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Abstract 

This thesis presents a study that has been performed to investigate different phenomena 

exhibited by a spray generated by an airblast atomizer. Three main subjects are addressed: 

• Characterization of the spray generated by an airblast atomizer at various operating 

conditions, including ambient pressure, airflow rate and liquid flow rate. 

• Investigation of instationary phenomena in spray, its natural and forced oscillations 

• Modelling of spray atomization inside the nozzle 

Characterization of both liquid and gas phases of the two-phase flow of an airblast spray is 

performed using high-speed video imaging, Particle Image Velocimetry and the phase 

Doppler technique. Three velocity components profiles and size distribution of the droplets in 

the spray are obtained. The effect of three parameters on the velocity profile and the size 

distribution, namely; chamber pressure, liquid flow rate and airflow rate has been thoroughly 

investigated. The collected data can be used for the validation of the numerical Euler-

Lagrange code developed for simulation of spray propagation.  

Next, spray fluctuations at various chamber pressures are characterized using two techniques, 

namely; Proper Orthogonal Decomposition of time-resolved images and spectral analysis of 

laser Doppler velocity data. The airblast spray frequency exhibited a strong dependency on 

the chamber pressure and the gas-phase flow rate and is totally independent of the liquid 

phase flow rate. The obtained frequencies from both techniques match each other closely.  

Scaling analysis of the spray frequency demonstrates that it depends only on the average air 

velocity at the nozzle outlet and on the atomizer geometry. A specific Strouhal number is 

proposed which could be used as a predictive tool for the determination of spray frequencies 

at various operational conditions. The value of the Strouhal number depends only on the 

geometry and type of the atomizer. For the atomizer used in this study the empirical value of 

the Strouhal number is determined as 75.0=St . 

The effect of oscillating downstream pressure conditions on the airblast spray is qualitatively 

investigated. It is found that small pressure oscillating magnitudes has a noticeable effect on 

the spray behavior. Furthermore, the penetration velocity of the spray under the oscillating 

pressure conditions is estimated by analyzing the high-speed video images. It is found that the 

penetration velocity and the oscillation frequency increase when increasing the chamber 

pressure.  

Then, in order to better understand the mechanism of film formation in an airblast atomizer 

with pre-filmer, an auxiliary series of spray impact experiments onto inclined targets 

experiments are performed the outcome of the impingement process is investigated. The film 
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thickness of the residual liquid on the target is estimated by processing high-speed video 

images whereas the ejected droplets are characterized using the phase Doppler technique. The 

experimental data is used to express the film thickness as function of the primary spray 

parameters. 

Finally, a novel scaling analysis for the droplet size in the airblast spray is proposed based on 

the energy balance principle in the framework of the chaotic disintegration theory. The model 

is validated by the comparison with the experimental data from this and other studies.  
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Kurzfassung 

Die vorliegende Arbeit beschäftigt sich mit der Untersuchung verschiedener Phänomene, die 

bei der Sprayentstehung eines Airblast Zerstäubers auftreten. Drei Hauptaspekte werden 

betrachtet: 

• Charakterisierung des entstehenden Sprays im Airblast Zerstäuber bei verschiedenen 

Betriebsbedingungen, einschließlich des Umgebungsdrucks 

• Untersuchung der instationären Phänomene im Spray sowie der natürlichen und 

erzwungenen Sprayoszillationen 

• Modellierung der Sprayzerstäubung im Inneren der Düse 

Die Charakterisierung der flüssigen und gasförmigen Phase der Strömung im Airblast 

Zerstäuber wurde mittels Hochgeschwindigkeitsaufnahmen, Particle Image Velocimetry und 

der Phase-Doppler Technik durchgeführt. Dreidimensionale Geschwindigkeitsprofile und die 

Größenverteilungen der Tropfen im Spray konnten so bestimmt werden. Die Einflüsse des 

Kammerdrucks, sowie des Flüssigkeits- und Luftvolumenstroms auf das 

Geschwindigkeitsprofil und die Größenverteilung wurden intensiv untersucht. Die erhaltenen 

Daten werden für die Validierung des numerischen Euler-Langrange Verfahrens zur 

Simulation der Sprayausbreitung verwendet.  

Zwei Methoden wurden zur Messung der Sprayfluktuationen bei verschiedenen 

Kammerdrücken angewendet: Proper Orthogonal Decomposition der zeitaufgelösten Bilder 

und die Spektralanalyse der Laser-Doppler Anemometrie Daten. Die Ergebnisse zeigen, dass 

die dominante Airblast Sprayfrequenz eine starke Abhängigkeit vom Kammerdruck und dem 

Volumenstrom der Gasphase aufweist und dabei im untersuchten Parameterbereich völlig 

unabhängig vom Volumenstrom der flüssigen Phase ist. Die ermittelten Frequenzen beider 

Techniken zeigen eine enge Übereinstimmung.  

Die Skalierungsanalyse der Sprayfrequenzen veranschaulicht, dass die Frequenz 

ausschließlich von der mittleren Strömungsgeschwindigkeit am Düsenaustritt und von der 

Zerstäubergeometrie abhängt. In diesem Zusammenhang wird eine Strouhal-Zahl ermittelt, 

die die Vorhersage der Sprayfrequenzen für verschiedene Betriebszustände erlaubt. Die 

Strouhal-Zahl hängt hierbei von der Geometrie und Typ des Zerstäubers ab. Der empirisch 

ermittelte Wert der Strouhal-Zahl für den Zerstäuber der vorliegenden Arbeit beträgt St = 

0,75. 

Im Weiteren wurde der Einfluss von oszillierendem Drücken auf das Airblast Spray qualitativ 

untersucht. Es konnte festgestellt werden, dass kleine Druckschwankungen einen deutlichen 

Einfluss auf das Sprayverhalten haben. Weiterhin wurde die Durchdringungsgeschwindigkeit 
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des Sprays unter oszillierenden Druckbedingungen mit Hochgeschwindigkeitsaufnahmen 

abgeschätzt. Dabei zeigte sich, dass die Durchdringungsgeschwindigkeit steigt, wenn 

Kammerdruck und Oszillationsfrequenz erhöht werden. 

Im Hinblick auf ein besseres Verständnis der Mechanismen während der Filmbildung in 

einem Airblast Zerstäuber mit Filmleger, wurden Experimente zum Sprayaufprall auf einer 

schiefen Ebene durchgeführt. Die Filmdicke der Restflüssigkeit auf der Oberfläche wurde mit 

Hochgeschwindigkeitsaufnahmen abgeschätzt und gleichzeitig wurde das Verhalten der 

entstehenden Tropfen mittels der Phase-Doppler Technik charakterisiert. Aus den 

experimentellen Daten kann die Filmdicke als Funktion der erfassten Sprayparameter 

bestimmt werden. 

Abschließend wird eine neue Skalierungsmethode für die Tropfengrößen des Sprays 

basierend auf dem Energieerhaltungsprinzip im Rahmen der „Chaotic Disintegration Theory“ 

vorgestellt. Das Modell wurde durch den Vergleich mit den Versuchsergebnissen validiert.  
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1 Introduction 

1.1 General 

The atomization of liquid bulk into small droplets in form of a spray is an important process 

in industrial and combustion systems. By forming droplets, a larger surface area is produced, 

thus reducing the liquid vaporization time. For liquid-fuelled combustion applications such as 

liquid fuel injectors for diesel and spark ignition engines, gas turbines, industrial furnaces, 

rocket engines, etc, this results in better mixing and an increase in the time available for 

complete combustion [1]. This distributed drop size generation may also be significant for 

spray cooling, spray painting and agricultural applications. In some applications, the aim of 

atomization can be mono-size drops generation: cellular micro-encapsulation; medical 

nebulizers; ink-jet printers or powdered metallurgy [2]. In aero engines, gas turbines and 

diesel engines the nature of the atomization process plays an important role in controlling 

NOx, CO2 and unburnt hydrocarbons since ignitability and flame stability are dependent on 

the droplet size of the fuel and air-fuel mixture properties. The mixing mechanisms in 

combustion chambers involve the disintegration of the liquid phase and forming a 

homogeneous mixture to avoid single droplet combustion and to create an advantageous 

spatial distribution of the liquid spray within the combustion chamber [3]. The mechanism of 

introducing the liquid fuel in the combustor and the mixing process plays a key role in the 

combustion efficiency in terms of combustion, performance and emissions. 

 

1.2 Airblast atomizers 

Most of the atomizers used for industrial applications exploit two types of atomization. The 

first type is based on the capillary or chaotic breakup of a jet or liquid sheet ejected with high 

velocity from the nozzle under the high injection pressure, whereas the second type is based 

on the aerodynamic breakup caused by the shear stresses at the liquid-gas interface.  

Other kinds of atomizers use different forms of energy to proceed with the atomization 

process (for example in electro-spraying, plasma spraying, etc.).  

Typical examples of the first type are the pressure swirl atomizer and the simplex atomizer 

which are used in this work to produce the primary spray in the airblast atomization 

mechanism and the incoming spray in the spray-wall interaction experiments, respectively.  

In airblast atomizers, the kinetic energy of the gas-phase initiates the transformation of the 

initial continuous medium of the liquid-phase into a discrete form of ligaments and droplets. 
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In the different available designs of airblast atomizers, the basic objective is to deploy the 

available air in the most effective way to produce the best atomized liquid phase. Figure 1.1 

shows a cross section of an airblast atomizer with pre-filmer, where the liquid phase is 

initially introduced by a pressure swirl atomizer. The gas phase interacts with the liquid film, 

first inside the atomizer and subsequently outside the atomizer. 

 

Figure 1.1: Airblast atomizer with pre-filmer. 

 

Different designs of airblast atomizers can be found in the literature. Three types are reported 

in [1]; a) pre-filming, b) piloted and c) plain-jet airblast atomizers as shown schematically in 

figure 1.2.  In the atomizer shown in figure 1.2a the liquid flows through a number of 

tangential equally spaced openings onto a pre-filmer before being discharged at the 

atomization lip where it is subjected to two separate airflows.  

 

Figure 1.2: Different types of airblast atomizers 

 

A disadvantage of pure airblast atomizers is the poor atomization associated with low air 

velocities. To overcome this problem, a pressure swirl atomizer or a simplex nozzle can be 

used to produce atomized droplets in cases where low velocity is dominant. A sample of such 
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atomizers is shown in figure 1.2 b. The liquid phase can also be introduced directly to the 

high-velocity air stream in form of discrete jets as in the atomizer shown in figure 1.2 c. In the 

plain-jet airblast atomizer the liquid flows through a number of radial distributed drilled plain 

holes, from which discrete liquid jets emerge and enter the swirling air stream. 

 

1.3 Mechanisms of liquid atomization 

1.3.1. Atomization of jets and films 

Understanding the mechanism of liquid droplets generation from liquid bulk is rather difficult 

due to the complexity of the phenomenon involved. The efforts that have been made in the 

past are addressed in [4], in which the effect of surface tension and gravitational forces on the 

breakup of liquid jets is theoretically introduced to predict the critical conditions under which 

a non-viscous, laminar liquid bulk in form of a jet breaks up under the effect of gravitational 

and surface tension forces. This work introduced Rayleigh breakup, which occurs when the 

wavelength of the disturbance is equal to the circumference in the liquid jets and results in 

droplets equal to 1.89 times the diameter of the liquid jet. An example of such breakup 

process is the flow from a commercial shower head as shown in figure 1.3. This theoretical 

result was originally experimentally validated by [5]. 

 

  

Figure 1.3:  Atomization of water jets in a shower by Rayliegh capillary instability.  

 

Further theoretical work has been performed by [6] to consider the effect of viscosity of the 

liquid, aerodynamic forces and the drag forces on drop formation. This study concluded that 

the relative velocity between the liquid jet and the surrounding air reduces the wavelength at 

which the breakup takes place. Experimental results show that four regimes of liquid jet 
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breakup exist; Rayleigh breakup, where the air doesn’t influence the drop formation, 

formation of drops under the influence of air, formation of drops as a result of sinuous waves 

on the liquid jet and then a complete disintegration of the liquid jet [7]. The combination of 

the effects of the surface tension, gravitational forces and the viscous effect of high velocity 

liquid jets in high air velocity regimes has been treated in [8] in form of a dimensionless 

number known as the Ohnesorge (Oh) number after extensive visualization of the 

disintegrating liquid jets of different diameters.  

As the main problem in airblast atomizers is the transformation of the liquid bulk in the form 

of a sheet or film in to drops, early attempts to theoretically investigate this phenomenon can 

be found in the literature. [9] provide information about the disintegration of planar non-

viscous liquid sheets of defined thickness. In this work, the major factors that drive the 

disintegration process of the liquid sheet into droplets are considered to be the instability of 

the sheet and the wave formation at the liquid-air interface. An extension of this analytical 

work to flat, non-viscous liquid sheets by a slender orifice as [10] has done, can reduce the 

difficulties in [9] analytical treatment of the problem. It is concluded that only two types of 

waves are possible on the surface of a liquid sheet [10]. Each of the liquid sheet surfaces can 

be either in-phase to produce sinuous waves or out-of-phase to produce dilatational waves and 

this yields equation 1.1 for the stable frequency of these waves. 

πσ

ρ

2

3
U

f c =                                                                                                                              (1.1) 

In real applications, the liquid film is subjected to more than a simple air stream. In the 

atomizer used in the present study for instance, a swirl air stream is responsible for the 

breakup of the liquid film that is generated by an impaction process of the hollow-cone 

pressure swirl spray onto an inclined pre-filmer. Dombrowski with co-authors [11-14] have 

performed a series of experiments to investigate various phenomena related to the 

disintegration of liquid sheets. In [11] they provided photographic information about the 

breakup of conical liquid sheets emerging from a pressure swirl nozzle and a fan spray. The 

effects of liquid temperature, viscosity, density and surface tension have been documented. 

They found that the fundamental concept of disintegration of a radially expanding liquid sheet 

is the increase of its surface area. They also distinguished between three modes of sheet 

disintegration; rim, wavy and perforated disintegration. In the rim mode the flow at the edges 

of the liquid sheet under the action of capillary forces leads to the creation of the rims. In 

many cases these rims are unstable, their centerline deflects which leads to the appearance of 

the cusps and finger-like jets.  In the wavy mode, the waves on the sheet surface initiate the 
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disintegration process. In the third mode the film starts to disintegrate in the regions where the 

thickness is minimal. In [12] Clark and Dombrowski developed a mathematical model for the 

aerodynamic growth of sinuous waves on parallel sided inviscid liquid sheets. They have 

obtained an asymptotic analytical solution of the wave growth for the case where the wave 

length is relatively long comparing to the sheet thickness. The results were compared with the 

experimental results that have been obtained in [11]. Crapper, Dombrowski and Jepson [13-

14] implemented a linear analysis to investigate wave growth on flat sheets of Newtonian and 

non-Newtonian liquids. They found that the viscosity has no effect on the initial wave growth, 

and the growth depends only on the sheet velocity and the distance from the nozzle.  

 

1.3.2. Atomization mechanisms in an airblast atomizer with pre-
filmer 

In an airblast atomizer a hollow-cone spray generated by a pressure swirl atomizer impacts 

onto a pre-filmer. Under isothermal conditions, this impaction process may produce 

secondary droplets, but in any case it generates a thin liquid film. This liquid film is subjected 

to a shear force as a result of the interaction of its free surface with airflow stream. This 

interaction forces the liquid film to move towards the lip of the pre-filmer where a second 

swirl air stream deforms its edge and leads to disintegration of the liquid film in form of 

ligaments and then to small droplets as schematically shown in figure 1.4. 

Various mechanisms inside the airblast atomizer lead to atomization and generation of a two-

phase flow that leaves the atomizer in the form of spray droplets that are carried by the 

airstream. The droplets follow the air flow or they develop their own trajectory depending on 

their size and relative velocity. 

 

 

Figure 1.4: Schematic of airblast atomizer with pre-filmer. 
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The outcome of the different atomization processes inside the airblast atomizer is influenced 

by many parameters like the volumetric flow rates of the airflow and the liquid flow, 

parameters of the primary spray, ambient pressure, material properties of the fluids, etc. The 

flow in the atomizers and the atomization processes are extremely complicated and are not 

always well described and modeled. Therefore, parametrical studies are important to better 

understand the effect of these parameters and to serve as a source of modeling concepts.  

Such complicated atomization mechanisms can be better investigated if various processes are 

studied and modeled separately. The following very basic atomization mechanisms in the 

ariblast atomizer can be distinguished which determine the main integral parameters of the 

airblast spray: 

• Primary spray generation by a pressure swirl nozzle 

• Drop evaporation in the atomizer 

• Secondary (aerodynamic) drop breakup 

• Spray/wall interaction leading to the generation of the secondary spray and spray 

deposition on the prefilmer 

• Disintegration of the liquid film on the prefilmer by an air-flow 

The parameters of the primary spray for a certain nozzle are determined mainly by the 

injection and ambient pressure and by the thermodynamic properties of the liquid. These 

spray parameters can be usually obtained from the nozzle manufacturer. It can be also shown 

that drop evaporation has only minor influence on the drop diameter of the airblast spray, 

even at the rather high temperatures, since the residence time of the drops inside the atomizer 

is very small. Moreover, the physics of evaporation of single drops is clearly understood and 

this process can be thus easily modeled.  

Secondary atomization of a single drop and the mechanisms involved in spray impact are 

briefly reviewed below.  

The aerodynamic film disintegration on the prefilmer leads actually to the generation of the 

main airblast spray [15]. This phenomenon is not yet completely understood. In this study the 

theory of chaotic disintegration is applied for the prediction of the diameter of drops in the 

airblast spray. It is described in the section 6.3.  

1.3.3 Secondary breakup of a single drop 

An important mechanism in airblast atomization is the secondary atomization, referring to the 

breakup of a single droplet. The conditions at which the secondary atomization takes place is 

important to properly understand the effect of the different parameters on the droplet size 
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distribution in the primary and the final airblast spray and their behavior during the 

penetration in the pressure chamber. 

Liquid drops detached from a liquid film or ligaments, follow certain trajectories, depending 

on their Stokes number. They may disintegrate into smaller droplets.  

Non-uniform distribution of pressure and shear stress on the droplet surface may occur due to 

the relative motion between the droplet and the surrounding gas. The droplet may disintegrate 

if these forces overcome the opposing surface tension. The droplets resulted from this 

disintegration process may undergo further breakup till the surface tension forces are stronger 

than the external forces [16-17]. It is concluded that the secondary atomization depends on the 

value of Weber number of the gas phase and Ohnesorge number. In [18] five different 

mechanisms of secondary atomization are presented based on the Weber number. These 

regimes are schematically shown in figure 1.5: 

- Vibrational atomization (Weg ≤  12) 

- Bag atomization (12 < Weg ≤  50) 

- Bag and stamen atomization (50 < Weg ≤  100) 

- Sheet stripping (100< Weg ≤  350) 

- Wave crest stripping followed by catastrophic atomization (Weg > 350) 

 

Figure 1.5: Atomization mechanisms of single droplet [17] 
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The Weber and Ohnesorge numbers are defined as: 

σ

ρ dU relg

2

gWe =                                                                                                                      (1.2) 
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L=Oh                                                                                                                         (1.3) 

The characteristic breakup time is 
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where buT is the dimensionless breakup time and can be determined form the following 

equations 
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The stable diameter at which no further atomization takes place and the corresponding Weber 

number can be determined by  

2critg,We
relg
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critg, +=                                                                                                  (1.7) 

An estimation of the relevance of the drops secondary breakup is discussed in section 6.1.  

1.4 Spray/wall interaction 

Spray impact onto surfaces and liquid films is a key phenomenon not only for the spray 

generation in the airblast atomizers, which is the main subject of this thesis, but also in a wide 

range of technical and industrial applications. The phenomenon is important in ink-jet printing 

and painting industries, where the paint drops should stick to the surface without generation of 

secondary droplets. In gas turbines, high-power electronics and metal industry, spray impact 

is used for rapid cooling of hot surfaces. On the other hand the effect of spray cooling is not 

desirable in internal combustion engines, when un-burnt droplets impact on the inner surfaces 

of the piston and the cylinder, since this leads to higher CO2 emissions and residual 

hydrocarbons in the exhaust gases.  
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Figure 1.6: Normal spray impact onto a curved surface. Spray impact generates a fluctuating 

liquid wall film.  

 

Spray impact generates a thin fluctuating liquid film on the substrate surface (see Figure 1.6). 

This flow is rather complicated and cannot be easily and reliably described using widely 

accepted approaches, like superposition of single drop impacts or long-wave equation for the 

evolution of a thin viscous liquid film.  

In the airblast atomizer which is used in this work, a primary pressure swirl spray impacts 

onto the pre-filmer to produce thin liquid film and secondary droplets, then the liquid film 

breaks up into ligaments and droplets. The thickness of the liquid film along with other 

parameters (air velocity, surface material, liquid properties) is responsible for the size of the 

generated airblast spray droplets. Therefore, investigating this phenomenon helps towards a 

more comprehensive understanding of the airblast atomization mechanism. 

The results of the experimental method for the characterization of the film produced by spray 

impact and its model based on the parameters of the primary spray are given in the section 

6.2.  

 

1.5 Fluctuations of a spray generated by an airblast atomizer 

The main requirements for clean, stable and efficient combustion are well mixed air-fuel 

mixture, high volume-mass ratio of the spray and large area to mass ratio of the liquid phase. 

In different applications, where airblast spray is used, definite spray angle, and stable hollow-

cone shape of the spray as well as definite penetration length are important to guarantee 

acceptable quality of the process as in spray painting for example. In practice, spray generated 

by an airblast atomizer hardly meet requirements due to different reasons. These reasons can 

be related to lack of information concerning the mechanisms of spray production inside the 

atomizer, or due to certain phenomena that exist in two-phase flow in general and in airblast 



 
 

10 

spray in particular. Thermo-acoustic fluctuations are typical phenomenon related to airblast 

spray. They appear in swirl flows as a result of pressure variation along flow paths. In the 

atomizer used in this work, the gas phase is introduced through two levels of radial distributed 

square holes. These holes are machined tangential relative to the atomizer axis to force the air 

streams to follow a certain swirl path. This flow geometry yields the so-called precessing 

vortex core (PVC), which is a widely known phenomenon in pure swirl flow as reported by 

[19-20]. The PVC can be responsible for combustion instability in gas turbines. Despite 

extensive efforts in investigating this phenomenon, there is still no universal model to 

quantitatively predict the frequency of these fluctuations.  

Under certain conditions, the thermo-acoustic fluctuations might act as forced oscillations and 

affect the fundamental properties of the combustion mixture.  

In this work, particular attention is paid to investigate both the natural and forced oscillations 

of the airblast spray, and a new model is presented to estimate the natural oscillation 

frequency. 

 

1.6 Objectives and contribution of this work 

The main aim of this experimental work is the characterization of the spray generated by a 

MTU airblast swirl atomizer, in particular a description of its atomization, propagation and 

instability. The research strategy is based on the detailed investigation of the main elements 

involved in the atomization process in order to validate the numerical tools for the spray 

prediction and to develop the atomization model: 

• Characterization of the main integral parameters of the airblast spray, including the 

parameters of the liquid drops and the airflow 

• Characterization of the instationary phenomena in spray propagation, measurements of 

the frequency of its natural and forced fluctuations 

• Characterization of the primary spray and investigation of its influence on the airblast 

spray 

• Characterization of inclined spray impact in application to the impact of the primary 

spray on the prefilmer in an airblast atomizer, modeling of the wall film thickness 

• Development of a universal atomization model which is able to predict the typical 

diameter of the drops in the airblast spray on the base of the parameters of the primary 

spray, wall film thickness, airflow and density.  
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The experimental data collected in this work describes the steady and unsteady behavior of 

the airblast spray under various operating conditions. It provides information concerning the 

effect of the ambient pressure, airflow rate and water flow rate on the Sauter mean diameter of 

the droplets and their velocity vectors, and their behavior during penetration in the pressure 

chamber. The experimental data for different operating conditions is presented in several 

publications [21-23]. 

The work for this dissertation has been performed as a part of a larger project that focuses on 

flow and combustion in future gas turbine combustion chambers “SFB 568”. The subproject 

A1 focuses on delivering the experimental data on the droplet size distribution and velocity 

profile of liquid droplets in an MTU airblast atomizer under isothermal conditions to validate 

numerical models that are developed by different subprojects (A4). A sample result [21-24] of 

the comparison between experimental data and numerical simulations performed in the 

framework of the subproject A4 is shown in figure 1.7.  

  

 

Figure 1.7: Comparison between experimental (-) and numerical (-) results, chamber pressure 

of 5 bars, airflow rate of 20SCMH and water flow rate of 1.94 l/hr. 

 

In the MTU airblast atomizer used in this study, the airflow follows a swirl path which leads 

to the precessing vortex core phenomenon. This phenomenon is extensively investigated by 

different groups, but still a unified scaling of the rate of detachment of the PVC is missing.  

Under actual operating conditions of gas turbines, pressure oscillations inside the combustion 

chamber may occur, which could lead to the combustion instabilities or even to the chamber 

destruction. These pressure oscillations and their effect on the airblast spray have been 

investigated by different researchers, where a certain percentage of the incoming air to the 

atomizer is subjected to pressure oscillations. In this work the airflow is subjected to pressure 
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oscillations at different frequencies at different chamber pressures which has led to 

unexpected new results. In this work, a universal scaling for the spray frequency is proposed 

and validated by the experimental data [25-26].  

A significant part of this study is devoted to the investigation of spray impact and the 

development of the experimental methodology of the characterization of the film created by 

spray impact. Moreover, a model for the film thickness is proposed based on the analysis of 

the single drop impact onto a liquid film and scaled by a thickness of the viscous boundary 

developed during spray impact.  

Finally, the experimental data are used to a validate the chaotic disintegration model able to 

predict the Sauter mean diameter of droplets in the airblast spray based on the energy balance 

of the two phases of the flow.  

 

1.7 Thesis overview 

Literature has been reviewed for each chapter of this thesis and placed in an appropriate order 

based on the subject and objective of each part. 

In chapter 2, the experimental setup and the measurement techniques are described. The 

capabilities of the pressure chamber, description of the airblast atomizer and the compressed 

air system are given. Furthermore, basic information concerning the phase Doppler technique, 

Particle Image Velocimetry and high-speed video system is introduced. 

Visualization of spray generated by an airblast atomizer, including the gas-phase, is reported 

in chapter 3. Moreover, high-speed video images of the primary spray that impacts onto the 

airblast atomizer pre-filmer are also presented.  

Simple scaling analysis of the spray frequency is presented in chapter 4. The effect of 

different parameters on the spray frequency is also discussed. The results obtained by 

performing experiments under oscillating pressure conditions are also presented and clarified. 

Chapter 5 is devoted to the airblast spray characterization. The effect of airflow rate, water 

flow rate and chamber pressure on the droplet size distribution and velocity profile in pressure 

swirl spray and airblast atomizer is performed. Further results concerning the air velocity 

based on the LDA results and PDA data of the liquid phase is displayed.  

A model for estimation of droplet size in airblast spray based on energy balance in the 

framework of chaotic disintegration of liquid films is presented. In chapter 6 the model is 

formulated after a thorough discussion of the potential generation of the droplets in the 

airblast spray. Moreover, an empirical correlation for the film thickness on the pre-filmer of 

an airblast atomizer is presented. 
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2. Experimental setup and instrumentation 

2.1 Pressure chamber and spray system 

Pressure chamber 

All the experiments devoted to the characterization of the spray produced by the airblast 

atomizer have been performed in a stainless steel pressure chamber that can withstand up to 

50 bars. This feature allows the isothermal operating conditions of the most advanced aero 

engine combustors to be simulated. Part of the advantage is given up by using water instead of 

kerosene as a test fluid. Actual experiments are performed under the chamber pressure up to 

15 bar corresponding to the operating range of smaller engines. 

The pressure chamber, shown in figure 2.1, has three optical accesses at 0º, 90º and 240º to 

facilitate the use of PDA, PIV and high-speed video (time resolved) imaging technique.  

Compressed air flows to the chamber through two paths. The first one leads to the atomization 

cup where the airblast atomizer is mounted, and the second one leads directly to the chamber 

to maintain the pressure within. The source of the compressed air is a compressor that charges 

a pressure vessel of 18 m3, which ensures continuous stable airflow. The standard air-mass 

flow rate to the atomization cup is measured using a CTA based device (KURZ). The pressure 

drop between the air source and the chamber is regulated by a pressure reducing valve. The 

pressure and the airflow rate are controlled by means of a system of manual ball valves. To 

buildup the pressure within the chamber, for example, the BV3 is partially close, and then 

BV2 is gradually opened until the required pressure is available. Valve BV1 allows a fine 

adjustment of the airflow rate. 

Atomizer 

The liquid phase is introduced to the airblast atomizer in the form of a pressure swirl spray, 

produced using a pressure swirl atomizer. A reciprocating pump provides the pressure swirl 

atomizer with continuous flow at the specified flow rate, adjusted using the stroke length of 

the pump’s piston. A MTU atomizer is used to produce the airblast spray. The dimensions and 

the geometry of the airblast atomizer are shown in figure 2.2. 
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Figure 2.1: Pressure chamber 

 

Figure 2.2: MTU airblast atomizer with pre-filmer 

 

Spray impact facility 

A spray impact facility is used to simulate the processes taking place inside the airblast 

atomizer. A simplex nozzle is used to produce a spray that impacts onto a Plexiglas surface 

mounted with different angles �, as shown in figure 2.3. 

In the case of spray impact onto the Plexiglas surface under atmospheric pressure, a pressure 

vessel is used to provide the nozzle with continuous water flow. The water flow rate to the 

simplex nozzle is measured using a commercial flow meter. The angle � has been changed 
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between 15, 30, 45 and 60 degrees. PDA measurements are performed to measure diameter 

and two velocity components of the incoming and the secondary droplets. 

 

Figure 2.3: Schematic of the spray impact facility 

 

2.2 Laser Doppler/Phase Doppler Techniques (PDA) 

The LDA is a non-intrusive point-measurement technique to measure local velocity of 

droplets, bubbles or particles in the flow. This technique enables remote measurements of up 

to three velocity components simultaneously with values as high as 1000 m/s depending on 

the optical configuration of the system. Detailed information of the system and the theory 

behind it is mentioned in [27]. 

In this work, a dual Phase Doppler Technique (PDA) is used to measure velocity and diameter 

of the droplets in the airblast spray, the primary sprays and to characterize the incoming and 

outgoing droplets in spray-wall interaction experiments. An Argon-Ion, water cooled-laser , 

which generates power of 10W output, at 514.5 nm and 488 nm wavelengths for the green 

and blue beams is used.  

The PDA system, operated in coincident first order refraction scatter enabled the simultaneous 

measurement of both axial and vertical velocities. It is able to estimate also some integral and 

statistical parameters, like volume flux density vector, and 2-D fluctuating velocity 

correlations. A top view of the pressure chamber and the PDA optics is sketched in figure 2.4.  
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Figure 2.4: Configuration of the PDA optics with the pressure chamber 

 

Table 2.1: Parameters of the transmitting and receiving optics 

Transmitting optic 

Beam system U1 U2 

No. of fringes 56 56 

Fringes spacing (µm) 5.151 4.886 

Beam half angle (deg) 2.862 2.862 

Probe volume-dx (mm) 0.292 0.276 

Probe volume-dy (mm) 0.291 0.276 

Probe volume-dz (mm) 5.830 5.530 

Wavelength (nm) 514.5 488 

Focal length (mm) 600 600 

Beam diameter (mm) 1.35 1.35 

Expander ratio 1 1 

Beam spacing (mm) 60 60 

PDA receiver 

Receiver type Dual PDA  

Scattering angle (deg) 30  

Receiver focal length (mm) 400  

Expander ratio 1  

Fringes direction U-/V-  

Scattering mode Refraction  

Mask (Aperture) Mask A  

Max. diameter (µm) 294.685  

Eff. slit width (mm) 0.320  

 
While drop velocity measurements depend strictly on the frequency of the intensity variation 

of scattered light due to droplet movement and fringe interactions, accurate droplet diameter 
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measurements depend on the spatial frequency of the scattered light. In essence, the scattered 

fringe spacing, or phase shift, is determined by the size of the scattering droplet, while the 

frequency of the scattered light is a measure of the droplet velocity. For this reason, at least 

two photo detectors are needed to measure droplet diameters. The PDA system used here 

contains four detectors, allowing two independent measurements to be made simultaneously 

for the reason of spherical validation. Spherical validation of 15% and 30% are used for the 

spray characterization and the spray impact experiments respectively. Further details of the 

PDA system parameters are shown in table 2.1. More details about the PDA technique can be 

found in [27,28]. 

 

2.3 Particle Image Velocimetry (PIV) 

PIV is a non-intrusive, whole field, laser optical measurement technique for flow velocity. A 

pulsed laser (New Wave Solo Nd:YAG), with optical attenuator designed to work at a 

wavelength of 532 nm is used to illuminate the measurement plane for PIV measurements. 

The laser beam passes a cylindrical lens with 6 mm diameter and diverges after the lens with 

14° to produce a 1.2 mm thick laser sheet. The laser power is 2 x 120 mJ at 532 nm 

wavelength. The images are captured using a CCD camera (SensiCam) with 1280 by 1024 

pixels and an equal number of storage cells at 90º angle. The captured images are processed 

by Dantec Dynamics FlowManager software, using an interrogation area of 32x32 pixels and 

an overlap of 50%. The liquid droplets in the spray are used as tracer particles to measure the 

velocity of the liquid phase, whereas aerosol oil droplets are used to mark the gas phase. 

These tracer particles are generated by the “home-made” aerosole generator. The generator is 

described in section 2.5. 

 

Figure 2.5: Schematic of the PIV system with the pressure chamber 
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2.4 Time resolved imaging technique 

Time resolved images are captured using a high-speed video camera (PHOTRON 

FASTCAM-Ultima 512 32K) for the spray visualization experiments and for the spray impact 

set of experiment a (PHOTRON FASTCAM-SA1 650K) camera is used. 

To estimate the spray frequency by processing the high-speed video camera images, the 

images are captured at 30º as shown in figure 2.6. The spray is illuminated by a continuous 

laser sheet of Argon-Ion laser. The frame rate is varied between 2 kHz and 8 kHz to capture 

frequencies between 0.2 and 3.2 kHz. 

The images that are used for whole field visualization and the near nozzle region are captured 

at 54 k frames per second with a shutter time of 1/297000 sec.  

 

 

Figure 2.6: Schematic of the high-speed camera with the pressure chamber for the spray 
visualization measurements 

 

 

Figure 2.7: Schematic of the high-speed camera with the pressure chamber for the spray 
impact experiments 
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A 2 kW light source is used as shown in figure 2.7 with a diffuser sheet between the light 

source and the spray to uniformly illuminate the background. 

 

2.5 Aerosol generator for the airflow measurements 

In order to measure the airflow in the near nozzle region using optical measurement 

techniques like laser Doppler or PIV, the flow must be marked with tracer particles. There are 

no available industrial aerosol generators able to create small aerosol particles in a high 

pressure flow above 10 bar. Therefore, a custom-built aerosol generator has been designed 

and built with a pressure range of up to 40 bar. The generator consists of the following 

components and is schematically shown in figure 2.8. 

• pressure reducer connected with the high-pressure air line; 

• first chamber where the primary spray is created; 

• second chamber where the primary spray droplets are separated on an impacting plate 

and the large inertial drops are deposited and removed from the flow.  

 

Figure 2.8: Schematic of the high-pressure aerosol generator 

The aerosol generator is able to produce small droplets at elevated pressure conditions, but at 

high airflow rates , the aerosol oil starts to reach the atomizer exit as ligaments due to the high 

impact velocity on the inner surface of the atomizer. This leads to relatively large tracer 

particles, which don’t follow the airflow due to their high Stokes number. In this case, the 

qualitative and quantitative analysis of velocity profiles reveals considerable and unjustified 

diviation from the LDA results, therefore, part of the results that are obtained for the gas-

phase velocity is not accepted.   
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3. Spray generated by the MTU airblast atomizer 
used in this work 
Generation of fine drops with high surface-to-volume ratio is required to ensure good 

combustion in gas turbines and diesel engines. Various types of airblast atomizers have been 

designed and tested to match different applications. The most widely used type in aero 

engines and gas turbines is the airblast atomizer, by which the liquid phase is introduced in 

the form of a liquid film that breaks up due to the shear forces at the liquid-gas interfaces and 

due to spray impact onto a pre-filmer.  

In order to characterize the atomization process and the features associated with the spray 

propagation it is important to investigate the phenomena qualitatively through their 

visualization. In this chapter, a report of the results of visualization of the spray generated by 

the MTU airblast atomizer described in section 2.1 is presented. 

 

3.1 Airblast spray 

In order to better understand the investigated spray and the process of its creation, a series of 

measurements using the PIV technique and time-resolved high-speed video imaging has been 

performed. An example of the PIV measurements is shown in figure 3.1. 
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Figure 3.1: (a) Spray image using the planar laser sheet, (b) vector plot of spray using PIV 
instrument (water flow rate: 2.66 l/hr, air flow rate: 20 SCMH, chamber pressure: 1bar). 

 
In figure 3.1a the spray is illuminated by a planar laser sheet. An example of an average 

velocity field obtained using the PIV technique is shown in figure 3.1b. In this figure the 

length and the color of the arrows correspond to the velocity magnitude. The spray droplets 

have been used as markers for the PIV, therefore, only the average spray velocity has been 

measured. No explicit information about the air flow can be obtained from these 

measurements. 

Qualitatively, three main regions can be immediately recognized: 

- outer region 1 of relatively small droplet velocity; 

- main region 2 of relatively high droplet velocity; 

- inner region 3 near the axis.  

This flow is non-stationary and turbulent. Some vortex structures are often created at the 

boundary between regions 2 and 3, leading to the typical fir-tree-like instantaneous shapes of 

region 3.  
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Figure 3.2: Image of airblast spray generated with high-speed video camera (water flow 
rate: 2.66 l/hr, air flow rate: 20 SCMH, chamber pressure: 1bar, frame rate of 2kHz and 

shutter time of 1s.) 

 

The motion of single droplets can be clearly seen on the images of spray captured by the high-

speed video system. It could be expected that the motion of the relatively large water drops is 

inertia dominated. However, Straight drop trajectories, typical of inertial drops are not 

observed. In fact the droplets followed the swirl air flow. In the image in figure 3.2 the shutter 

time is relatively long such that each drop is shown as a short line directed along the 

instantaneous drop trajectory. Even in the single image in figure 3.2 the spiral drop 

trajectories can be recognized. It is also clear that this phenomenon of capturing of droplets by 

a swirl airflow can only be observed for very large values of the air-to-liquid mass ratio, 

typical of the present experimental conditions. In this case the momentum of the liquid 

fraction is small in comparison with the momentum of the air flow. 

Using larger magnification, higher frame rates and shorter shutter times at different airflow 

rates, the high-speed video images provide information concerning the liquid forms that leave 

the atomizer. In figure 3.3, the airflow rate is varied between 10, 20 and 30 SCMH. 

60 mm 
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Figure 3.3: Single frames of high-speed video images of airblast spray at the exit of the 
atomizer at chamber pressure of 1 bar, water flow rate of 3 l/hr and airflow rate of; a) 10 

SCMH, b) 20 SCMH, c) 30 SCMH. Frame rate is 54 kHz, shutter time is 1/297000 s 

 
Figure 3.4: Single frames of high-speed video images for airblast spray (liquid phase) at 
different chamber pressures. Liquid flow rate 2.66 l/h, air flow rate 20 SCMH, frame rate 

of 2kHz and shutter time of 1 s. 

At lower airflow rates, the liquid leaves the atomizer in the form of ligaments and large 

droplets as pictured in figure 3.3a. The ligaments start to follow the swirl path and become 

smaller when the airflow rate is increased as shown in figures 3.3b and c. 

11mm 
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The effect of increasing chamber pressure while keeping a constant airflow rate can be 

qualitatively captured by the high-speed video imaging. In figure 3.4, the single frames 

present the shape of the entire spray at a) 1, b) 5, c) 10 and d) 15 bars. It is shown that the 

hollow-cone shape of the airblast spray changes as the chamber pressure increases. These 

images have been taken at 30° angle as per the setup shown in figure 2.6. 

 

3.2 Gas phase 

The air flow generated by the atomizer is visualized using the tracers introduced by the 

aerosol generator. In fig. 3.5 the aerosol flow is illuminated by a planar laser sheet and the 

images are captured by a high-speed video camera. Single images show different details of the 

gas phase flow such as; spray cone, and typical vortex structure.  

 

 

Figure 3.5: Air image using planar laser sheet and oil as seeding particles at chamber 
pressure of 1 bar and air-mass flow rate of; a) 20SCMH, b) 60SCMH 

 

The vortex structure can be easily seen in figure 3.5a. This phenomenon is known as the 

Precessing Vortex Core (PVC). The PVC appears to be a mechanism of the rapid transport of 

fluid from the wall opposite the exit of the swirl device to the downstream end of the Reverse 

Flow Zone RFZ, or recirculation zone. In figure 3.5b the air entrainment phenomena is 

observed. In this work, the high-speed images are used to estimate the aerodynamic frequency 

of the gas phase as discussed later in chapter 4 of this thesis.  

. 
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3.3 Pressure swirl (primary) spray 

It is interesting to qualitatively compare the airblast spray (the output from the atomization 

process) shown in figures 3.1 and 3.2 with the primary spray generated by the pressure swirl 

nozzle (the input spray to atomizer) shown in figure 3.6. In figure 3.6 these sprays are shown 

at various ambient pressures while the water flux is constant. The cone angle of the spray 

slightly decreases when the ambient pressure is higher, and the spray becomes denser. 

Moreover, some periodic moving structures appear in the spray at a pressure larger than 5 

bars. The average spray velocity reduces at higher ambient pressures due to increasing the 

drag force. This effect can also explain the higher dispersion of the spray region leading to the 

motion of drops of the main spray region. At high ambient pressures many relatively slow 

drops can be seen at the spray periphery under chamber pressure of 15 and 20 bars (Figure 

3.6). The variation of the primary spray parameters influences the thin film that is generated 

on the pre-filmer, which is the source of all droplets in the airblast spray. 

 

Figure 3.6: Primary spray at various ambient pressures. The liquid volume flux is 2.66 l/hr. 
 

 

25m
m
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4. Aerodynamic instability of spray generated by an 
airblast atomizer under steady and forced-oscillating 
pressure conditions 
The geometry of the MTU airblast atomizer allows the gas-phase to create a swirl path. This 

swirl movement of the air enhances the mixing process between the liquid and the gas phases 

by gaining an azimuthal velocity component as well as increasing the volume-mass ratio of 

the mixture. The main application field of such atomizers is in industrial combustors and gas 

turbines [29]. However, they can also be effectively used in the atomization of complex, non-

Newtonian fluids [30-31]. Recently, attention has turned to the possibility of designing 

airblast atomizers which are able to control the parameters of the generated sprays [32-33] or 

to suppress the combustion instabilities [34-35]. Furthermore, gas turbine combustion 

depends on the control of the local air/fuel ratio. Swirl is commonly used to stabilize turbulent 

flames in regions of low flow velocities. As combustion is driven closer to the extinction 

limits, it is important to understand not only the mean flow field but also the flow field 

dynamics [35].  

Conical swirl sprays generate natural oscillations which are frequently explained by the 

appearance of a so-called precessing vortex core (PVC). The precessing vortex core is 

responsible for establishing the near-field aerodynamic characteristics. They also influence 

the flame instability and the fuel/air mixing [36]. The velocity oscillations of air and fuel 

particles in gas turbine applications can lead to the reduction of the combustion effectiveness, 

increased emissions and in worst case they can destroy the gas turbines. 

The main subject of the study presented in this chapter is the investigation of the unsteady 

characteristics of spray generated by an airblast swirl generator over a co-current variation of 

air pressure and mass flow with an independent variation of air mass flux and liquid mass flux 

under isothermal conditions.  

This study is focused on the estimation of the typical frequency of the spray oscillations. This 

unstationary feature of the spray propagation is rather important for many industrial 

applications, mainly for the design and optimization of the combustion chambers. The values 

of the typical spray frequency are significant since they can be related to the onset of the 

thermoacoustic oscillations leading to the appearance of the combustion instabilities and even 

further destruction of the combustor.  

The instationary phenomena involved in spray propagation, spray fluctuations and 

combustion are extremely complicated. Therefore, since these phenomena cannot be easily 
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scaled, the usual research approach is based on the achievement of the typical parameters of 

laboratory sprays generated by industrial atomizers in the ranges relevant to the practical 

operating conditions. Such studies must be carefully repeated for each geometry of the 

atomizer and combustor, and must cover the entire range of the operating conditions. It is 

therefore obvious that the modeling of even one "simplest" element of this process, which is 

valid in a wide range of parameters, can be very valuable. 

In the present study the research is focused only on the onset of the natural oscillations of the 

isothermal swirling spray. These fluctuations in airblast sprays appear as the result of the 

instability which has the form of vortices that leave the atomizer in a swirl motion. 

Spray fluctuations at various chamber pressures are measured using two techniques, namely; 

proper orthogonal decomposition of time-resolved images and fuzzy slotting technique of 

laser Doppler velocity data. The estimated frequencies obtained using the both techniques 

match each other closely.  This result indicates that the local spray frequency (measured using 

the LDA technique) is equal to the frequency of the fluctuations of the spray shape (observed 

using the high-speed video system).  

The spray frequency is measured in a wide range of operating conditions: at various ambient 

pressures, volumetric fluxes of the fluid and air velocities. Two atomizer sizes are used in the 

experiments keeping its form constant: full scale nozzle and the scaled model. The scaled 

atomizer is used to study the airflow in the mixing chamber without spray. 

The measurements are performed at two spray propagation modes: at lower ambient pressures 

and higher air velocities the typical hollow-cone airblast spray is created, whereas at the 

elevated ambient pressures and lower air velocities the spray breaks up and propagates in 

almost radial direction along the upper wall of the chamber where the atomizer is installed. At 

these conditions the droplets can be so large, that they miss the first turn of the gas flow 

around the recirculation zone and similarity to the other conditions at higher air velocities can 

be lost. 

Nevertheless, scaling analysis of the spray frequency, described in section 4.3, demonstrates 

that it depends only on the average air velocity at the nozzle outlet and on the atomizer 

geometry. The main result of this study is that this scaling can be successfully applied to all 

the sprays or mixing flows, independent of the nozzle size, ambient pressure, volumetric flux 

of the liquid or even of the spray propagation mode. This result can thus be directly applied to 

industrial sprays operating at the real combustion chamber conditions. 

The next topic considered in this chapter is the description of the forced spray oscillations 

generated by the fluctuations of the ambient pressure in the chamber. One surprising result is 
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that the pressure oscillations of even relatively small amplitude lead to significant change in 

the spray shape and its strong fluctuations with the same frequency.  

4.1 Data analysis techniques 

4.1.1 Fuzzy Slotting Technique (FST): 

 To analyze the characteristic frequencies from randomly sampled laser-Doppler data the 

fuzzy-slotting technique suggested by [37-39] has been applied to the acquired data for the 

droplet axial velocity and the arrival time acquired by the phase Doppler instrument. The 

basic idea is to estimate the auto-correlation function (ACF) R11 by correlating the data 

pairwise and prorate the correlation value ujui in the best fitting slot of equidistant arrival time 

difference k�� in comparison to the measured inter-arrival time �t=ti-tj. 
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In equation (2) 
)( τ∆� kijuu  is the sum of all correlation values and )( τ∆kH  is the number of 

correlations falling into the kth slot. The power spectra density (PSD) 11E  can be estimated 

using the Fourier transformation of the auto-correlation function. 

4.1.2 Proper Orthogonal Decomposition (POD): 

It was suggested by [40] that the coherent structure in a turbulent flow could be identified by 

the representation of the flow that has the largest projection onto the flow, and the coherent 

structures are the primary eigenmodes that make significant contributions to the turbulent 

kinetic energy. [41] implemented the POD analysis to reveal coherent flow structures from 

PIV data transferring the original dataset into a new base (modes). [20,42] showed that this 

technique is also suitable to analyze the intensity variations or combinations of velocity and 

intensity data.  

Using the POD on the time-resolved high-speed images, the intensity of every image 

)(tψ could be reconstructed using the new Modes )(mφ  and corresponding coefficients 
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To identify these Modes, the eigenvalue equation (4.4) has to be solved. 

0)( =− φλIR                                                                                                                         (4.4) 
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Here I represents the unit matrix and R the averaged covariance matrix of the intensities as 

shown in equation (5). 

TR )).(( ψψψψ −−=                                                                                                       (4.5) 

The eigenvalue λ can be interpreted as energy of the fluctuations, so dominant characteristic 

fluctuations with high energy can be found by the first mode. The time-resolved series of 

coefficients of equation (4.3) can be analysed for dominant frequencies and characteristic 

phase relations deriving the power spectra density 
mmE  from the coefficients )()( ta m and 

)()( ta n of Modes m and n . 

4.2 Measurements of the frequencies of spray fluctuations 

Both PDA and PIV measurements have been used to investigate the droplet size distribution 

in an airblast spray (liquid phase) and the velocity profiles for both gas and liquid phases.  

 
Figure 4.1:  a) PIV image of gas phase at 1 bar pressure and 23 SCMH (b) Velocity vectors at 

15 bar pressure and 23 SCMH. 
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The resulting velocity profiles show an asymmetrical distribution with respect to the spray 

axis. These results can be related to the vortex structures that are formed within the spray, 

Figure 4.1. 

It is shown in both figures 4.1a and 4.1b, that the vortex structure can be captured at low and 

high pressures. The Fuzzy Slotting Technique analysis has been applied to the data (200k 

samples) for the axial velocity component of the drops in the spray. The autocorrelation 

function R11 and the power spectral density E11 are computed for different chamber pressures, 

as shown exemplarily in figure 4.2. At 1 bar chamber pressure, 20 SCMH airflow rate and 

1.92 l/h water flow rate, the spray has a frequency of 2960 Hz. This frequency decreases 

to 1090 Hz at 3 bars and 680 Hz at 5 bars. 

 

 
Figure 4.2: Autocorrelation function 11R  and power spectral density 11E  of the phase 

Doppler data at a chamber pressure of 1 bar and airflow rate of 20 SCMH 



 
 

31 

 
Figure 4.3: Frequency at 20SCMH airflow rate and variable chamber pressures determined 

from the phase Doppler velocity measurements  
 

The processing of the phase Doppler data revealed a strong periodic fluctuation of the axial 

velocity component at frequencies inversely proportional to the chamber pressure, indicating 

a helix vortex which is typical of a swirl spray (Figure4.3).  

The phase Doppler technique provides also information about the distribution of the drop 

diameters. However, no evidence has been found that the value of the drop diameter also 

oscillates or that there is any diameter dependence on the phase of the spray oscillations.  

Conducting phase Doppler measurements at high liquid flow rates becomes problematic 

because the optical accesses become wetted, which reduces the data rate and the validation 

ratio. The use of a high-speed video camera then helps to obtain enough images that contain 

satisfactory information about the oscillations of the spray shape. However, it is not a priori 

clear whether the frequency of the local velocity fluctuations (measured using the phase 

Doppler instrument) will coincide with the global frequency of fluctuations of the spray 

shape, as observed by the high-speed camera.  

Therefore, an initial set of high-speed video camera images has been performed at the same 

conditions to check the validity of the POD analysis and the resulting frequencies. The results 

of this comparison are presented in figure 4.4 indicating good agreement between the 

frequencies determined using a spectral analysis of the velocity fluctuations and the POD 

analysis of the high-speed images.  
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Figure 4.4: Frequency at 20SCMH airflow rate and variable chamber pressures determined 
from the phase Doppler velocity measurements and the high-speed video images 

 

The POD analysis of time-resolved images provides also the possibility of separating the 

different modes of oscillation. In Figure 4.5 for example, the POD is used to separate modes 1 

and 2, which in this case, have the maximum energy. 

 
Figure 4.5: POD obtained from the analysis of the spray images captured by the high-speed 
video system for 1bar and 20 SCMH case: Mode 0 (a), Mode 1 (b), Mode 2 (c). The arrows 

show the similar vortex structures.  
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The spectra of these Modes could again reveal a distinct frequency which matches the 

corresponding frequency of the Phase Doppler velocity measurements. The cross-correlation 

function of Modes 1 and 2 shows a phase-shift of 90  Figure 4.6 indicating a downstream 

translation of the vortex structures. In figure 4.5 these structures are marked by dashed 

arrows. 

 
Figure 4.6: Power spectra density and cross-correlation-function of Modes 1 and 2 at an 

ambient pressure of 15 bars 

Furthermore, the effect of the gas-phase flow rate on the spray frequency has been 

investigated. It is expected that the spray frequency increases when increasing the gas flow 

rate, which leads to the need of higher frame rates. Since the available high speed video 

camera is limited by 32000 fps and at such high frame rates, the field of view is very small, a 

chamber pressure of 10 bar is fixed while studying the effect of the gas-phase flow rate on the 

spray frequency, which minimize the needed frame rates and leads to a larger field of view. 

Volumetric flow rates of 20, 30 and 58 SCMH at 1.94 l/h water flow rate are used at a 

chamber pressure of 10 bar. As shown in figure 4.7, the spray oscillation frequency increases 

when increasing the gas-phase flow rate. 
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Figure 4.7: Spray frequency as a function of the air flow rate at 10 bars chamber pressure 

 

To study the effect of liquid-phase flow rate on the spray frequency, flow rates of 1.92, 2.54 

and 3.24 l/h are used at 20 SCMH gas-phase flow rate and 4 bar chamber pressure. The POD 

analysis shows that the spray frequency is independent of the liquid-phase flow rate (figure 

4.8). 

 
Figure 4.8: Spray frequency as a function of the water flow rate at 4 bars chamber pressure. 

 

4.3 Scaling analysis of spray oscillations 

In order to model the frequency of spray oscillations it is necessary first to consider the 

possible factors influencing the phenomena. In our case the liquid-to-air mass flow ratio is 

very small. Therefore, the influence of the momentum of the liquid phase on the spray 

dynamics is negligibly small. This assumption is confirmed by the results shown in figure 4.8. 
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Since the airflow velocity is rather high, the viscosity is also not a significant factor. The main 

parameters determining the spray frequency are therefore, the typical air velocity and the 

geometry of the atomizer. The characteristic frequency of spray fluctuations can be thus 

estimated using equation (4.6) 
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=                                                                                                                                 (4.6) 

The characteristic tangential velocity 
*

ϕU is estimated from the axial velocity axU  using the 

swirl number S  (equation (4.7)) which is defined by equation (4.8). 
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where  is the mass flow rate of the air, axU  and ϕU   are the averaged axial and tangential 

velocities of the air at the outlet, D and S are the averaged diameter and the swirl number, 

respectively. The magnitude of the ambient pressure does not appear explicitly in the 

expression (4.7). Nevertheless, the ambient pressure (or more precisely the air density) 

determines the value of the averaged air velocity if the mass flow rate is given.  

Table 4.1 shows the different settings and the calculated frequencies which is plotted against 

the measured frequency in figure 4.9. Hereby the data of measurements with pure air 

performed by [6] in an isobaric mixing chamber using the same type of swirl nozzles scaled 

up by the factor of 2 was added for comparison. It can be seen, that all data points can be 

approximated using a linear regression. This result supports our assumption that the spray 

frequency is proportional to the characteristic frequency determined in equation 4.6. It also 

demonstrates that both techniques used to estimate spray oscillation frequency provide very 

similar results.  
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Table 4.1: Characteristic frequencies cf   at various operational conditions 

 
 

 
Figure 4.9: Measured frequency mf  as a function of the calculated characteristic 

frequency cf   
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Alternatively a specific Strouhal number of the nozzle can be introduced:  

 

ax

m

U

Df
St =                                                                                                                               (4.9) 

Figure 4.10 shows this Strouhal number for all measurements. 

 

 
Figure 4.10: Strouhal number for the measured data 

 

The measurements show an average Strouhal number of 8.075.0 ±=St . It is obvious that the 

value of the Strouhal number depends on the geometry of the atomizer. However, once 

determined for a specific atomizer it should be valid for a range of ambient pressures and 

airflow rates.  

 

4.4 Forced-pressure oscillations 

The aim of this part is to experimentally investigate the sensitivity of spray generated by an 

airblast atomizer to ambient pressure fluctuations. The pressure fluctuations are meant to 

emulate conditions occurring due to combustion instabilities, albeit without combustion or 

droplet evaporation. The study concentrates primarily on the behavior of liquid phase as a 

function of ambient pressure. The important factor is the pressure dependency of spray 

behavior.  
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The existing experimental setup is modified by installing a pulsating valve (pulsator) at the 

exhaust side of the pressure chamber as shown in figure 4.11. The pulsating valve consists of 

two main parts; rotating cylinder (marked as 1 in figure 4.11) and the A/C motor (marked as 2 

in figure 4.11).  The rotating cylinder has 4 circular openings. These openings generate on-off 

effect. This on-off effect imparts pressure oscillations onto the ambient chamber pressure. The 

valve is driven and controlled by the A/C motor that controls the frequency of the rotating 

cylinder, which dependently generates the oscillations in the chamber. The system generates 

frequencies up to 400 Hz.    

  

 

Figure 4.11: Schematic drawing of the pressure chamber and the pulsator. 

 

4.4.1 Measurements of pressure oscillation magnitude 

The pressure oscillation amplitude is a function of the chamber pressure and the pulsator 

frequency. The values of the instantaneous ambient pressure is measured using a set of the 

dynamic pressure sensors installed in the wall of the pressure chamber. The results of the 

pressure measurements are shown in figure 4.12 while the parameters of the experiments 

reported in this work are listed in table 4.2. Two graphs are shown in figure 4.12. The left 

graph shows one example of the pressure fluctuations inside the chamber as a function of 

time. The frequency of the pressure oscillations coincides with the frequency of the pulsator. 

The right graph in figure 4.12  shows the dependence of the amplitude of the pressure 

oscillations as a function of the average pressure in the chamber at various frequencies of the 

pulsator.  

It should be noted that the amplitude of the spray oscillations is rather small. Although some 

change of ambient pressure at stationary conditions would lead to only very minor changes of 
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the main spray parameters,  it will be shown below that such small pressure fluctuations lead 

to the significant changes in the spray behavior which indicates the importance of the 

instationary effects on the spray dynamics.  
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Figure 4.12: Pressure oscillation amplitude (P\) at different chamber pressures and 
oscillation frequencies. 

 

Table 4.2: Peak-to-peak pressure-oscillation amplitude measured at different chamber 
pressures and oscillation frequencies (experiment parameters).  

f (Hz) 

P(bar) 

36 48 63 80 

2 0.17 0.15 0.14 0.13 
3 0.24    
4    0.23 
5 0.36   0.28 

 

The pressure oscillation magnitudes are relatively small, for example; at 2 bars chamber 

pressure and 36 Hz oscillation frequency, the maximum achievable magnitude is 0.17 bar. 

This value increases when increasing the chamber pressure and decreases when increasing the 

oscillation frequency. 

 

4.4.2 Visualization of spray behavior under oscillating pressure 
conditions 

A comparison between single frames of the high-speed images at the same time but at 

different chamber pressures and the same pressure oscillation frequency shows the different 

behavior of spray penetration as a function of the chamber pressure. Figure 4.13 for example, 

presents single shots of high-speed images at 2, 3 and 5 bars at same frequency of 36 Hz. This 

figure gives an indication about the general spray behavior at different chamber pressures. At 

2 bars, the spray has the form of a fully developed spray once it exits the nozzle.  
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Figure 4.13: Single frames of the high-speed video camera images at constant pressure 
oscillation (36 Hz) frequencies and different chamber pressures 

 

This spray penetrates further and keeps the same form till it reaches its maximum length. 

Whereas the same spray has completely different shape at higher chamber pressure, 5 bars for 

example. It starts the penetration process as a jet, then after a certain time, the spray neck 

starts to disintegrate and this disintegration process moves toward the spray front, and once 

the spray reaches the maximum length, it starts to have the fully developed, hollow cone spray 

shape. The spray keeps oscillating; therefore, it doesn’t show a perfect hollow cone spray 

shape. 

Figure 4.14 shows different frames of different videos at constant chamber pressure and 

different pressure oscillation frequencies. It is also obvious that the general penetration 

behavior is the same, but the magnitude is different. 
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Figure 4.14: Single frames of the high-speed video camera images at constant chamber 

pressure (2bar) and different pressure oscillation frequencies 
 

4.4.3 Estimation of penetration velocity 

The single frame images provide information concerning the penetration velocity of the spray 

in the pressure chamber. This phenomenon of spray oscillation occurs due to the interaction of 

the spray with the pressure waves that are excited as a result of the pulsator valve movement. 

The velocity of the spray is calculated by processing two consecutive images of the high-

speed movies for different operating conditions. In figure 4.15, the penetration velocity 

against the pressure oscillation-peak-to-peak magnitude at different chamber pressures is 

plotted. It shows that at a constant chamber pressure, the penetration velocity of the spray 

declines when the oscillations magnitude increases. The effect of the oscillating frequency on 

the penetration velocity of the spray is shown in figure 4.16. The figure shows that the 

penetration velocity increases as the oscillation frequency increases. 

The variation in spray penetration velocity can be understood as a result of the pressure 

variation in the pressure chamber. As the pulsating frequency increases, the pressure 
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oscillation magnitude decreases. This leads to larger pressure difference between air-source 

and the chamber pressure. This increase in the pressure difference cause the higher 

penetration velocity of the spray.   

 

Figure 4.15: Penetration velocity of the spray as a function of the pressure oscillation double 
magnitude. 

 

Figure 4.16: Penetration velocity of the spray as a function of the pressure oscillation 
frequency. 
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4.4.4 Estimation of spray frequency 

POD analysis of the spray images captured by the high-speed video system is a method 

allowing separation of the different modes of frequency based on the energy content of each 

mode. As a result of this technique, the frequency at which each mode occurs is obtained from 

the FFT analysis. In general, three oscillating modes are dominant (figure 4.17). Mode 1 

represents the oscillation of the spray angle, mode 2 represents the generation of the PVC and 

mode 3 occurs due to the oscillation in the spray length. 

 

 

Figure 4.17: POD of spray visualisation, Modes: 1 (a), 2 (b), 3 (c) 
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Figure 4.18: Modes frequencies at 2 bar, 20 SCMH and 36 Hz 

 

Modes 1, 2 and 3 are observed in the entire range of the experimental parameter, however 

mode 3 becomes dominant only at high pressure and low frequency conditions.  In all cases, 

all the oscillation modes happen at frequencies equal to the pressure oscillation frequencies or 

at multiplications of these frequencies, (figure 4.18). 

The frequency values of modes 1 and 2 under free oscillation conditions are much higher than 

the values at forced frequency conditions at the same chamber pressure and air flow rates.  

For example, mode 1 occurs at a frequency of 1400 Hz at 2 bars chamber pressure and 23 

SCMH air flow rate, whereas it occurs at 36 Hz and at multiplications of this value up to 108 

Hz at the same conditions with forced pressure oscillation of 36 Hz.  
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5. Spray characterization using the phase Doppler 

technique 

In this chapter, a parametrical study is made to investigate the effect of the chamber pressure, 

airflow rate and liquid flow rate on the droplet size distribution and velocity profiles of the 

droplets in airblast and pressure-swirl sprays. The PDA data of the smallest droplets is used to 

estimate the gas-phase velocity distribution. Furthermore, a novel scaling analysis of the 

droplet size based on the energy balance of the liquid-phase and the gas-phase is derived and 

validated by the experimental results. 

 

5.1 Measurement grids  

Our two-velocity components PDA instrument is used to measure the droplet size and two 

velocity components (axial and transverse) in the primary and the airblast sprays. Figure 5.1 

shows a schematic of the measurement planes, coordinate system and the corresponding 

components of the velocity vector.  The values of the measured transverse component of the 

drop velocity at the plane y-z yield the magnitude of the radial velocity component. On the 

other hand, the values of the transverse component coincide with the azimuthal spray velocity 

if the measurement volume is located in the plane x-z.  

 

Figure 5.1: Measurement planes and the corresponding velocity components 
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As the dual PDA technique is equipped with four detectors, it is able to measure two velocity 

components (U and V) in the measurement plane simultaneously. Then measuring the same 

velocity components in the perpendicular plane at the same radius enables the estimation of 

the third velocity component (W). 

For the primary spray (the spray that impacts onto the pre-filmer), the PDA data is collected at 

different radial positions at z = 5, 7, 9 and 11 mm downstream at steps of 1 mm. The reason 

behind choosing the 5 mm distance is that the primary spray impacts onto the pre-filmer in the 

airblast atomizer at 5 mm axial distance downstream. While in the case of airblast spray, 

different downstream distances are used (z = 3, 7, 11, 15 and 19 mm). Figure 5.2a and 5.2b 

show the measurement points for both cases. 

 

Figure 5.2: Measurements grid (a) pressure swirl atomizer; (b) airblast atomizer 

 

The chamber pressure and the liquid flow rates are changed to study their effects on the 

pressure swirl (primary) spray and the airblast spray. Also, a coaxial airflow is applied at 

different flow rates in order to study its effect on the droplet size and velocity in the primary 

spray before the impact onto the pre-filmer in the airblast atomizer takes place. 

   

5.2 Characterization of the primary spray  

In order to understand the mechanism of spray formation in the airblast atomizer the detailed 

information on all the influencing factors is necessary. One of the important factors 

determining the atomization process is the primary spray generated by the pressure swirl 

atomizer.  
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Table 5.1: Operating conditions of the pressure swirl atomizers 

Chamber pressure Stroke length Atomizer 1 
(DPN =0.40 mm) 

Atomizer 2 
(DPN =0.25 mm) 

  
LP  Flow rate 

LP  Flow rate 

Bar mm Bar l/hr Bar l/hr 

1 2.5 6 2.66 20 2.23 

1 3.5 9 4.61 48 4.02 

1 4.5 17 6.37 68 4.71 

5 2.5 10 2.66 24 2.23 

5 3.5 13 4.61 52 4.02 

5 4.5 21 6.37 72 4.71 

10 2.5 15 2.66 29 2.23 

10 3.5 18 4.61 57 4.02 

10 4.5 26 6.37 77 4.71 

Two different pressure swirl atomizers are used to produce the primary spray. Table 4.1 

shows a comparison between the two atomizers at different operating conditions. 

The difference in the SMD between nozzle 1 and nozzle 2 is shown in figure 5.3. Despite the 

same stroke length used to provide both nozzles with liquid, nozzle 2 produces droplets 

almost 50% smaller than nozzle 1.  

 

 

Figure 5.3: SMD distribution of nozzle 1(- º -) and nozzle 2 (- � -) 

 

This difference in the droplet size is expected as per the empirical correlation in [1] due to the 

change in the liquid-side pressure and the change in the flow rate. 

25.05.0
25.0.

25.025.225.2 −−∆= ALLL PmSMD ρµσ                                                                                  (5.1) 

Figure 5.4 shows the effect of the different studied parameters on the Sauter Mean Diameter 

of the pressure swirl spray. In figure 5.4a the change in the SMD of the droplets at different 
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radial positions and at different axial positions downstream is plotted. There is no significant 

change of the SMD during the penetration of the primary spray in the pressure chamber. This 

is due to the isothermal conditions of the experiment as well as the absence of secondary 

atomization in this case. The liquid flow rate in this case is 2.66 l/hr and the chamber pressure 

is 1 bar and there is no coaxial air flow.  

 

Figure 5.4: Effect of various parameters on Sauter Mean Diameter of pressure swirl spray 
(Nozzle 1), the chamber pressure in a, b and c is 1 bar. 

 

The coaxial air flow has no dramatic effect on the SMD of the droplets within the pressure 

swirl spray as shown in figure 5.4b. The mentioned mass flow rates of air in figure 4.11b are 

correspond to average air velocities of 0, 2.34, 4.09 and 5.85 m/s respectively. This result 

confirms the argument that no secondary atomization process takes place after the atomizer 

orifice under isothermal conditions, even in the presence of coaxial airflow. Different is the 

effect of the liquid flow rate. In figure 5.4c the black line shows the radial SMD distribution 

of the droplets in the pressure swirl spray at 2.66 l/hr liquid flow rate, 1bar chamber pressure 

and without coaxial air flow. The red and the green lines represent the same but at 4.61 and 

6.37 l/hr of liquid flow rate respectively. The PDA results show a drop in the SMD values 



 
 

49 

when increasing the liquid flow rate between 2.66 and 4.61 l/hr and almost no change 

between 4.61 and 6.37 l/hr.  

The chamber pressure has no effect on the SMD of the droplets in the primary spray, despite 

the fact that the air density in the chamber is almost 10 times higher when increasing the 

chamber pressure from 1bar to 11 bars as figure 5.4d shows. 
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Figure 5.5: Velocity of water droplets in a pressure swirl atomizer (nozzle 1) at 1 bar 
chamber pressure, 2.66 l/hr. Liquid flow rate in figure a and b is 2.66 l/hr. Measurement in 

figures b and c are performed at z=5mm.  
 

In figure 5.5, two velocity components of the droplets in pressure swirl spray is plotted at 

different operating conditions. Figure 5.5a shows the variation of the axial and radial velocity 

profile as a function of the spray radius. Both the axial and the radial velocities of the droplets 
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decrease during the penetration in the pressure chamber due to the air resistance in form of 

drag force. This figure shows also the increasing radial velocity and shifting of the peaks 

towards sprat axis with increasing z distance. In the airblast atomizer, the primary spray is 

subjected to a coaxial airflow before its impaction on the pre-filmer. The effect of this coaxial 

airflow on the droplet velocity is presented in figure 5.5b. The droplets gain part of the air 

momentum, and they maintain higher velocity during the penetration as in the case without 

coaxial airflow. This higher velocity affects the Re and We of the droplets and directly affects 

the film characteristics and the output of the spray-wall interaction process. The change of the 

liquid flow rate also affects the droplet velocity as shown in figure 5.5c.  

Nozzle 2 generates droplets at higher velocity than nozzle 1. The velocity profile of the 

droplets as a function of the radial positions and at different chamber pressures for nozzle 2 is 

shown in figure 5.6. The axial and radial velocities reach 35 m/s and 25 m/s at 1 bar chamber 

pressure. This maximum velocity reduces when increasing the chamber pressure as shown in 

figure 5.6. 

 
Figure 5.6: Velocity of water droplets in a pressure swirl atomizer (nozzle 2) at different 

chamber pressures and water flow rate of 2.23 l/hr. 
 
 
The droplets in nozzle 2 break when penetrating in the pressure chamber and the peaks of 

both the axial and the radial velocities decline as figure 5.7 shows. The average values of the 

droplet diameter and velocity can be used to calculate the average Re number for the droplets 

at Z=5 mm. The calculations reveal values between 757 and 1423 for nozzle 1 and between 

796 and 4420 for nozzle 2.  

 
 



 
 

52 

  
Figure 5.7: Velocity of water droplets in a pressure swirl atomizer (nozzle 2) at chamber 

pressure of 1 bar and water flow rate of 2.23 l/hr.  
 

 

 

  

Figure 5.8: Correlation between droplet diameter and u(x) in primary spray at different 
measurement points: a) 0, -7,5; b) 0, 11, 7; c) 0, -11,9; d) 0, -13, 11. Chamber pressure is 1 

bar, liquid flow rate is 2.66 kg/hr. 
 
Figure 5.8 displays correlations between droplet velocity component U and its respective 

diameter at different radial and axial positions. During the penetration of the pressure-swirl 

spray in the chamber pressure, the large droplets maintain their velocity whereas the small 
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droplets breakup. The size distribution of the droplets in the measurement positions remains 

unchanged as shown in figure 5.9.  

 

Figure 5.9: Droplet counts at different positions; : a) 0, -7, 5; b) 0, 11, 7; c) 0, -11, 9; d) 0, -
13, 11. Chamber pressure is 1 bar, liquid flow rate is 2.66 kg/hr. 

 

5.3 Characterization of the airblast spray 

A parametric study has been performed to investigate the effect of the air-mass flow rate, 

water flow rate and the chamber pressure on the distribution of the droplet diameter and three 

velocity components of the airblast spray. The operational parameters are listed in table 5.2. 

Under isothermal conditions the droplet size doesn’t change significantly during the 

penetration into the pressure chamber since the effect of evaporation is relatively small. At the 

same downstream axial distance, the SMD of the droplets increase with distance from the 

spray axis. Also, there is very limited change in the SMD when moving downstream at the 

same radial position. This behavior of the SMD can be related to the isothermal conditions of 

the experiments, where both phases of the flow have the same room temperature. Also, 

secondary breakup of the droplets doesn’t occur in this case, because Weg takes values less 

than 12 in most cases. 
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Table 5.2: Characterization of the airblast spray: list of operating conditions. 
Primary 

Nozzle 

Chamber 

pressure 

Liquid flow 

rate 

Air mass flow 

rate 

AFR 

 Bar kg/hr SCMH  

1 2.66 20 8 
1 2.66 35 13 
1 2.66 50 19 
1 4.61 20 4 
1 6.37 20 3 
5 2.66 20 38 
5 2.66 35 66 
5 2.66 50 94 
10 2.66 20 75 

 
 
 
 
1 

10 2.66 35 132 
 10 2.66 50 188 

1 2.23 20 9 
1 2.23 35 16 
1 2.23 50 22 

 
 
2 
 5 2.23 20 45 

 

 

Figure 5.10: Droplet diameter distribution of airblast spray at different working conditions. a) 
P=1 bar, QL = 2.66 l/hr. QA = 20SCMH, b) QL = 2.66 l/hr. QA = 20SCMH, c) P=1 bar, QL = 

2.66 l/hr, d) P=1 bar QA = 20SCMH, 
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The results obtained by the PDA measurements are processed to calculate the SMD and the 

average velocities at different measurement points as mentioned in 5.1.  

Figure 5.10a shows the SMD of the droplets at radial positions between 0 and 24 mm and at 

axial distances (z= 3, 7, 11, 15 and 19 mm).  

The effect of the chamber pressure, or more exact, the air density in the pressure chamber is 

shown in figure 5.10b. The droplet size increases when increasing the air density in the 

pressure chamber.. In this work, the air velocity also decreases when increasing the pressure 

chamber since the air-mass flow rate is kept constant at different chamber pressure values, 

which leads to a remarkable increase in the droplet diameter. Comparing figure 5.10b and 

5.10 c shows the opposite effect of the air velocity and the air density on the droplet size. In 

figure 5.10c, the air mass flow rate is increased between 20, 35 and 50 SCMH which causes a 

decrease in the droplet size as increasing the air-mass flow rate is increased. The air velocity 

affects also the film thickness on the pre-filmer, which plays an important role in determining 

the droplet diameter after the breakup takes place. The effect of the liquid flow rate on the 

droplet size distribution is limited, despite the fact that the flow rate increases by double and 

triple, as illustrated in figure 5.10d. 

The droplet velocity slightly changes during the penetration in the pressure chamber. The 

axial velocity component at different axial distances downstream in figure 5.11a shows almost 

the same maximum of around 80 m/s at z = 3, 7, 11 and 15 mm whereas, this maximum drops 

to 32 m/s at z = 19 mm. Also, it shows that in the region close to the axis, the droplet velocity 

decreases as z value increases until it reaches values in minus at z = 15 and 19 mm, which 

indicates the recirculation in this zone. More complicated is the behavior of the radial velocity 

components of the droplets. In figure 5.11b the radial velocity increases when moving from 

the spray axis towards its periphery, it reaches maximum at the radius r = 6 mm for z = 3, 7 

and 11 mm and at r = 8 mm for z = 15 and 19 mm. Then the radial velocity decreases to reach 

its minimum at the periphery. The high drop in the radial velocity at z = 3 and 7 mm is due to 

the fact that in the region where r > 10 mm, there are almost no droplets available, as 

indicated by the very low PDA data rate. 
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Figure 5.11: Droplet velocity components at chamber pressure of 1 bar, liquid flow rate of 
2.66 l/hr and 20 SCMH air mass flow rate. Avg. PDA data rate is 0.9 kHz.  

 

The droplets keep their tangential velocity during the penetration as shown in figure 5.11c. 

The droplets which are close to the spray axis gain higher azimuthal velocity than those which 

are close to the spray borders. 

The correlations between the droplet axial velocity and size in different measurement points 

provide a deeper understanding of the behavior of the small and the large droplets in the 

spray. Figure 5.12a shows that the small droplets oscillate and follow the turbulent 

fluctuations while the large droplets follow their own tracks. This behavior indicates that the 

small droplets in this position have smaller Stokes-number. As shown in 5.12b at the cross-

section 2 mm closer to the spray axis, at z =3 mm, the small droplets follow their own track 

with high velocity as the large droplets do but with lower velocity. This fact indicates high 

Stokes number for both the small and the large droplets.  

At other positions the correlation indicates also large Stokes number for both the small and 

the large droplets, despite the fact that the small droplets are slower as in figure 5.12 for 

example. In positions far from the nozzle, the small droplets keep oscillating and following 

the turbulent as shown in figure 5.12d.  
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Figure 5.12: Correlation between droplet diameter and u(x): a) 0, -6, 3; b) 0, -4, 3; c) 0, -12, 
7; d) 0, -10, 19. Chamber pressure is 1 bar, air mass flow rate is 20 SCMH, liquid flow rate is 

2.66 kg/hr. 
 

 

Figure 5.13: Droplet velocity components at different chamber pressures, liquid flow rate of 
2.66l/hr and 20 SCMH air mass flow rate, z = 3mm 
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In figure 5.13 three velocity components are plotted at different radial positions and at 

different chamber pressures. The air density linearly increases when the pressure increases. 

This change in the air density leads to a decrease in the three velocity components. In this 

experiment the air-mass flow rate is kept constant, which results in a reduction of the air 

velocity as the air density increases. This reduction in the air velocity is responsible for the 

decrease of the droplet velocity components.  

Increasing the air-mass flow rate at constant chamber pressure leads to an increase in the air 

velocity. The higher the air velocity is the faster are the droplets. This can be seen in figure 

5.14. The three velocity components and the absolute velocity are plotted against the radial 

position at 3 mm downstream and at 1 bar chamber pressure. 

 

Figure 5.14: Effect of air mass flow rate on the droplet velocity components, liquid flow rate 
is 2.66 kg/hr, chamber pressure is 1bar. 

 

The change in the air mass flow rate leads to noticeable changes in the droplet velocity. In the 

region close to the spray axis, a strong recirculation takes place, as seen in the axial velocity 

plot. The maximum droplet velocity occurs at 6 mm radial distance, far from the spray axis. 

This maximum doesn’t change even when the air mass flow rate is changing. It is also 

meaningful to mention that the magnitude of the droplet velocity in the recirculation zone 

reaches abou 30% of the maximum droplet velocity in the main flow region at 50 SCMH. 
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At this stage, one can compare three typical sprays, which helps one to understand the 

mechanisms of atomization inside the airblast atomizer: 

• primary spray generated by the pressure swirl nozzle, (spray 1); 

• spray generated by the airblast atomizer but without the air flow. This spray is the 

combination of the drops from the primary spray and the secondary spray formed by spray-

wall interaction inside the atomizer (spray 2); 

• spray generated by the airblast atomizer at relatively low flow rate, 20 SCMH, of the air 

(spray 3). 

Measurements for primary spray have been performed in the range of the radial coordinate 

 1515  r  <<−  mm at a distance 5 mm downstream of the pressure swirl nozzle. The zero air 

flux spray has been characterized in the range of the radial distances  1010  r  <<− mm at 5 

mm from the atomizer cup exit in the axial direction, whereas measurements for the atomized 

spray have been performed at the radial distances 2424  r  <<−  and 5 mm from the 

atomization cup in the axial direction. 

The result of the comparison is shown in figure 5.15. The velocity of the spray 2 is much 

smaller then the velocity of two other sprays. This is caused by the kinetic energy dissipation 

of droplets during their impact onto a wall of the atomizer. The velocities of the sprays 1 and 

2 are comparable at the given conditions. It is interesting that the diameter of droplets in spray 

2 has the same order as the drop diameter of spray 1 and spray 3. This result can be related to 

the spray/wall impingement process, since the secondary droplets have the same order as the 

primary droplets. This proves that the main goals behind using the airblast atomizer are to 

achieve better mixing and higher volume mass ratio.  
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Figure 5.15: Comparison of three typical sprays at 1 bar chamber pressure and 2.66 l/hr water 
flow rate: a) axial velocity, b) radial velocity and c) droplet diameter.  

 

This comparison revealed the main influence of the airblast process on the primary spray, in 

which the spray gains larger volume/mass ratio, and the droplets gain a tangential velocity 

component that enhances the mixing. Furthermore, the air entrainment close to the spray axis 

and the recirculation zone outside the spray boundaries enhances the mixing, but also 

introduces new aerodynamic phenomenon that influences the combustion quality and the 

lifetime of combustion chambers. 

 

5.4 Estimation of air velocity in airblast spray 

Injection of seeding particles in the air path to measure the air velocity is complicated in the 

available setup due to high atomization pressure inside the aerosole generator. Therefore, the 

PDA data for liquid phase measurements are used to estimate the air velocity distribution of 

the gas phase. The validated liquid particles that have diameter equal or smaller than 10 �m 
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are considered to be representative of the gas-phase velocity. The data presented in figure 

5.16 is this estimated velocity at 5 mm downstream. 

 

Figure 5.16 : Estimated air velocity at 5 mm distance downstream, chamber pressure is 1 bar. 
 

Another method to estimate the maximum air velocity at the exit of the airblast atomizer is to 

simply average the air volumetric flow rate to the exit area of the airblast atomizer. Doing so 

results in 52, 91 and 130 m/s for 20, 35 and 50 SCMH flow rates respectively. 

Comparing the maximum estimated velocity at 5 mm downstream with the calculated 

velocities at the exit of the airblast atomizer shows good agreement taking into consideration 

the decrease of air velocity over 5 mm downstream distance. Based on these procedures, the 

values of the air velocity at the exit of the airblast atomizer are given in table 5.3. 
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Table 5.3: Estimated air velocity at exit of airblast atomizer 

Chamber 
pressure 

Bar 

Airflow rate 
 

SCMH 

Estimated velocity 
 

m/s 

Calculated 
velocity 

m/s 

1 
1 
1 
5 
5 
5 
10 
10 
10 

20 
35 
50 
20 
35 
50 
20 
35 
50 

38 
86 
116 

9 

52 
91 

130 
10 
18 
26 
5 
9 
13 

 

The normalized axial velocity component of the droplets under 1 bar chamber pressure at 

different air mass flow rates is plotted in figure 5.17. Droplet velocity is normalized to the 

average air velocity in the same measurement position. In the previous section, droplet size is 

plotted against the radial position in the spray. Linking the previous results of the droplet size 

with the normalized velocity mentioned here, one can notice that the droplets with relatively 

small size are in the region close to the spray axis. As the droplet size in this region is small, 

this reveals a small drag force, which result in higher velocity and therefore higher normalized 

velocity. The droplets with the highest velocity at 20 SCMH air mass flow rate gain 

maximum 60% of the air kinetic energy, whereas the droplets has almost 90% of the air 

velocity at 50 SCMH air mass flow rate.  

 

Figure 5.17: Normalized droplet axial velocity at 1 bar chamber pressure and 2.66 l/hr water 
flow rate  
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6. Modelling of atomization 
One of the important parameters characterizing the performance of the atomizer is the average 

diameter of the liquid droplets in the spray. A weighted averaged Sauter Mean Diameter 

(SMD) of the drops is defined by 
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Since the 1960’s the basic knowledge provided by early work has been used to develop 

airblast atomizers of aero engines and gas turbines. Major contributions have been made by 

Lefebvre and his group [43-59], as summarized in [1,53]. The effect of different parameters; 

air pressure and velocity, liquid flow rate, temperature, viscosity and surface tension, atomizer 

design and geometry on the droplet size distribution and on the atomization efficiency has 

been experimentally investigated. Empirical correlations concerning discharge coefficient, 

film thickness, droplet size as well as the flow number for pressure swirl atomizer are given. 

The mechanism of liquid sheet breakup in airblast atomizers is also discussed. For example, 

empirical correlations for the drop size are reported [44-47]:  
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These correlations differentiate between two main parameters that play an important role in 

the formation of the droplets in: surface tension and viscosity.  

In [60], the diameter of droplets generated by breakup of liquid film under high pressure air 

flow has been correlated in the form 

175.0633.04
32 )x1011.4x1067.2( −−− += AAAAL PUPUD ρ                                                                (6.6) 
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These correlations indicate that the study of the spray generated by airblast atomizers remains 

highly empirical. These empirical correlations are only valid for specific designs of the 

airblast atomizers and can only poorly estimate the droplet size for different atomizer models 

or operating conditions. 

Previous work in [29] report on measurements under cold and hot conditions performed on 

the original MTU atomizer as well as on an improved atomizer with different pre-filmer 

design. The pre-filmer could be improved by using a sharp trailing edge instead of a rounded 

one. This improvement in the design leads to better mixing and significant reduction of the 

NOx. Similar work has been carried out by the DLR group in Cologne [15, 29, 61]. In [15], 

the effect of using a pre-filmer in a 2-D atomizer model on the mechanism of the droplet 

generation in airblast spray under isothermal conditions has been investigated. The high-speed 

video images show that the mechanism of the film breakup significantly differs in the 

presence of the pre-filmer on the atomization lip in comparison with the case without pre-

filmer. The result of the 2-D spray generated by the atomization lip with pre-filmer is better 

than that generated in its absence. The authors recommend the use of airblast atomizers with 

pre-filmer rather that without pre-filmer, since the droplet size is smaller and the 2-D 

air/liquid ratio is higher.  

In [61] the effect of the counter-swirl in double-annular air flows on the mixing of the small 

droplets and the air is investigated. It was found that the small droplets generated at elevated 

pressure follow the streamlines of the airflow and remain trapped in the inner annulus, 

preventing the formation of homogenous fuel-air mixture in the annular flow.  

The MTU atomizer used in this work has been also used by [29, 62] to generate an airblast 

spray at varies boundary conditions. Under isothermal conditions, increasing the ambient 

pressure and keeping a constant AFR leads to production of larger droplets and a decrease in 

their velocity. The results showed typical phenomena for turbulent swirled flow fields such as 

coherent structures and recirculation zones.  

In the present work the effects of the drop aerodynamic breakup and of spray/wall interaction 

on the final droplet size in the airblast spray are investigated. Finally, the drop size is 

estimated using the theory of chaotic disintegration.  
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6.1 Secondary breakup in the airblast spray 

In order to model the atomization process it is neseccary to determine what is the dominant 

mechanism of atomization among the aerodynamic film breakup, spray/wall atomization or 

secondary (aerodynamic) drop breakup. Some existing correlations for the secondary 

atomization of a single drop are given in the section 1.3.3. These correlations are used to 

estimate the importance of the secondary drop breakup under the current experimental 

conditions.  

As exhibited in the introductory part of this chapter, the Weber number Weg, defined in (1.2), 

is a measure for the secondary atomization regimes. Another measure is the stable diameter 

(dst) of the droplets defined by (1.6). First the values of dst for nine cases are calculated and 

compared with the average SMD of the measured droplets to determine the cases where 

secondary atomization is possible. 

 

Figure 6.1: Comparison of SMD and the stable diameters of the droplets 

 

In Fig. 6.1 the stable diameter of the spray is calculated for the different operating conditions. 

In the same plot, the measured droplet diameter of the spray is also plotted. It is shown that in 

some cases the droplets have the possibility to go through secondary atomization process, 

since the stable diameter is smaller than the measured diameter. The cases where secondary 

atomization very potentially takes place are marked by an arrow in the plot. Therefore, further 

control is needed by calculating the relevant Weg. Knowing the average droplet velocity and 

the average air velocity, the Weg can be calculated and compared with the criterion mentioned 

in [16-18]. Despite the fact that the measured SMD is larger than the stable diameter in some 
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case, no secondary atomization is taking place since Weg in all cases is smaller than 12, which 

is the minimum limit for the vibrational atomization as shown in figure 6.2. 

 

 

 

Figure 6.2: Weg of the measurement cases compared with the minimum value required for 
vibrational atomization mode 

 

The above analysis indicates that secondary atomization of the droplets in the airblast spray is 

not a major source of small droplets in the spray, since the droplets have either a diameter 

below the stable diameter or low Weg number (which is below the breakup threshold), or a 

combination of both. 

6.2. Spray impact onto an inclined wall 

When a spray impacts onto a solid surface a thin liquid film and secondary spray may be 

generated, depending on the impaction conditions. This phenomenon is of great interest for a 

wide variety of industrial and processing applications. In spray coating, for example, a well 

defined liquid film is needed to ensure uniform distribution of the paint without generating 

secondary spray, so as to minimize over spray [63-64]. The aim in spray cooling of hot 

surfaces may be different, where preferably no formation of liquid film is required to avoid 

any decrease in heat transfer rate, which might occur when a liquid film is generated on the 

hot surface. The same is required in internal combustion engines where the fuel, injected into 

the cylinder, can strike cylinder walls, combustion chamber walls, or walls of the intake valve 
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[64]. In these cases, fuel deposition on the wall can cause adverse effects by developing a 

liquid film on the wall, which leads to unburned hydrocarbons emissions.   

Spray impact investigation is a relatively new research field. This is due to the large difficulty 

in extracting detailed data from experiments [65] and their interpretation. Recently, the use of 

several advanced technologies has allowed experimental analysis of the phenomenon to be 

performed. The use of the phase Doppler technique [64, 66-69] or laser Doppler technique 

[70] has enabled rather exact characterization of the primary spray and the secondary spray. 

Another technique is high-speed video , which quantitatively facilitates the examination of 

individual droplet impacts [71]. In the studies [64, 67] the images of spray impact are shown 

only to describe the behavior of the spray. In the work [72] two CCD cameras and a PDA 

system are used to investigate the effect of interactions of impacting neighboring drops on a 

single droplet impact outcome. The images were processed to extract diameters and velocities 

of the droplets, which resulted in an acceptable accuracy. 

Different models can be found in the literature that attempt to capture the phenomenon 

qualitatively. Basically two modeling strategies are presented. The first approach is based on 

the representation of spray impact as a simple superposition of single drop impact events. The 

second approach is a statistical one that based on a large number of spray impact 

measurements and data analysis to model the phenomenon under predefined parameters.  

Study [73] has reported a comparison between six of single-drop empirical models for spray 

impact onto solid walls [65-66, 74-77] It is shown in [78] that these single droplet impaction 

models are inadequate due to unaccounted for interactions between drops which arise during 

spray impact. This also result in inadequate prediction of the amount of liquid deposited on 

the surface, as shown by [78-79]. In [78] an alternative model has been developed, taking into 

consideration the interaction of the neighboring droplets by introducing a statistical parameter 

to account for droplet interactions. Furthermore, in [80] the interaction of two droplets 

impacting onto a surface has been experimentally investigated. The goal of this study is the 

modeling of the polydisperse spray impact. 

Most of the models in the literature are developed based on data obtained from spray impact 

onto spherical or horizontal targets, which is difficult to be used in estimating the film 

thickness on the pre-filmer in the atomizer under consideration. 

Understanding and modeling of the phenomenon have consumed time and efforts from 

researchers and investigators worldwide, yet no universal model is claimed to be achieved. 

This is due to the extreme complexity of the phenomenon and the numerous variables 

envolved. In this work, the efforts are oriented to achieve a scaling criterion for the film 
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thickness on inclined surfaces that is generated as a result of the impact of water sprays. For 

this purpose, a new spray impact facility is designed and fabricated to simulate the conditions 

in the airblast atomizer as previously shown in section 2.1. 

6.2.1 Observations of spray/wall interaction  

In this section some series of single frame images are presented to establish the fact that the 

phenomenon is complicated enough that makes its modeling through a basic understanding of 

the underlying physics a very difficult task.  

The effect of the target inclination on the film thickness and on the secondary spray ejected 

from the impingement process can be seen in figure 6.3. In general, splashing takes place in 

almost all cases and the output from the interaction varies between a clean lamella breakup, 

fingering breakup, sliding lamella and more chaotic behavior. A detailed description of some 

sources of complexity is given with images in the following paragraphs.  

 

Figure 6.3: Single frames of spray impact onto targets with different angles 

 

Figure 6.4 shows the process of impacting droplets within the spray onto a 15° inclined target. 

In figure 6.4 (1), one of the droplet impacts, yielding a rising lamella that breaks up to the 

fingering stage and before the process ends, one of the secondary droplets is encapsulated by 

another incoming droplet as shown in figure 6.4 (2) to (5). Then this droplet impacts onto the 

target yielding again a lamella and then somewhere close to this region, another droplet 

collides with a rising droplet and breaks up before reaching the target and disturbing the liquid 

film. 
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Different effects can be observed when analyzing the impact of a spray onto a target of 

different inclination angle, 45° for example as shown in figure 6.5. In this case, one can 

observe the creation of the lamella after the impact of the droplets onto the liquid film. Then 

the lamella starts to slide downwards and before the breakup phase, another primary droplet 

impacts onto the lamella, complicating further the whole phenomenon. 

 

Figure 6.4: Spray impact onto 15° target 
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Figure 6.5: Spray impact onto 45° target 

 

 

Figure 6.6: Spray impact onto 60° target 

 

If the inclination angle increases, as shown in figure 6.6 and 6,7, the secondary droplets of the 

impact on the upper part of the target might impact again onto the target again at different 

positions . The static images presented here don’t prove this process, but they are clear in the 

animated high-speed movies. 
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Figure 6.7: schematic of spray impact (Primary and secondary droplets) 

 

 

6.2.2 Estimation of film thickness using high-speed video images 

The high-speed video images provide qualitative information concerning the spray behavior 

and these images can also be processed to quantitatively estimate the film thickness. Images 

were captured using a Photron® (FASTCAM-SA1) high-speed video camera at 54k frames 

per second and shutter speed of 1/101000 s, from which 3k frames are saved to be processed.  

A customized Matlab® routine [84] is used to process the high-speed video images in order to 

estimate the film thickness on the target for each saved image. The images have gone through 

a process of filtering so as to minimize the error in the estimated film thickness. An example 

result for each step is shown in figure 6.8. 

In step (I), original images are recognized by the routine and the intensity in every pixel 

averaged with the value of the neighboring pixels in step (II). In step (III), the average pixel 

value is compared with a reference image (the target without spray). Then the images went 

through filtering processes (IV-V) to eliminate any deposits in the image and to intensify the 

black part of the image. The result image (VI) is used to find the contour of the liquid film, 

and finally the contour image is compared with the dry target image.  
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Figure 6.8: Flow map of image processing procedures 

 

The minimum value of the film thickness along the target for each image is considered for 

further analysis as shown in figure 6.9. The reason behind this is that the use  
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Figure 6.9: Results of the image processing routine 

 

of the average film thickness can lead to exaggerated value since the splashing takes place in 

almost all images, which means that the lamella height could be considered as a film in the 

calculations.  

Then, the most probable film thickness is estimated by examining the probability distribution 

of the minimum film thickness over all captured images. This distribution is treated as 

Gaussian and all samples that do not lie between 95% of Hmin +/- 1.96�, where � is the 

variance and H  is the mean value of Hmin are eliminated. For this approach, distances of 

every pixel of the contour line of every image over the whole set of images are recorded, and 

then plotted in a histogram to reveal its characteristic distribution. Then using the kernel 

density smoothing method and its continuous probability density function which is 

determined by equation (6.7) the accuracy of the results is imroved. The resulting histogram 

of the thicknesses and its probability density function is shown in figure 6.10. 
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where n is the total number of observations H1…Hn, b is the bandwidth of a single bar in the 

histogram, K is a curve weighting observations close to H higher than those far away from H. 
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Figure 6.10: Histogram of the measured Hmin and its probability density distribution 

 

6.2.3 Phase Doppler measurements 

Measurement grids and experimental parameters 

Measurements in three directions are used to capture the incoming and outgoing droplets of 

the impacting spray. In the normal direction to the target, the first measurement plane is 2 mm 

above the target and then measurements in two further planes at 3 and 4 mm above the target 

are made. In the plane which is parallel to the transmitting optic lens, the measurement grid is 

2 mm high and 12 mm long as schematically shown in figure 6.11.  

Two parameters are changed in this set of experiments; first the angle of inclination of the 

target is varied between 15º, 30º, 45º and 60º, whereas the mass flux through the nozzle is  

 

 

Figure 6.11: Schematic drawing of the measurement grids 
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varied between 0.35, 0.45, 0.55 and 0.65 l/min for each target inclination. The spray is 

injected through a simplex nozzle that generates a full-cone spray of 80º angle. The principles 

of the phase Doppler system and the optical configuration are presented in section 2.2. 

To optimize the quality of the results, the minimum number of the collected samples needed 

for reliable results can be calculated as the PDA data are discrete and independent. Let ϕ  be 

the typical measured quantity (for example the velocity component or diameter) of the 

droplets, and the variance of its mean value is 2

ϕ
σ  , which can be calculated by

N

2
2 ϕ

ϕ

σ
σ = , 

where N  is the number of collected, independent samples. Normalizing this expression yields 

the relative normalized variance
ϕ

σ

ϕ

σ
ε

ϕϕ

N

22

2 == . 

From preliminary measurements, the values for U, V and D are known. Demanding a value of 

1% for ε  yields 5800 as a minimum required number of samples. Since the data rate and the 

validation ratio are relatively high, the maximum data acquisition time for each measurement 

position is set to be 20 seconds, which yields more than 17000 samples.  

 

Characterization of spray impact  

 

 

Figure 6.12: schematic of measurement positions 

 

In [70] the procedures of spray impact measurements using the PDA instrument are explained 

in detail. The experimental setup and the position of the measurement volume is shown in 

figure 6.12.  The original coordinate system {x, y, z} is related to the optical configuration of 

the PDA instrument with the x-axis being the axis of the transmitting optics. Two components 
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of drop velocity (u and v) and the diameter D are measured above the target surface as 

schematically shown in figure 6.12.  

The geometry of the detection volume must be accurately determined in order to calculate 

correct local flux density and the droplet distributions in sprays [70]. The length of the 

measurement volume is determined by the scattering angle � and the projected thickness of 

the slit sL  of the receiving optics [81]. The effective diameter of the measurement volume, td , 

depends on the laser beam intensity, system configuration and the drop diameter. Analyzing 

the statistics of the burst lengths of detected droplets allows the evaluation of the effective 

diameter of the measurement volume. 

The formulas for volume flux measurements are presented on [70] and for a 2-D system are 

summarized in [28]. Knowing that the trajectory of each droplet passes through the detection 

volume, the volume flux in both z and y directions can be calculated using equations 6.8 and 

6.9 
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where iD  and iψ  are the diameter and the trajectory of individual particles whereby the 

reference area kA  is taken as a function of the respective size class kD . In this expression, 

particles passing through the reference area with a negative velocity will be subtracted from 

the total mass flux; i.e. when ψcos  or ψsin  becomes negative. 

Then the normal-to-the-wall velocity component of the incoming and the outgoing droplets is 

calculated by introducing a vector (Un = u cos	 + v sin	) as this normal velocity is responsible 

for the process of the droplet impact and partially for the film generation.  The sign of the 

normal–to-the-wall nU  velocity allows primary drops before wall interaction ( nU >0) to be 

distinguished from secondary droplets ( nU <0). The same vector is also introduced to 

calculate the normal-to-the-wall flux density. 

The size-velocity correlation of the droplets measured at 2 mm above the target is shown in 

figure 6.13. In the present case the impingement distance is 70 mm and the volume flux 

through the nozzle is 0.45 l/min. The spray exhibits primary impacting droplets with a 

positive size-velocity correlation. Figure 6.13 (a) shows the raw PDA data before calculating  
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Figure 6.13: Correlation of the drop diameter and velocity for 15° target, 0.45l/min water 
flow through the nozzle at a selected position 2 mm above the target surface: a) before , b) 

after coordinate transformation 
 

 

Figure 6.14: Correlation of the drop diameter and velocity for 15° target, 0.45l/min water 
flow through the nozzle at a selected position 2 mm above the target surface: (left) before, 

(right) after coordinate transformation  
 

the normal velocity component and figure 6.13 (b) after the data transformation. Applying the 

coordinate transformation showed a change in the average velocity component and the 

average droplet size of the secondary droplets. 

In figure 6.14, the correlation between the u and v velocity components before coordinate 

transformation (left) and after coordinate transformation (right) for a sample case is shown. 

The correlation of the normal-to-target and the parallel-to-target velocity components show a 

linear relation between them before and after the impact. 
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Figure 6.15: Diameter vs. normal-to-target velocity correlation for selected positions on the 
target surface (30 degrees, 0.45 l/min at z=2mm) 

 
 

The correlation of droplet diameter and the normal-to-target velocity component depends on 

the measurement position as shown in figure 6.15. In this figure the correlation is shown in 

different position on the target at 2 mm above its surface. The plots indicate a change in the 

secondary droplet velocity-size correlation, close to the lower edge of the target. The plot 

shows almost no secondary droplets, whereas in the middle of the target the secondary 

droplets are plentiful. 
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Figure 6.16: Flux density distribution on two different targets 

 

Figures 6.16 (a) and (c) show the net local flux density calculated based on the normal 

velocity component of the incoming and outgoing droplets along the x-direction, and figures 

(b) and (d) along the y direction for the spray impingement on the targets of 30º and 45º. The 

total flux through the nozzle in both mentioned cases is 0.45 l/min. These figures show the 

effect of the target inclination on the local flux distribution. It shows that the local flux is 

decreasing when moving towards the upper part of the target (or far from the spray axis), 

which indicates that the secondary droplets ejected by the droplets impingement on the upper 

part contribute as primary droplets in the lower part. This leads to an increase in the local net 

flux density. This effect does not appear in the net flux distribution along the x-direction as 

shown in figure 6.16 (a) and (c).  

A group of dimensionless numbers is usually used to describe the effect of different factors on 

the spray impingement phenomenon, namely; Reynolds (Re), Weber (We) and Ohnesorge 

(Oh) numbers. In this work, the dimensionless numbers and the film thickness are averaged 

over all measured samples in the three measurement planes for the PDA data, and over 3000 

frames for the high-speed camera data. 



 
 

80 

The splashing phenomenon of the impacting droplets has the appearance of an upraising 

crown-like liquid sheet. In [81] it has been shown that crown appears if the inertial effects in 

the lamella are much larger than the capillary effects and the following expression is 

introduced for the splash threshold. 
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In figure 6.17a the ratio between the average outgoing droplet diameter to the average 

incoming droplets diameter is plotted against 
iK . It is shown that the ratio of the ejected 

droplet size to the primary spray droplet size is almost constant despite the increase of the 

splash threshold; where as figure 6.17b shows no correlation between the normalized average 

flux density with the splash threshold. 

 

Figure 6.17: a) Outgoing to incoming droplet size ratio and b) dimensionless flux density 
against splash threshold  

 

Further correlation to describe the relation between the incoming and the outgoing droplets is 

presented by [81] based on stability analysis of the raising liquid lamella is shown in figure 

6.18. The value of 
ioi DD /Re 2/1  is plotted against 

iRe of the incoming droplets. The figure 

shows a linear correlation for 250Re ≥i . Comparing this result with that obtained in [81] for 

normal spray impact shows a good agreement for the relatively small angles, which indicates 

that the mechanism of the secondary spray formation in spray impact onto inclined targets is 

the similar to the normal spray impacts. At higher impact angles (45°, 60°) some discrepancy 

between the model [81] and the present results accounted for by more significant effect of the 

tangential component of the impact velocity on the hydrodynamics of splash.  
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Figure 6.18: The ratio between the outgoing and incoming droplets scaled by Re of the 
incoming droplets. 

 

6.2.4 Model for the film thickness generated by spray impact 

The data obtained by processing the PDA results and the high-speed video camera images is 

summarized in table 6.1. 

In figure 6.19, the 3-D plot shows the film thickness as function of two parameters nU  and 

nq . The film thickness H  shows an increase when increasing nU .  

 

Table 6.1: Summary of the results for impact studies 
Angle 

measH  Incoming droplets Outgoing droplets 
nq  

 

[º] 

 

[mm] 

SMD 

[µm] 

nU  

[m/s] 

Re We Oh SMD 

[µm] 

nU  

[m/s] 

Re We Oh  

 [cm3/cm2/s] 

15 0.145 111 5.49 339 27.7 0.0151 88 3.14 172 8.1 0.0158 56.8 
15 0.158 105 6.77 421 41.7 0.0150 84 3.19 170 8.0 0.0161 89.9 
30 0.115 117 2.81 164 7.2 0.0157 89 3.11 164 7.8 0.0162 25.7 
30 0.128 112 3.95 251 14.4 0.0148 88 3.47 190 9.7 0.0159 63.2 
30 0.110 104 5.03 311 22.4 0.0150 82 3.72 196 10.6 0.0162 68.4 
45 0.099 139 2.32 195 6.5 0.0129 109 2.70 176 7.0 0.0146 19.2 
45 0.116 129 2.66 200 7.7 0.0136 97 3.33 193 9.3 0.0155 61.1 
45 0.106 120 3.23 225 10.6 0.0142 86 3.88 200 11.2 0.0164 70.7 
45 0.105 110 3.81 247 13.6 0.0146 75 4.11 195 11.6 0.0171 67.7 
60 0.097 135 2.12 189 5.9 0.0125 97 2.92 172 7.2 0.0154 40.7 
60 0.123 128 2.56 208 7.8 0.0130 83 3.40 172 8.3 0.0165 67.8 
60 0.068 121 2.98 231 10.1 0.0133 70 3.96 172 9.6 0.0178 79.1 
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Figure 6.19: The effect of nU  and nq  on the film thickness 

 

The estimation of the film thickness is rather a complicated task since the hydrodynamics of 

the wall flow generated by spray impact is not completely understood. This flow is 

determined by the typical time and velocity scales associated with single drop impacts.  

The characteristic time scale of the wall flow can be taken as the maximum time of the crown 

spreading, Tmax. This time for a single drop impact with the relatively high Weber number is 

estimated in the study [82] in the following form 
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The film thickness formed by the relatively sparse spray impact, in which the effect of the 

single drop impacts is dominant, can be scaled by the thickness of the oscillating viscous 

boundary layer 

max~ TH νν                                                                                                                        (6.12) 

Solution of the equation νHH ~  immediately yields the scaling for the film thickness: 
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The measured dimensionless film thickness, H/Di, is shown in figure 6.20 as a function of the 

dimensionless group (We/Re)3/4 = Ca3/4, where Ca is the capillary number. The almost linear 
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dependence of the dimensionless film thickness on this parameter supports the assumptions. 

Finally the film thickness produced by spray impact is estimated in the form 

4/3Ca95.8=
Di

H
                                                                                                                  (6.14) 

 

 

Figure 6.20 Dimensionless film thickness as a function of the parameter ( ) 4/3Re/We . 

 

One should admit that at the present stage of research, the proposed empirical model for the 

film thickness is rather preliminary. The most universal and reliable results can be obtained 

only after performing experiments over a wide range of the influencing parameters and after 

complete understanding of the hydrodynamics of the flow generated by spray impacting on a 

wall. For example, it is of interest to know what is the film thickness generated by sprays with 

relatively low Reynolds numbers (in which the viscosity significantly influences the impact of 

single drops) or by very dense fuel spray impact.  

In equation 6.14, the right side has a constant and a ratio between We and Re numbers. This 

constant depends on different parameters, flux density for example. It might also depend on 

the target angle and the liquid properties. 
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6.2.5. Application of the spray impact model to the atomizer conditions 

High-speed video images are captured to visualize the outcome of the pressure swirl spray 

impingement onto inclined targets. The images show that no secondary droplets are ejected 

from the film despite the fact that the Weber number of droplets in the primary pressure swirl 

spray that impacts onto the pre-filmer in the airblast atomizer have the same range of values 

as the incoming droplets in the spray impact experiments as shown in figure 6.21. 

 

 

Figure 6.21: Impact of pressure swirl spray (2.66 L/hr) onto 30° inclined target 

 

This qualitative result indicates that almost the total flux of the primary spray contributes in 

the thin liquid film on the pre-filmer. This implies the primary source of the airblast spray 

droplets is the disintegration of the thin liquid film on the pre-filmer as a result of its 

interaction with the high-speed air streams.  

The empirical formula (6.14) in the previous section is used to estimate the order of the film 

thickness in the airblast atomizer. Figure 6.22 shows the ratio of the measured SMD of the 

airblast spray droplets to the estimated film thickness as a function of gWe  in logarithmic 

scale, where
L

afilma

g

UH
We

σ

ρ 2

= . The figure shows a strong dependency of the SMD on gWe . 

For very low gWe , the generated droplets have SMD values equal or even larger than the 

estimated film thickness. This can be related to the low air velocity, which indicates that the 

breakup takes place due to the gravitational and surface tension forces (Rayleigh breakup). As 

gWe  increases, the breakup mechanism starts to be influenced by the shear forces applied by 

the air stream, therefore, the film starts to deform more before the breakup takes place, which 

leads to smaller droplet diameters. 
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Figure 6.22:  The normalized calculated film thickness on the atomizer pre-filmer as a 
function of gWe  

 

The linear relation showed in logarithmic plot of figure 6.22 indicates a power dependence of 

the dimensionless drop diameter on the Weber number Weg. The best fit of the experimental 

data yields 

33.0~ −

g

film

We
H

SMD
                                                                                                                   (6.15) 

This dependence of the Sauter mean diameter of the drops in the airblast spray will be further 

explained in the following section based on the chaotic disintegration theory of the liquid 

film. 

6.3. Chaotic disintegration model for the size of the drops in spray  

The spray generated by an airblast atomizer is influenced by a number of the operating 

parameters, like the volumetric flow rates of the airflow and of the liquid flow, parameters of 

the primary spray, pressure in the chamber, material properties of the fluids, etc. Since the 

mechanism of atomization is extremely complicated the main problem is not the luck in 

finding formulas relating the operating parameters with the spray parameters.  

Such formulations however do not add much to the understanding of the processes occurring 

inside the atomizer. There is also no confidence that such relations are universal. In this 

situation the scaling of the problem, relating even one of the parameters with the drop size of 

the spray can be valuable. 

The details of the mechanism of atomization are not considered in the present model. The size 

of the drop is estimated from the energy balance as in [83].  
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The primary spray creates a liquid film of the thickness filmH  on the pre-filmer. The flow in 

the film is accelerated by the fast airflow. At some instant the film breaks up and creates 

drops. The initial drop velocity is comparable with the film velocity; therefore, the total 

kinetic energy cannot be used in the energy balance of the atomization. The main assumption 

is that the reason for the atomization is the liquid film deformation. The kinetic energy of the 

film deformation goes to the creation of the surface of the drops.  

Consider an element in the liquid film of the typical size a. The volume of this element is 

proportional to a
3. Denote 

.

γ  the rate of its deformation. Therefore, the kinetic energy of 

deformation of the element is approximately  

2
.

3 )(~ aaE L γρ                                                                                                                    (6.16) 

During the breakup this energy goes to the creation of the new surface. The corresponding 

surface energy is estimated as 

2~ aS σ                                                                                                                                (6.17) 

 The smallest possible drop corresponds to the case when the entire kinetic energy of 

deformation transforms to the surface energy of the fragment. Therefore, the typical size of 

the drops, a , can be estimated equating E and S. The resulting expression is obtained in [83] 

in the form 
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It is assumed that the main deformation of the liquid and of the gas takes place in a thin 

turbulent boundary layer. The shear stress at the interface between the liquid and the air can 

be estimated from the Blasius law in the turbulent boundary layer in the air 

4/1

2~ ��
�

	



�

�

AA

A
AAw

U
U

δ

ν
ρτ                                                                                                         (6.19) 

x
xU

A

A
A

5/1

~

−

��
�

	



�

�

ν
δ                                                                                                                 (6.20) 

Now, the rate of deformation of the fluid element in the film at the edge of the pre-filmer 

( Lx = ) is basically the shear stress divided by the film thickness and can be estimated in the 

form 
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The typical size of the drops in the spray can be thus estimated using (6.18)-(6.21) in the 

follwong form 

5/33/115/1
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film
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σ
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In figure 6.23 the dependence of the SMD is shown as a function of the typical size 

a determined in expression (6.22). It is shown that SMD is proportional to a : 

SMD = 0.3 a  

This linear dependence confirms our assumption that at the relatively  high airflow velocities 

the mechanism of the liquid film atomization can be well described by the chaotic 

disintegration theory.  

It should be noted that not each deforming liquid flow leads to chaotic disintegration. The 

atomization condition is the smallness of the typical size a (determined by (6.18)) in 

comparison with the characteristic size of the entire flow region (in our case the film thickness 

H). In some cases the experimental values of the drop diameters are comparable with the film 

thickness. These results are related to the experiments under high-pressure conditions where 

the air velocity is relatively low. The atomization in such cases cannot be described by the 

chaotic disintegration theory. The corresponding values of the SMD are marked in figure 6.23 

as open circles. As expected, their values lie far from the theoretical line, clearly indicating a 

different mode of atomization.  

 

 

Figure 6.23: SMD as a function of the typical size a, for water and kerosene. 
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The new expression for a  is also checked for data from other experiments for different 

operating conditions and found to be applicable. For example, the data provided by [15] for 

kerosene film breakup at room temperature conditions is used and the results fit well as shown 

in figure 6.23. 

To compare this result with that obtained in the previous section, the expression of a  can be 

normalized to the film thickness H and rewritten as a function of gWe  as per the following 

equation. 

10/330/115/130/1
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gAAfilmfilm WeH
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ρν

σ
=                                                                                             (6.23) 

The theoretical prediction for the ratio  a/H behaves as 3.0−
gWe  which is very close to that 

obtained from the experimental data previously (see the empirical relation (6.15)). The 

powers of the other terms beside gWe  in equation (6.23) are very small; 1/15 and 1/30. These 

functions change very slowly. Therefore the combination of these terms are almost constant in 

these experiments.  

It should be stated that this model for predicting the SMD of the droplets in the airblast 

atomizer predicts rather well the Sauter mean drop diameter at the low a/H values. When this 

value is relatively high the results diverge from the linear dependence as shown in some of the 

data in figure 6.23.  

We should admit that the atomization of the liquid film in the airblast atomizer is rather 

complicated, but in this work a novel model is introduced which successfully predicts the 

average diameter of the drops in the spray generated in the airblast atomizer.  

The detailed experimental data, collected in the framework of this study and which are used in 

this model, are listed table 6.2. 
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Table 6.2: Main integral parameters of primary and aiblast sprays.  
Chamber pressure Airblast spray Primary spray 

 Air velocity SMD U SMD 

Bar m/s mµ  m/s mµ  

1 57.2 54 10.0 55 
1 91.1 33 10.6 66 
1 130.1 32 11.3 64 
1 57.2 58 26.2 47 
1 57.2 52 23.2 49 
10 5.2 71 5.1 78 
10 9.1 98 5.1 78 
10 13.0 73 5.1 78 
1 57.2 56 36.3 46 
1 91.1 41 36.3 46 
1 130.1 47 36.3 46 
5 10.4 87 19.5 45 
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7 Conclusions and Recommendations 

7.1 Conclusions 

This work is aimed at a better understanding of the airblast atomizer and the mechanisms of 

spray formation. The effect of different parameters; chamber pressure, airflow rate and liquid 

flow rate on the steady and unsteady features of the airblast spray characteristics is 

investigated and discussed. 

The main achievements and results of this work can be summarized as follows: 

1- Qualitative and quantitative characterization of the two phases of the airblast spray and the 

primary spray is reported and discussed. 

2- A novel scaling method for the characteristic frequency of the aerodynamic oscillations in 

the airblast spray is introduced. Two different techniques used to estimate the spray dominant 

frequency give the similar frequency estimations.  

3- The behavior of airblast spray under oscillating pressure conditions is qualitatively 

investigated. The effect of the pressure oscillation frequency, pressure oscillation magnitude 

and the chamber pressure were reported. 

4- The mechanisms of airblast spray formation are investigated, discussed and modeled. The 

thickness of the liquid film on the pre-filmer in the airblast atomizer is estimated through 

analysis of the spray/wall interaction phenomenon. 

5- A new scaling analysis for the droplet size in the airblast spray is proposed based on the 

energy balance principle in the framework of chaotic disintegration theory. The model is 

validated by comparison with the experimental data. 

 

7.2 Recommendations 

Different suggestions and recommendations can be given to improve the experimental setup 

and also to further enhance and improve the results obtained in this work. 

One of the problems raised during the PDA measurements in the pressure chamber is that the 

optical access to the chamber becomes wetted during the measurements, which leads to lower 

data rate and longer measurement times. Introducing heated optical windows would improve 

the quality of the optical access and eliminate this problem. 

Further experiments can be performed to investigate the effect of liquid viscosity on the 

droplet film thickness in the airblast atomizer.  
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The effect of oscillating pressure conditions on the airblast spray can be quantitatively 

investigated based on the qualitative results achieved by this work. This can be done using 

high-frequency PIV system to obtain droplet velocity. In a more advanced stage, using 

Interferometeric Particle Imaging (IPI) technique, more information about the change in the 

droplet size during the oscillatory conditions can be obtained. 

The effect of the nozzle geometry on the spray frequency has not been investigated; therefore, 

the effect of co and counter flow on the studied frequency is an interesting subject for future 

work. 
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