10.1016/j.ecolmodel.2011.05.034
http://dx.doi.org/10.1016/0022-1694(85)90181-7
http://dx.doi.org/10.1029/1998WR900058
http://dx.doi.org/10.1029/2007WR006705
http://dx.doi.org/10.1029/2007WR006705
http://dx.doi.org/10.5194/hess-16-603-2012
http://dx.doi.org/10.12733/jics20104829


57. Matott LS, Hymiak B, Reslink C, Baxter C, Aziz S. Telescoping strategies for improved parameter esti-
mation of environmental simulation models. Comput Geosci. 2013; 60: 156–167. doi: 10.1016/j.cageo.
2013.07.023

58. Goodman J, Weare J. Ensemble samplers with affine invariance. Commun Appl Math Comput Sci.
2010; 5: 65–80. doi: 10.2140/camcos.2010.5.65

59. Santos CA, Suzuki K, Watanabe M. Improvement in a genetic algorithm for optimization of runoff-ero-
sion models. Annu J Hydraul Eng. 2000; 705–710.

60. Griewank AO. Generalized descent for global optimization. J Optim Theory Appl. 1981; 34: 11–39.

61. Harp DR, Vesselinov VV. An agent-based approach to global uncertainty and sensitivity analysis. Com-
put Geosci. 2012; 40: 19–27. doi: 10.1016/j.cageo.2011.06.025

62. Alfi A. PSO with Adaptive Mutation and Inertia Weight and Its Application in Parameter Estimation of
Dynamic Systems. Acta Autom Sin. 2011; 37: 541–549. doi: 10.1016/S1874-1029(11)60205-X

63. Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over con-
tinuous spaces. J Glob Optim. 1997; 11: 341–359.

64. Ackley DH. An empirical study of bit vector function optimization. Genet Algorithms Simulated Anneal-
ing. 1987; 1: 170–204.

65. Zhu G, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl
Math Comput. 2010; 217: 3166–3173. doi: 10.1016/j.amc.2010.08.049

66. Stacey A, Jancic M, Grundy I. Particle swarm optimization with mutation. The 2003 Congress on Evolu-
tionary Computation, 2003 CEC ‘03. 2003. pp. 1425–1430 Vol.2. doi: 10.1109/CEC.2003.1299838

67. Potter MA, Jong KAD. A cooperative coevolutionary approach to function optimization. In: Davidor Y,
Schwefel H-P, Männer R, editors. Parallel Problem Solving from Nature—PPSN III. Springer Berlin
Heidelberg; 1994. pp. 249–257. Available: http://link.springer.com/chapter/10.1007/3-540-58484-6_
269

68. Kraft P, Vaché KB, Frede H-G, Breuer L. CMF: A Hydrological Programming Language Extension For
Integrated Catchment Models. Environ Model Softw. 2011; 26: 828–830. doi: 10.1016/j.envsoft.2010.
12.009

69. Haas E, Klatt S, Fröhlich A, Kraft P, Werner C, Kiese R, et al. LandscapeDNDC: a process model for
simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale.
Landsc Ecol. 2013; 28: 615–636.

70. Kraft P, Haas E, Klatt S, Kiese R, Butterbach-Bahl K, Frede H-G, et al. Modelling nitrogen transport and
turnover at the hillslope scale–a process oriented approach. AGU Fall Meeting Abstracts. 2012. p.
0688. Available: http://www.iemss.org/iemss2012/proceedings/F3_0872_Kraft_et_al.pdf

71. Clark MP, Nijssen B, Lundquist JD, Kavetski D, Rupp DE, Woods RA, et al. A unified approach for pro-
cess-based hydrologic modeling: 1. Modeling concept. Water Resour Res. 2015; 51: 2498–2514. doi:
10.1002/2015WR017198

72. Van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated
soils. Soil Sci Soc Am J. 1980; 44: 892–898.

73. Jäger H-J, Schmidt SW, Kammann C, Grünhage L, Müller C, Hanewald K. The University of Giessen
Free-Air Carbon dioxide Enrichment study: Description of the experimental site and of a new enrich-
ment system. J Appl Bot. 2003; 77: 117–127.

74. Kammann C, Müller C, Grünhage L, Jäger H-J. Elevated CO2 stimulates N2O emissions in permanent
grassland. Soil Biol Biochem. 2008; 40: 2194–2205. doi: 10.1016/j.soilbio.2008.04.012

75. Scott RL, Shuttleworth WJ, Keefer TO, Warrick AW. Modeling multiyear observations of soil moisture
recharge in the semiarid American Southwest. Water Resour Res. 2000; 36: 2233–2247. doi: 10.1029/
2000WR900116

76. Kammann C, Grünhage L, Jäger H-J. A new sampling technique to monitor concentrations of CH4,
N2O and CO2 in air at well-defined depths in soils with varied water potential. Eur J Soil Sci. 2001; 52:
297–303.

77. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial
bee colony (ABC) algorithm. J Glob Optim. 2007; 39: 459–471. doi: 10.1007/s10898-007-9149-x

78. Behrangi A, Khakbaz B, Vrugt JA, Duan Q, Sorooshian S. Comment on “Dynamically dimensioned
search algorithm for computationally efficient watershed model calibration” by Bryan A. Tolson and
Christine A. Shoemaker. Water Resour Res. 2008; 44: W12603. doi: 10.1029/2007WR006429

79. Madsen H, Wilson G, Ammentorp HC. Comparison of different automated strategies for calibration of
rainfall-runoff models. J Hydrol. 2002; 261: 48–59. doi: 10.1016/S0022-1694(01)00619-9

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 21 / 22

http://dx.doi.org/10.1016/j.cageo.2013.07.023
http://dx.doi.org/10.1016/j.cageo.2013.07.023
http://dx.doi.org/10.2140/camcos.2010.5.65
http://dx.doi.org/10.1016/j.cageo.2011.06.025
http://dx.doi.org/10.1016/S1874-1029(11)60205-X
http://dx.doi.org/10.1016/j.amc.2010.08.049
http://dx.doi.org/10.1109/CEC.2003.1299838
http://link.springer.com/chapter/10.1007/3-540-58484-6_269
http://link.springer.com/chapter/10.1007/3-540-58484-6_269
http://dx.doi.org/10.1016/j.envsoft.2010.12.009
http://dx.doi.org/10.1016/j.envsoft.2010.12.009
http://www.iemss.org/iemss2012/proceedings/F3_0872_Kraft_et_al.pdf
http://dx.doi.org/10.1002/2015WR017198
http://dx.doi.org/10.1016/j.soilbio.2008.04.012
http://dx.doi.org/10.1029/2000WR900116
http://dx.doi.org/10.1029/2000WR900116
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1029/2007WR006429
http://dx.doi.org/10.1016/S0022-1694(01)00619-9


80. Huang M, Liang X. On the assessment of the impact of reducing parameters and identification of
parameter uncertainties for a hydrologic model with applications to ungauged basins. J Hydrol. 2006;
320: 37–61. doi: 10.1016/j.jhydrol.2005.07.010

81. Gong Z. Estimation of mixedWeibull distribution parameters using the SCEM-UA algorithm: Application
and comparison with MLE in automotive reliability analysis. Reliab Eng Syst Saf. 2006; 91: 915–922.
doi: 10.1016/j.ress.2005.09.007

82. Guinot V, Cappelaere B, Delenne C, Ruelland D. Towards improved criteria for hydrological model cali-
bration: theoretical analysis of distance- and weak form-based functions. J Hydrol. 2011; 401: 1–13.
doi: 10.1016/j.jhydrol.2011.02.004

SPOTting Model Parameters Using a Ready-Made Python Package

PLOS ONE | DOI:10.1371/journal.pone.0145180 December 17, 2015 22 / 22

http://dx.doi.org/10.1016/j.jhydrol.2005.07.010
http://dx.doi.org/10.1016/j.ress.2005.09.007
http://dx.doi.org/10.1016/j.jhydrol.2011.02.004

