
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013 2179

SPREAD: A Streaming-Based Partially

Reconfigurable Architecture and

Programming Model
Ying Wang, Xuegong Zhou, Lingli Wang, Member, IEEE,

Jian Yan, Wayne Luk, Fellow, IEEE, Chenglian Peng, and Jiarong Tong

Abstract— Partially reconfigurable systems are promising com-
puting platforms for streaming applications, which demand both
hardware efficiency and reconfigurable flexibility. To realize
the full potential of these systems, a streaming-based partially
reconfigurable architecture and unified software/hardware mul-
tithreaded programming model (SPREAD) is presented in this
paper. SPREAD is a reconfigurable architecture with a unified
software/hardware thread interface and high throughput point-
to-point streaming structure. It supports dynamic computing
resource allocation, runtime software/hardware switching, and
streaming-based multithreaded management at the operating
system level. SPREAD is designed to provide programmers of
streaming applications with a unified view of threads, allowing
them to exploit thread, data, and pipeline parallelism; it enhances
hardware efficiency while simplifying the development of stream-
ing applications for partially reconfigurable systems. Experi-
mental results targeting cryptography applications demonstrate
the feasibility and superior performance of SPREAD. Moreover,
the parallelized Advanced Encryption Standard (AES), Data
Encryption Standard (DES), and Triple DES (3DES) hardware
threads on field-programmable gate arrays show 1.61–4.59 times
higher power efficiency than their implementations on state-of-
the-art graphics processing units.

Index Terms— Hardware thread, parallelism, partial reconfig-
uration, streaming application.

I. INTRODUCTION

D
URING the last decade, embedded processor and recon-

figurable processing units (RPUs) have been integrated

within field-programmable gate arrays (FPGAs) to form par-

tially reconfigurable systems. On these systems, streaming

applications, which commonly appear in the context of multi-

media processing, digital signal processing, and data encryp-

Manuscript received April 19, 2012; revised October 5, 2012; accepted
October 30, 2012. Date of publication January 11, 2013; date of current
version October 14, 2013. This work was supported in part by the National
Natural Science Foundation of China under Grant 61131001 and Grant
61171011, the National 863 Program of China under Grant 2009AA012201,
and the State Key Laboratory of ASIC and System Research Program of Fudan
University under Grant 09XT004 and Grant 09ZD005, the U.K. Engineering
and Physical Sciences Research Council, and the European Union Seventh
Framework Program under Grant 248976, Grant 257906, Grant 287804, and
Grant 318521.

Y. Wang, X. Zhou, L. Wang, J. Yan, and J. Tong are with the State Key
Laboratory of ASIC and System, Fudan University, Shanghai 201203, China
(e-mail: ying_w@fudan.edu.cn; zhouxg@fudan.edu.cn; llwang@fudan.
edu.cn; 11210720144@fudan.edu.cn; jrtong@fudan.edu.cn).

W. Luk is with the Department of Computing, Imperial College London,
London SW7 2AZ, U.K. (e-mail: wl@doc.ic.ac.uk).

C. Peng is with the School of Computer Science and Technology, Fudan
University, Shanghai 201203, China (e-mail: clpeng@fudan.edu.cn).

Digital Object Identifier 10.1109/TVLSI.2012.2231101

tion/decryption have demonstrated performance improvement

and reconfigurable flexibility [1]–[4]. However, there are still

challenges in designing these applications. First, with the

increasing need for both higher performance and design

flexibility, how do we combine partial reconfigurability with

streaming structure on a chip? Second, since a computation

kernel or a task can be implemented in software or hardware,

how do we enable switching between software and hardware

to improve runtime adaptability? Third, as the number of

RPU increases, the spatial organization of streaming channels

among RPUs supports different kinds of parallelism; how do

we expose such parallelism to application programmers for

further performance improvement?

To address these challenges, SPREAD provides a hier-

archical software/hardware (SW/HW) co-design solution

specifically designed for streaming applications. At the archi-

tecture level, we propose a high throughput point-to-point

streaming structure, where a streaming computation can

be represented as a set of software threads and hardware

threads that communicate explicitly over streaming chan-

nels. A unified hardware thread interface (HTI), coupled

with a novel method based on “switchable threads” and

“stub threads,” allows hardware threads to be managed in

the same way as software threads, and enables seamlessly

online switching between software and hardware implemen-

tations. At the operating system level, a lightweight operating

system kernel has been extended for dynamic computing

resource allocation and streaming-based multithread manage-

ment. Moreover, an extended SW/HW multithreaded program-

ming library is provided to improve design productivity and

SW/HW switching adaptability. It is easy for programmers

to design streaming applications and exploit the inherent

thread, data, and pipeline parallelism with the aid of this

library.

A case study involving data encryption/decryption appli-

cations is used to demonstrate the feasibility and SW/HW

switching adaptability of SPREAD. Experimental results indi-

cated that the resource overhead of the HTI is accept-

able. Hardware threads show superior performance compared

with accelerators using fast simplex link (FSL) or system

bus. Moreover, the power efficiency of the AES/DES/3DES

hardware thread is found to be superior to the correspond-

ing implementations on state-of-the-art graphics process-

ing units (GPUs) by making use of different kinds of

parallelism.

1063-8210 © 2013 IEEE



2180 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

To summarize, the following contributions are made in this

paper.

1) A high-throughput point-to-point streaming channel is

proposed. These channels can be dynamically intercon-

nected according to thread dependency, making par-

tially reconfigurable architecture simple and efficient for

streaming applications.

2) A method based on switchable threads and stub threads

to enable smooth switching between software and hard-

ware implementations. Such switching can be achieved

through dynamic resource allocation, fast context trans-

fer, and stream redirection to improve runtime adaptabil-

ity.

3) An extended stream programming library for both

software threads and hardware threads, which facili-

tates the design of streaming applications in a unified

SW/HW thread model, and allows exploitation of thread,

data, and pipeline parallelism for further performance

improvement.

4) An evaluation of the proposed approach based on cryp-

tographic designs on an XC4VFX60 FPGA, showing

that SPREAD offers higher throughput and higher power

efficiency than implementations on CPU and digital

signal processing (DSP) chips. Compared with GPUs,

SPREAD is capable of higher power efficiency of 1.61

to 4.59 times.

This paper is arranged as follows. Section II discusses

related work. Section III gives overall design considera-

tions. Section IV presents hierarchical design of SPREAD in

detail. Section V provides experimental results and analysis.

Section VI compares our work with other solutions. Finally,

Section VII concludes this paper.

II. RELATED WORK

Efficient architectures and portable programming models

play an important role for streaming applications. For hetero-

geneous reconfigurable systems, including CPU and RPUs,

several solutions have been proposed at different abstraction

levels. Some solutions are based on specific compilers and

predefined libraries/streaming languages [5]–[8], which con-

tribute to achieving a working prototype much faster but

do not support partial reconfiguration. SCORE is a pro-

gramming model, which combines pipe-and-filter architecture,

customized compiler, and runtime support [9]; it has not been

implemented in FPGA platforms.

Several groups focus on unified SW/HW programming

models with different extensions. A virtualization layer and

the corresponding operating system architecture have been

proposed for reconfigurable applications [10]. An extended

Linux kernel has been introduced in BORPH to support a

unified file system access for SW/HW tasks [11]. An hthread

programming model has been developed [12], where key

operating system services of inter-thread synchronization and

thread scheduling are migrated to hardware units, providing

equal access to both hardware and software threads. Recently,

a framework named FUSE is proposed at the operating system

level, where hardware tasks are viewed as memory-mapped

I/O devices [13]. However, these extensions do not address

several important aspects for stream-oriented partially recon-

figurable systems.

1) A high throughput streaming channel support at struc-

ture level. Although BORPH supports file streaming I/O,

the bandwidth of the streaming channel is limited. FUSE

and hthread are based on system bus architecture, which

are unsuitable for streaming computations.

2) SW/HW switching support to improve runtime adapt-

ability, which is not addressed by these solutions.

3) The structure and programming model should support

exploitation of different kinds of parallelism, which

would contribute to further performance improvement

of streaming applications.

An effort related to ours is ReconOS [14], an extended

pthread programming model introduced as a general solution

for reconfigurable applications, which provides a rich set

of operating system functions for hardware threads. Unlike

ReconOS, SPREAD is an integrated solution specifically

developed for streaming application design and runtime man-

agement. Hardware threads designed with SPREAD can be

dynamically created, terminated, or switched to software

implementations, thus increasing runtime flexibility and RPU

resource utilization. Compared with statically allocated FIFO

module between hardware threads, the streaming channels in

our architecture can be dynamically interconnected at runtime,

providing efficient inter-thread communication and support for

exploiting multiple kinds of parallelism.

Furthermore, although the idea of a unified SW/HW thread

abstraction is employed, we focus on providing an extended

streaming communication support in a unified way for both

software threads and hardware threads. Our approach takes

into account characteristics of a stream processing model,

and supports high throughput inter-thread communication and

explicit parallelism description in streaming applications.

III. DESIGN CONSIDERATIONS

A streaming application often organizes data as streams and

carries out computation by kernels. Partially reconfigurable

systems are promising computation platforms for streaming

applications, where kernels can be designed as hardware

threads for high performance and reconfigurable flexibility.

From the view of stream processing, the concept of thread

provides a suitable abstraction for computation kernels. First,

the behavior of a hardware thread has a significant similarity

with a software thread. Once created or reconfigured, it enters

an active state until exit. It is easy for programmers to

describe software/hardware partitioning in a unified thread

view. Second, after entering the active state, a hardware thread

operates on a long sequence of data, i.e., a data stream.

There are three regular execution phases: data reading, data

processing, and result writing. These phases are the same as

software threads, offering an opportunity for runtime SW/HW

switching. Third, streaming applications can be represented as

a composition of software and hardware threads, which can be

managed in a unified way at the operating system level. One

thread can communicate with another thread explicitly over



WANG et al.: SPREAD: A STREAMING-BASED PARTIALLY RECONFIGURABLE ARCHITECTURE AND PROGRAMMING MODEL 2181

Fig. 1. Comparison between (a) pthread programming model and (b) SPREAD model.

data-driven streaming channels, and either or both threads can

be implemented in software or in hardware to simplify inter-

thread communication and synchronization.

Based on the above considerations, computation kernels can

be abstracted to concurrently running hardware threads. Com-

pared with the traditional pthread programming model [15]

illustrated in Fig. 1(a), the SPREAD model shown in Fig. 1(b)

is built on a partially reconfigurable architecture where soft-

ware threads run on the CPU, while hardware threads run on

the RPUs. Through streaming interface adaptation, hardware

threads can be managed by an extended operating system

kernel, and a high throughput streaming channel can be

used for inter-thread communication. The extended operating

system kernel is provided for stream management and dynamic

resource allocation to improve runtime adaptability and RPU

resource utilization. Furthermore, SPREAD also includes

pthread-compatible APIs and an extended stream program-

ming library for both software threads and hardware threads.

To illustrate the SPREAD approach, consider the two

streaming computations shown in Fig. 1(b). One computation

consists of four threads organized as a split-join structure,

while the other consists of three threads organized as a pipeline

structure. The SPREAD library mentioned above enables

programmers to specify the T 2, T 3, and T 6 tasks in these

two computations as hardware threads. All running threads,

whether hardware or software ones, are under the control of

the extended operating kernel.

During the development of applications, we adopt switch-

able threads, which are a special kind of hardware thread,

to facilitate switching between software and hardware at

runtime. A switchable thread includes a pair of hardware

and software implementations with the same behavior, so

that its implementation style can be dynamically changed

depending on application or environment requirements. The

SW/HW switching can be achieved via dynamic resource

allocation, fast context transfer, and stream redirection. Taking

the scenario in Fig. 1(b) as an example, T 6 is defined as

a switchable thread according to initial software/hardware

partitioning at design time. When it is created, if no RPU

resources are available, and all running hardware threads

are unswitchable, then the software implementation of T 6 is

chosen. Once resource RPU_2 is released by hardware thread

T 3, the software implementation of T 6 can be switched to its

hardware implementation with the aid of SPREAD.

To enable the extended operating system kernel to manage

hardware threads at runtime, we propose an approach based

on the idea of a stub thread. As the software delegate of

a hardware thread, a stub thread is created at the same

time as its corresponding hardware thread. A stub thread can

be used to redirect the streaming communication primitives

within the extended operating system kernel to a specific

hardware thread, and to monitor HTI. For a switchable thread,

the software and hardware implementations with identical

functional behavior coexist within a stub thread, which makes

SW/HW switching easy and controllable. The streaming-based

HTI, coupled with a stub thread, allows hardware threads

to be managed via an extended operating system kernel in

the same way as software threads, while keeping streaming

threads running efficiently. The design of a stub thread will

be explained in Section IV-D.

As the dynamically interconnected streaming channels rep-

resent different streaming structures, it is easy for program-

mers to leverage thread parallelism, data parallelism, and

pipeline parallelism in a unified view of threads. Thread par-

allelism can be naturally exploited for streaming applications,

which consist of software threads and hardware threads run-

ning independently and concurrently. Data parallelism can be

exploited by allocating RPUs to duplicated hardware threads

and programming them in a single program multiple data

(SPMD) fashion. SPREAD also allows programmers to create

a producer thread and a consumer thread in a pipeline parallel

fashion. The ability to exploit multiple kinds of parallelism



2182 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

Fig. 2. Streaming-based partially reconfigurable system architecture.

enhances programming flexibility and performance through

improved utilization of RPU resources and point-to-point

streaming interconnections.

IV. HIERARCHICAL DESIGN OF SPREAD

Fig. 1(b) provides an overview of SPREAD for streaming

applications. This section will introduce each part of SPREAD

in detail.

A. Partially Reconfigurable System Architecture

Fig. 2 depicts the architecture of a streaming-based partially

reconfigurable system, which consists of a CPU, several RPUs,

an external SDRAM, a configuration controller, and other

peripherals. Software threads and the operating system are

running on the CPU. Compared with the CPU, RPUs are

reconfigurable computing resources for coarse-grained hard-

ware threads, which can be dynamically created, terminated,

or switched during runtime.

In order to support high throughput communication for

stream-oriented hardware threads, a control interface and two

streaming interfaces are provided separately in a hardware

thread interface. The bus-based control interface is used for

SW/HW switching and status monitoring. Two streaming

interfaces are provided for full-duplex, synchronous point-

to-point communication, through which a hardware thread

can communicate with another thread, whether software or

hardware, in an efficient way.

For SPREAD, a FIFO is employed as the local memory of

each hardware thread, while the external SDRAM region is

allocated for global data sources and storage of computation

results. The inter-thread communication can be implemented

based on a predefined streaming channel through the point-

to-point streaming interconnection. In addition, this point-to-

point streaming interconnection can be dynamically configured

at runtime according to data dependency among threads. For

example, the interconnection configured on the left side of

Fig. 3. HTI architecture.

Fig. 2 can be used to implement the streaming computation

on the right side. Apart from the simultaneous access issue, a

streaming path eliminates the dataflow bottleneck commonly

found in a system bus, making our partially reconfigurable

architecture simple and efficient for streaming applications.

The architecture proposed here makes it easy to con-

figure streaming threads in different programming struc-

tures, such as split-join, pipeline, and feedback loop. Fur-

thermore, the proposed HTI not only supports hardware

thread customization and high throughput communication,

but also facilitates thread, data, and pipeline parallelism

exploitation.

B. Hardware Thread Customization and Adaptation

A partially reconfigurable system typically comprises an

area (base region) for a static base system and one or more



WANG et al.: SPREAD: A STREAMING-BASED PARTIALLY RECONFIGURABLE ARCHITECTURE AND PROGRAMMING MODEL 2183

Fig. 4. State transitions of a running hardware thread.

partially reconfigurable regions (PR regions) for RPUs, such

that hardware threads are executed on RPUs. For a given user-

defined hardware task (UHT), a unified HTI is proposed to

integrate a UHT into the system without incurring a significant

performance loss. This stream-oriented HTI structure supports

efficient inter-thread communication, while facilitating the

unified thread management and runtime SW/HW switching.

The HTI consists of the communication and control inter-

face (CCI) in the base region and the task controller (TC)

in the PR region, as shown in Fig. 3. The communication

macros within CCI provide static routing channels. A hardware

thread can connect to these routing channels via predefined

connection points for communication. Besides a bus interface

for thread control and status monitoring, there are two point-

to-point streaming interfaces covering both communication

between two hardware threads, and communication between a

hardware thread and a software thread. The data streams that

a hardware thread operates on are grouped into packets, which

consist of a large sequence of data items. A data item is the

smallest unit of computation in a UHT. The TC is responsible

for dealing with stream computation behavior and SW/HW

switching at runtime.

At the heart of the HTI, the State Controller realizes the

possible state transitions according to the pthread-compatible

semantics, READY, RUN, and WAIT. A running hardware

thread reads data from IN_FIFO, performs computation, and

writes results to OUT_FIFO. IN_FIFO and OUT_FIFO are

provided for data buffering, while enabling blocking to take

place in inter-thread communication.

The state transfer of a running hardware thread is described

in Fig. 4. Since a data-driven hardware thread is characterized

by regular processing of data streams, there are mainly

four states in the State Controller, which are similar to

that of a software thread. A hardware thread enters into

the READY state after successfully created or reset, and

it will turn into the RUN state upon receiving a start of

packet transfer signal (hw_tx_start). While in the RUN state,

when IN_FIFO is empty or OUT_FIFO is full, a hardware

thread will immediately assert an hw_stream_transfer signal,

blocking itself, and entering into the WAIT state. A hardware

thread will return to the RUN state upon receiving an

hw_transfer_done signal. Additionally, a hardware thread

could go back to the READY state upon receiving a cmd_stop

command from the operating system kernel or an hw_rx_stop

signal from the streaming interface.

For switchable threads that could change their implemen-

tation style from hardware to software, the State Controller

also provides SW/HW switching support. Since each data item

expires after being processed, the hardware thread context can

be captured using the OUT_FIFO and the snapshot registers.

The snapshot registers include a data item counter to show

runtime progress and thread parameters. While in the SWITCH

state, snapshot registers can be read out together with the

processed data items within the OUT_FIFO.

The hardware thread customization flow is provided in

SPREAD. First, a given UHT in the form of an RTL code

or a netlist is integrated with the TC to produce a hardware

thread entity. Design optimizations for on-chip communication

infrastructure can also be included [16]. Second, the pro-

posed streaming structure with point-to-point interconnections

and the hardware thread entities are synthesized with RTL

synthesis tools. The output netlists of the base system and

the hardware threads, as well as RPU layout information,

constitute the input to a partially reconfigurable system design

tool, such as Xilinx PlanAhead. Third, the full bitstream of

the system and partial bitstreams of the hardware threads are

produced. The partial bitstreams can be dynamically loaded

when creating a hardware thread at runtime.

C. Operating System Kernel Extension

Since traditional operating systems regard hardware tasks as

devices, streaming application programmers are required not

only to manipulate inter-task communication and synchroniza-

tion according to the customized device driver, but also to deal

with issues of resource allocation and task management. Thus,

it is difficult to exploit different kinds of parallelism, partial

reconfigurable flexibility, and SW/HW switching adaptability.

Hardware threads in streaming applications form a virtual

hardware thread library where partial bitstreams targeting all

available RPUs are stored. The dynamic resource allocation

can be achieved by means of one-to-many mappings between

a hardware thread and the available RPUs. Based on these

considerations, an extended operating system kernel is pro-

vided to manage computing resources, hardware threads, and

streams.

1) Reconfigurable Computing Resource Management: In

our approach, the RPUs shown in Fig. 2 are regarded as

reconfigurable computing resources, which can be allocated

to hardware threads (including switchable threads) during

runtime.

An extended resource manager is responsible for tracking

the changing status of the RPUs. An Idle RPU can be



2184 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

Algorithm 1 Definition of the HTCB

dynamically allocated to a newly created hardware thread

without manual intervention. Once a hardware thread is suc-

cessfully created, the corresponding RPU will be transferred

from the Configured state to the Allocated state. This RPU

will be released and returned to the Idle state after the

hardware thread finishes. Configuration hit would occur when

the released RPU is reallocated to the same hardware thread

executed before.

A partially reconfigurable architecture would have a large

impact on the throughput of streaming computations, espe-

cially when hardware threads are created at runtime. A con-

figuration cache mechanism is employed to reduce hardware

thread creation time. Considering possible configuration hits

during runtime, the identification of a hardware thread is

recorded in the resource allocation table (RAT). If a con-

figuration hit takes place when creating a hardware thread,

there is no need to load the partial bitstream and the hardware

thread creation time will be significantly decreased. Otherwise,

a configuration miss occurs and the RPU will be reconfigured

with the corresponding partial bitstream.

2) Hardware Thread Management: A streaming applica-

tion consists of software threads and hardware threads. It is

necessary to manage all software and hardware threads based

upon our partially reconfigurable architecture.

The hardware thread manager is built on the extended

hardware thread control block (HTCB), which tracks state

changes of all hardware threads. The HTCB data structure

is shown in Algorithm 1. The pointer to HTCB is added to

the pthread structure in the operating system kernel, which

simplifies hardware thread management.

3) Stream Management: The data stream is built on a full

duplex streaming channel between two threads. In order to

expose streams and their logic connections to application

programmers, stream management is offered as a service for

software threads and hardware threads.

The stream manager allows flexible point-to-point intercon-

nection between two threads, and provides support for stream-

ing communication. It supports the FIFO style buffer and

the corresponding semaphores for streaming communication

between two software threads. At the same time, the LocalLink

interface [17] and buffer descriptor manipulation are employed

for SW→HW, HW→SW, and HW→HW streaming commu-

nications.

D. Pthread-Compatible SPREAD Programming Model

Based on the extended operating system kernel, a unified

SW/HW multithreaded programming model is proposed for

hardware thread creation and termination, streaming commu-

nication as well as SW/HW switching. Through a light-weight

programming library, programmers can describe pipeline,

split-join, and feedback loop stream structures easily through

dynamically established streaming channels, and exploit the

inherent parallelism and runtime SW/HW switching in stream-

ing applications.

The essential programming support of SPREAD is

described below.

1) Hardware Thread Creation and Termination: It is the

responsibility of the extended hardware thread manager to deal

with the hardware thread creation and termination. Dynamic

resource allocation occurs when a hardware thread is created

via API hwthread_create(). If configuration hits, the released

RPU is allocated immediately with configuration reuse. If

configuration misses, an RPU is allocated to a newly cre-

ated hardware thread according to its attribute settings. It is

assumed that the priority of an unswitchable hardware thread

is higher than that of a switchable thread.

If a RPU is successfully allocated to a hardware thread, the

partial bitstream of this hardware thread will be loaded and

the corresponding stub thread will be created. If there is no

RPU resource available for unswitchable thread creation, API

hwthread_create() will search for the hardware implementa-

tion of the switchable thread for resource preemption. The

implementation style of the preempted switchable thread can

be changed through its stub thread. A successfully created

hardware thread will stay in active hardware thread list until

termination. It will be added to the idle hardware thread list

on termination for the sake of configuration reuse.

For a newly created switchable thread, if there is no RPU

resource available, it will turn to software implementation.

When an RPU resource is available, this software implemented

switchable thread is scheduled for hardware execution accord-

ing to the priority scheduling policy.

2) Streaming Communication Support: Streams provide a

simple and efficient way of communication for software

threads and hardware threads. As depicted in Algorithm 2,

API stream_create() creates a streaming channel for a pair of

threads, and returns an identifier. Thus, two threads, whether

implemented in hardware or in software, can operate on a

streaming channel and are coordinated based on the same

stream identifier. The following are possible results when a

data packet is transferred from the sender thread to the receiver

thread.

1) If both threads are implemented in software, the sender

thread first puts the data packet into the predefined data

FIFO via the available memcpy() function, then the

receiver thread gets the data packet from this data FIFO

by memcpy(). The inter-thread synchronization is based

on traditional semaphore support with FIFO “empty”

and “full” status.

2) If two threads are implemented in hardware and soft-

ware, a synchronous, point-to-point connection, and a



WANG et al.: SPREAD: A STREAMING-BASED PARTIALLY RECONFIGURABLE ARCHITECTURE AND PROGRAMMING MODEL 2185

Algorithm 2 Stream Creation Process

DMA engine can be used for transmitting and receiving

data packets on a stream. The synchronization here

depends on the built-in synchronous streaming interface

in HTI.

3) When a data packet is directly transferred from one

hardware thread to another, as the streaming interfaces

are synchronized by virtue of the FIFO within each HTI,

the streaming channel is dynamically configured when

a stream is created.

After a stream is successfully created, the programmer can

aggregate data items into packets before the transmission

starts. To support efficient communication between threads,

SPREAD offers a push/pull mechanism for moving high-

volume data streams. Fig. 5 shows a SPREAD-based multi

threaded example, involving AES encryption, where one

software thread produces the data while the unswitchable AES

hardware thread encrypts the data; another software thread

consumes the data.

Within the main process shown in Fig. 5, the streaming

channel SC1 and SC2 are dynamically created. Programmers

can use API stream_open() to request streaming communi-

cation service and open a particular streaming channel in

either read or write mode. Once the stream is opened and

acknowledged, the producer thread uses API stream_out() to

write a data packet to a previously opened stream, while

the consumer thread uses API stream_in() to read a data

packet from the stream. The size of the data packet to be

sent is also passed as an argument. For unswitchable hard-

ware thread responsible for AES data encryption, the stream

input and output operations are automatically implemented

within HTI, thus the stub thread only needs to perform status

monitoring.

3) Stub Thread Enabled SW/HW Switching: When design-

ing streaming applications, there are two possibilities. One is

that a computation kernel can be implemented in software and

hardware, and the implementation style of this kernel is not

determined at design time on account of the changing environ-

ments. The other is that the kernel depends on other software

threads for data input and output. Under these conditions, the

computation kernel can be created as a switchable thread. At

run time, a switchable hardware thread with low priority can

be preempted by another hardware thread with higher priority

to meet the real-time constraints.

In SPREAD, a stub thread enabled SW/HW switching

method is used to improve runtime adaptability. The stub

thread itself provides a unified wrapper for the hardware and

software implementations within a switchable thread. There

are three states in a stub thread: 1) a switchable thread running

in hardware; 2) SW/HW switching; and 3) a switchable thread

running in software. SW/HW switching occurs if resource

preemption occurs during the process of RPU allocation or

the required RPU resource is released. Programmers need

to deal with thread-specific context switching and stream

redirection, and add the necessary synchronization between the

hardware thread manager and the stub thread. However, fre-

quent changes in implementation style (i.e., switch thrashing)

will result in significant decrease in performance and increase

in CPU utilization. In order to prevent switch thrashing, the

number of switches is restricted to one in the hardware thread

manager.

An example of switchable hardware thread on AES encryp-

tion is shown in Fig. 6, where stub thread enabled HW→SW

switching is described. After receiving a switch notification

H2S_Switch from the hardware thread manager, the stub

thread immediately sends a cmd_switch signal to the switch-

able thread running in hardware, and reads the snapshot regis-

ters shown in Fig. 3. The switchable thread in hardware then

enters the “SWITCH” state and initiates context switching.

The context switching method is based on the sliding-window

pattern of streaming computation. Thus, there is no need

to deal with low-level state changes within the UHTs [18].

The stream-oriented thread context consists of data items that

have already been processed and data stored in user-defined

snapshot registers, which are transferred through the streaming

channel. When the context transfer is completed, the stub

thread will update the pointer to the stream buffer, and change

the stream address reference from SC1, SC2 to newly created

SC3 and SC4 (i.e., stream redirection). The use of stub threads

for stream update and redirection enables the implementation

style of a switchable thread to be seamlessly changed from

hardware to software and vice versa.

SW→HW switching is similar to the process discussed

above. The main difference is that the thread manager should

configure the hardware thread before sending the SW→HW

switching notification.

V. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the flexibility and performance of streaming

applications designed with SPREAD, a partially reconfig-

urable system prototype has been developed on our custom

prototype board. Stream-driven cryptography applications are

implemented as test cases. Fig. 7 shows the architecture of our

system prototype and the FPGA floorplan.

The prototype is implemented in the Xilinx XC4VFX60

FPGA, where a PowerPC405 CPU, a multiport memory con-

troller (MPMC), several peripherals on the processor local



2186 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

Fig. 5. Multithreaded example on AES encryption with SPREAD.

Fig. 6. Example of switchable hardware thread on AES encryption. (a) Stub thread enabled HW→SW switching. (b) Pseudo code of main process and the
stub thread.

bus (PLB), as well as hardware threads are all clocked at

100 MHz. Using the Xilinx EAPR design flow [19], the

prototype is designed with three RPUs and a base system. The

communication between an RPU and a base system is through

predefined bus macros. The UHT is abstracted to the hardware

thread through the HTI. The point-to-point streaming interface

within the HTI makes a hardware thread tightly coupled to its

corresponding sender or receiver thread, bypassing the tradi-

tional bottlenecks of the on-chip system bus. The partial bit-

streams of AES (aes_encryption), AES_INV (aes_decryption),



WANG et al.: SPREAD: A STREAMING-BASED PARTIALLY RECONFIGURABLE ARCHITECTURE AND PROGRAMMING MODEL 2187

Fig. 7. Partially reconfigurable system prototype. (a) System architecture.
(b) FPGA floorplan.

TABLE I

RESOURCE UTILIZATION OF A HTI

Name
Number
of Slices

Number
of FF

Number
of LUT

Number of
BRAM

HTI 488 723 706 2

XC4VFX60 25280 50560 50560 232

Utilization 1.93% 1.43% 1.4% 0.86%

and DES (des_encryption/des_decryption) hardware threads

are produced through the thread customization flow. These

partial bitstreams are stored in the Compact Flash, and then

transferred to the SDRAM at system start-up. The HWICAP

is used for hardware thread configuration at runtime.

The Xilkernel 4.0 [20] is extended to provide RPU resource

management, multithreaded, and stream management. Hard-

ware threads are capable of time-sharing the available RPUs.

A hardware thread can be dynamically created, terminated, or

switched with the support of SPREAD. The SW/HW switching

method can adapt to the changing environment during runtime.

Moreover, the proposed stream-oriented HTI and synchronous

point-to-point connection contribute to different kinds of par-

allelism exploitation for further performance improvement.

A. HTI Resources Utilization

As shown in Table I, the resources used for an HTI are all

kept at a low level, accounting for 1.93%, 1.43%, 1.4%, and

0.86% of the total numbers of slices, flip flops, LUTs, and

BRAMs on the XC4VFX60, respectively.

B. Hardware Thread Creation Time

The creation time of a hardware thread consists of the

overhead on thread configuration, thread management as well

as the corresponding stub thread creation.

Table II gives the total creation time of three hardware

threads within our partially reconfigurable system prototype. It

can be seen that a large portion of the creation time is spent on

loading a partial bitstream when a configuration miss occurs.

The configuration time is large due to the limited throughput

of HWICAP, which processes configuration bitstreams. Based

on the PowerPC405 CPU with I-Cache/D-Cache enabled, the

TABLE II

HARDWARE THREADS CREATION TIME. 252758/241725/229878

BYTES IS THE SIZE OF AES/AES_INV/DES HARDWARE

THREAD

AES AES_INV DES

Configuration Time (ms) 22.14 21.85 20.75

HW Thread Management and
Stub Thread Creation Time (ms)

0.05 0.05 0.05

HW Thread Total Creation Time
with Configuration Miss (ms)

22.19 21.90 20.80

HW Thread Total Creation Time
with Configuration Hit (ms)

0.05 0.05 0.05

Fig. 8. Inter-thread communication bandwidth comparison between SPREAD
and ReconOS.

TABLE III

TOTAL PROCESSING TIME WHEN DATA SIZE = 4M BYTES

SW Thread with
I-Cache/D-Cache

Enabled (ms)

HW Thread with
SPREAD (ms)

Speedup

AES 15687.68 58.65 267.48

AES_INV 24186.88 58.65 412.39

DES 4648.96 112.39 41.36

average time for a software thread creation is 19.2 us with the

default settings of API pthread_create(). When a configuration

hit occurs, the total creation time of a hardware thread is

almost 50 us; the same order of magnitude as that of a software

thread.

C. Inter-Thread Communication Bandwidth

A hardware thread runs at 100 MHz, and the IN_FIFO and

OUT_FIFO within the hardware thread are organized with

32-b wide and 32-word depth. The streaming channel width

is 32-b. The communication bandwidth between two hardware

threads achieves 400M Bytes/s. The communication between

a software thread and a hardware thread involves the SDMA

controller within the MPMC, which employs the burst data

transfer mechanism and reaches almost 200M Bytes/s.

According to the testing results given in [14], Fig. 8

depicts the inter-thread communication bandwidth comparison



2188 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

TABLE IV

THROUGHPUT COMPARISON OF HW TASKS WITH DIFFERENT ARCHITECTURES AND TASK INTERFACES

System Proposed
by [23]

System Proposed
by [24]

System Proposed by [25] Our Prototype

FSL based
Interface

Bus based
Interface

FSL based Interface
Bus based
Interface

HW Thread
designed with SPREAD

AES Throughput (Mbps) 70.95 261.6 31.68 10.39 545.61

DES Throughput (Mbps) / 280.8 23.71 5.19 284.72

between SPREAD and ReconOS. The HW→HW communica-

tion bandwidth provided by SPREAD is 3.14 times faster than

ReconOS with the aid of high-speed streaming interface of

the hardware thread. Furthermore, the communication channel

between two hardware threads is fixed in ReconOS, while the

streaming channels in SPREAD can be dynamically config-

ured for streaming applications.

Although the bandwidths of MEM→HW (burst read) and

HW→MEM (burst write) in ReconOS are comparable to

SW→HW and HW→SW in SPREAD, there are three main

differences between these two methods. First, since both burst

read and write operations in ReconOS are built on the bus

master access, the available CPU bandwidth will decrease as

the number of data transfer increases. SPREAD provides bus-

independent, full duplex point-to-point communication among

threads, which permits more concurrent data transfer while

the CPU is still highly available. Second, if there are multiple

hardware threads running concurrently which demand high

throughput inter-thread communication, ReconOS has two

limitations: serial arbitration for memory access and data

transfer on the system bus. In contrast, the MPMC employed

in SPREAD can simultaneously arbitrate all data transfer

requirements with a prior knowledge to efficiently use the

DDR memory. Third, in order to transfer large quantities of

data to and from a hardware thread, ReconOS needs explicit

synchronization on frequent data partitioning and transfers.

SPREAD-based communication via a streaming channel can

be implicitly synchronized by the HTI interface.

D. Hardware Thread Execution

To demonstrate the feasibility and performance of hard-

ware threads designed with SPREAD, UHTs are pro-

vided for cryptographic hardware thread customization and

adaptation. The AES task [21] takes 128-b key and

128-b data as input, performing a complete ciphering sequence

in 12 cycles. The DES task [22] takes 56-b key, 64-b data as

input and generates a 64-b result. It needs 16 cycles to com-

plete a full encryption/decryption sequence. The maximum

throughput of the AES/DES task is 1.02 Gb/s/381.47 Mb/s

at a frequency of 100 MHz.

Once a hardware thread is dynamically created with

SPREAD, there are mainly three phases for stream process-

ing: streams reading from a sender thread, data processing,

and result writing to a receiver thread. Stream processing is

repeated to deal with a large amount of data according to the

application requirement.

As shown in Table III, when compared with software threads

using I-Cache and D-Cache, the performance of hardware

Fig. 9. Throughput of dynamically created hardware threads with the data
size increased from 4 KB to 16 MB.

threads greatly benefits from the abundant fine-grained paral-

lelism and efficient bit-level operations offered by the FPGA,

as well as the streaming support from SPREAD.

Table IV gives the throughput comparison of the

AES and DES hardware tasks with different system

architectures and task interfaces. The throughput of the

AES/DES hardware thread designed with SPREAD achieves

545.61 Mb/s/284.72 Mb/s, which is 54%/75% of the maximum

throughput. Our approach has demonstrated superior hardware

performance over FSL-based and system bus-based hardware

accelerators [23]–[25]. SPREAD can help user-defined hard-

ware tasks achieve high performance through the stream-

oriented communication interface.

As far as the whole lifecycle of hardware threads is con-

cerned, besides the total processing time shown in Table III,

the thread creation time in Table II should be added when

ciphering algorithm is changed at runtime. Fig. 9 shows the

throughput of a dynamically created hardware thread with the

data size increased from 4 KB to 16 MB.

It can be seen that the throughput is not greatly affected by

thread creation when a configuration hit occurs. The hardware

thread configuration time with a configuration miss is in the

range of tens of millisecond, which has a large impact on

throughput especially when data size is small. The throughput

of the hardware thread grows linearly as data size increases

when a configuration miss arises. It is noticed that although

the hardware thread with higher throughput is more sensitive



WANG et al.: SPREAD: A STREAMING-BASED PARTIALLY RECONFIGURABLE ARCHITECTURE AND PROGRAMMING MODEL 2189

TABLE V

NUMBER OF CLOCK CYCLES NEEDED FOR SWITCHING

SW/HW ON AES ENCRYPTION

SW→HW
Switching

HW→SW
Switching

Context Transfer (cycles) 6834 575

Stream Update and Redirection
(cycles)

1053 1280

Total (cycles) 7887 1855

to the thread creation overhead, the impact of this overhead

will be reduced with the increase of data size. Additionally,

as shown in Table II, there is only a slight difference between

the creation time of the AES and AES_INV hardware threads,

thus the throughput of these two threads shown in Fig. 9 is

nearly equal when a configuration miss occurs.

E. Switchable Thread Execution

In order to illustrate the feasibility of the proposed SW/HW

switching method, we have implemented two switchable

threads on AES encryption and decryption. With the uni-

fied stub thread wrapper, a software implementation and a

hardware implementation with identical functions are pre-

pared for the SW/HW thread switching during runtime. Tak-

ing switchable thread on AES encryption as an example,

Table V lists the number of clock cycles needed for SW/HW

switching.

The total number of cycles spent on SW/HW switch-

ing is obtained by measuring the time for context transfer,

stream update, and redirection. The overhead of the SW→HW

switching and the HW→SW switching are 78.87 and 18.55

µs, which are acceptable for streaming applications to improve

runtime adaptability. Because the software implementation

usually needs more time to reach the SWITCH state when

compared with the hardware implementation, the time for

context transfer on the SW→HW switching is larger than the

HW→SW switching.

For a switchable thread implemented in software style when

created, the execution time of this switchable thread would be

largely decreased if SW→HW switching occurs and a large

portion of data streams is redirected to hardware process-

ing. The proposed switching method combines the extended

hardware thread manager and the stub thread, making use of

the available RPU resources to improve runtime adaptability

while providing performance improvement through SW→HW

switching. For a newly arrived switchable thread started in

hardware implementation, it can be preempted by another

unswitchable thread and turns to software implementation to

improve overall system responsiveness.

F. Coarse Level Parallelism Exploitation

SPREAD provides support for thread parallelism when

software threads and hardware threads running independently

and concurrently. Besides thread parallelism, it is easy for

programmers to exploit coarse-grained data parallelism and

pipeline parallelism on available RPUs. This section will

TABLE VI

3DES EXECUTION TIME COMPARISON WHEN DATE SIZE = 4M BYTES

Implementation
Time
(ms)

System
Proposed
by [25]

FSL based 3DES Accelerator 2443.18

Bus based 3DES Accelerator 7444.89

FUSE [13] 3DES HW Task with LKM Loading 703.89

3DES HW Task without LKM Loading 691.89

Our
Prototype

3DES SW Thread
with I-Cache/D-Cache Enabled

14387.20

3DES Implementation
with three Pipelined DES HW Threads

(Configuration Miss)
179.96

3DES Implementation
with three Pipelined DES HW Threads

(Configuration Hit)
112.54

present the results on the 3DES and AES implementations

by exploiting pipeline parallelism and data parallelism on our

prototype.

Since there are insufficient resources for the 3DES design

within a single RPU, we implement 3DES with three pipelined

DES threads on three RPUs. Table VI lists the execution time

of the different 3DES implementations for processing 4 MB

of data.

More than 80 times speedup is observed for the 3DES

implementation over the software thread on our proto-

type. The speedup is due to the support of coarse-grained

pipeline parallelism with SPREAD, as well as the fine-

grained parallelism within FPGA. Taking advantage of differ-

ent kinds of parallelism and high throughput streaming chan-

nel, the proposed 3DES implementation provides more than

an order of magnitude improvement over the FSL-based and

system bus-based accelerators [25]. It also shows superior

performance compared with FUSE-based 3DES hardware

task [13].

AES encryption is also implemented to illustrate the support

for data parallelism. Data load is uniformly distributed over

concurrent running hardware threads, which are designed

in an SPMD fashion. Fig. 10 gives the execution time of

the parallelized AES encryption. When a configuration hit

occurs, the parallelized implementation achieves significant

improvement in performance, particularly for large data size.

In the case of a configuration miss, the execution time of

parallelized implementation with multiple threads is larger

than a single thread when the data size is small. With the

increase of data size, the influence of the configuration time

will decrease, and the parallelized AES encryption will show

performance advantage.

As far as the degree of parallelism is concerned, we observe

that the speedup is nonlinear with the increasing degree of

parallelism. Although all memory banks can be open at the

same time, and the data source and destination are located

in different memory banks, the time for data transfer is

largely influenced by the increasing number of simultaneous



2190 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

Fig. 10. Execution time of the parallelized AES encryption for different data size.

TABLE VII

THROUGHPUT AND POWER EFFICIENCY COMPARISON OF AES/DES/3DES DESIGN ON DIFFERENT PLATFORMS

Task Platform

Clock
Freq

(MHz)

Power∗

(W)
Programming
Support

Throughput
(Mbps)

Power
Efficiency
(Mbps/W)

AES TMS320C6201 DSP [26] 200 1.70 linear assembly code implementation 112 65.88

Intel Pentium IV CPU [28] 2260 58.00 crypto library base API 410 7.07

SPI Storm SP16-G160 [35] 500 7.00 SPC 1.104-O3
1120–
1260

160–180

Nvidia GeForce 8800 GTX GPU [30] 1350 177.00 CUDA with T-Box optimization 8280 46.78

Proposed Partially Reconfigurable System 100 5.85 SPREAD base HTI and programming library 1140 194.87

DES TMS320C6201 DSP [32] 200 1.70 linear assembly code implementation 52 30.59

Intel Pentium IV CPU [28] 2260 58.00 crypto library base API 296 5.10

Nvidia GeForce GTX 260 GPU [33] 1242 182.00 CUDA 4821 26.49

Proposed Partially Reconfigurable System 100 5.74 SPREAD base HTI and programming library 698 121.60

3DES TMS320C6201 DSP [32] 200 1.70 linear assembly code implementation 22 12.94

Intel Pentium IV CPU [28] 2260 58.00 crypto library base API 107 1.84

SPI Storm SP16-G160 [35] 500 7.00 SPC 1.104-O3 210–280 30–40

Nvidia GeForce 9800 GTX GPU [34] 1688 140.00 CUDA 4500 32.14

Proposed Partially Reconfigurable System 100 5.50 SPREAD base HTI and programming library 284 51.64

∗Max TDP is used for the power consumption of TMS320C6201 DSP [27], Intel Pentium IV CPU [29] and Nvidia GeForce series GPU [31],
the evaluation result from Xilinx XPower is given for our design.

memory access and the amount of row conflicts. The peak

throughput of our parallelized AES implementation is 1140

Mb/s, achieving over two times speedup when compared

with the single-thread implementation. The implementation

makes use of three AES hardware threads running in paral-

lel with high throughput, point-to-point streaming intercon-

nections. The results further demonstrate the feasibility and

the advantages of SPREAD in exploiting different kinds of

parallelism.

VI. COMPARISON AND DISCUSSION

This section provides a comparison of the throughput and

the power efficiency of different AES/DES/3DES designs on

popular computing platforms, including TMS320C6201 DSP,

Intel Pentium IV 2.26G CPU, SPI Storm stream processor,

and Nvidia GeForce GPU.

Table VII shows that the power efficiency of the parallelized

AES/DES/3DES hardware threads is superior to other comput-

ing platforms. The reasons behind these results come from the

stream-oriented hardware thread interface and different kinds

of parallelism exploitation.

In addition to the comparison given above, we summa-

rize the features of SPREAD from both the architecture

design and programming model points of view. Table VIII

presents a comparative study on BORPH, FUSE, ReconOS,

and SPREAD. The results show that SPREAD provides high



WANG et al.: SPREAD: A STREAMING-BASED PARTIALLY RECONFIGURABLE ARCHITECTURE AND PROGRAMMING MODEL 2191

TABLE VIII

COMPARATIVE STUDY ON BORPH, FUSE, RECONOS AND SPREAD

Method Streaming Communication Support Programming Support

Communication Structure, Mechanism Throughput
Configurable

Interconnection
SW/HW

Switching
Coarse Level Parallelism Exploitation

BORPH [11] Message passing interface,
General file I/O

Low Yes No Pipeline Parallelism

FUSE [13] Bus based interface,
Memory mapped I/O

Medium No No Not Addressed

ReconOS [14] Bus based interface and HW FIFO,
Shared memory / Message queues etc

Medium No No Thread / Pipeline Parallelism

SPREAD Streaming-based interface,
Extended stream programming library

High Yes Yes Thread / Data / Pipeline Parallelism

throughput streaming communication, stub thread enabled

SW/HW switching, and support for exploiting multiple kinds

of parallelism. These features contribute to improving hard-

ware efficiency and runtime adaptability.

VII. CONCLUSION

This paper introduced SPREAD, a streaming-based par-

tially reconfigurable architecture and programming model

for simplifying the development of streaming applications,

which demand both hardware efficiency and reconfigurable

flexibility. SPREAD provided high throughput, dynamically

interconnected streaming channels at structure level, as well as

reconfigurable computing resource/stream/thread management

at operating system level.

Through SPREAD, programmers can describe stream-

ing applications in a unified SW/HW multithreaded model,

exploiting the inherent parallelism to increase performance,

while enabling SW/HW switching to improve runtime adapt-

ability. Results from our experiments on cryptography appli-

cations demonstrated that the power efficiency offered by

SPREAD is much better than the state-of-the-art GPUs. The

proposed unified SW/HW interface makes programming with

hardware threads easy, by removing the need to deal with low-

level design details. Compared with other solutions, SPREAD

can provide SW/HW switching, while achieving optimized

hardware efficiency through high throughput communication

and different kinds of parallelism.

Although the proposed design method was demonstrated on

a Xilinx Virtex-4 FPGA, it can be applied to other FPGAs with

partially reconfigurable capability. Currently, we are exploring

the “one-to-many” and “many-to-one” streaming interconnec-

tions to enable a wide range of applications for SPREAD.

Moreover, we plan to include necessary error checking logic

within the HTI and self-healing services within the operating

system kernel, to improve system reliability.

REFERENCES

[1] A. S. Zeineddini and K. Gaj, “Secure partial reconfiguration of FPGAs,”
in Proc. IEEE Conf. Field-Program. Technol., Dec. 2005, pp. 155–162.

[2] M. Fons, F. Fons, and E. Canto, “Fingerprint image processing acceler-
ation through run-time reconfigurable hardware,” IEEE Trans. Circuit.

Syst. II, Exp. Briefs, vol. 57, no. 12, pp. 991–995, Dec. 2010.

[3] A. Ahmad, B. Krill, A. Amira, and H. Rabah, “Efficient architectures
for 3D HWT using dynamic partial reconfiguration,” EURASIP J. Syst.

Archit., vol. 56, no. 8, pp. 305–316, Aug. 2010.

[4] A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynam-
ically reconfigurable systolic array accelerators: A case study with
extended Kalman filter and discrete wavelet transform algorithms,” IET

Comput. Digital Technol., vol. 4, no. 2, pp. 126–142, Mar. 2010.

[5] R. Dimond, O. Mencer, and W. Luk, “Application-specific customisation
of multi-threaded soft processors,” IEEE Comput. Digital Technol., vol.
153, no. 3, pp. 173–180, May 2006.

[6] J. Frigo, M. Gokhale, and D. Lavenier, “Evaluation of the streams-C C-
to-FPGA compiler: An applications perspective,” in Proc. ACM/SIGDA

9th Int. Symp. Field Program. Gate Arrays Conf., Feb. 2001,
pp. 134–140.

[7] R. Rinker, M. Carter, A. Patel, M. Chawathe, C. Ross, J. Hammes, W. A.
Najjar, and W. Bohm, “An automated process for compiling dataflow
graphs into reconfigurable hardware,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 9, no. 1, pp. 130–139, Feb. 2001.

[8] R. D. Chamberlain, M. A. Franklin, E. J. Tyson, J. H. Buckley, J. Buhler,
G. Galloway, S. Gayen, M. Hall, E. F. B. Shands, and N. Singla,
“Auto-pipe: Streaming applications on architecturally diverse systems,”
Computer, vol. 43, no. 3, pp. 42–49, Mar. 2010.

[9] A. DeHon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S. Perissakis,
L. Pozzi, J. Yeh, and J. Wawrzynek, “Stream computations organized
for reconfigurable execution,” Microprocess. Microsyst., vol. 30, no. 6,
pp. 334–354, Sep. 2006.

[10] M. Vuletic, L. Pozzi, and P. Ienne, “Virtual memory win-
dow for application-specific reconfigurable coprocessors,” IEEE Very

Large Scale Integr. (VLSI) Syst., vol. 14, no. 8, pp. 910–915,
Aug. 2006.

[11] H. So and R. Brodersen, “A unified hardware/software runtime environ-
ment for FPGA-based reconfigurable computers using BORPH,” ACM

Trans. Embedd. Comput. Syst., vol. 7, no. 2, pp. 1–6, Feb. 2008.

[12] D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck, J. Stevens, F.
Baijot, and E. Komp, “Achieving programming model abstractions for
reconfigurable computing,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 16, no. 1, pp. 34–44, Jan. 2008.

[13] A. Ismail and L. Shannon, “FUSE: Front-end user framework for O/S
abstraction of hardware accelerators,” in Proc. 19th IEEE Symp. Field-

Program. Custom Comput. Mach., May. 2011, pp. 170–177.

[14] E. Lubbers and M. Platzner, “ReconOS: Multithreaded programming for
reconfigurable computers,” ACM Trans. Embedd. Comput. Syst., vol. 9,
no. 1, pp. 1–23, Oct. 2009.

[15] The ISO POSIX Working Group, IEEE Standard ISO/IEC 9945, Mar. 9,
2002.

[16] M. Koester, W. Luk, J. Hagemeyer, M. Porrmann, and U. Ruck-
ert, “Design optimizations for tiled partially reconfigurable systems,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 6,
pp. 1048–1061, Jun. 2011.

[17] Local Link Interface Specification. (Jul. 2005) [Online]. Available:
http://forums.xilinx.com/t5/Connectivity/Local-Link-Interface-Specific-
ation/td-p/146342.html



2192 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

[18] H. Chun-Hsian, H. Pao-Ann, and S. Jih-Sheng, “Model-based platform-
specific co-design methodology for dynamically partially reconfigurable
systems with hardware virtualization and preemption,” J. Syst. Arch.,
vol. 56, no. 8, pp. 545–560, Aug. 2010.

[19] Early Access Partial Reconfiguration User Guide.
(Sep. 2008.) [Online]. Available: http://www12.informatik.uni-
erlangen.de/esmwiki/images/f/f3/Pr_flow.pdf

[20] Xilkernl 4.0, (Nov. 2007) [Online]. Available:
http://www.xilinx.com/support/ documentation/ sw_manuals/xilinx12_3/
ug758.pdf

[21] AES Project. (2012) [Online] Avaliable: http://www.opencore.org

[22] DES Project. (2012) [Online] Avaliable: http://www.opencore.org

[23] I. Gonzalez, E. Aguayo, and S. Lopez-Buedo, “Self-reconfigurable
embedded systems on low-cost FPGAs,” IEEE Micro, vol. 27, no. 4,
pp. 49–57, Aug. 2007.

[24] C. Pedraza, J. Castillo, J. I. Martinez, P. Huerta, and C. S. L. Lama,
“Self-reconfigurable secure file system for embedded linux,” IET Com-

put. Digital Technol., vol. 27, no. 4, pp. 461–470, Nov. 2008.

[25] I. Gonzalez and F. J. Gomez-Arribas, “Ciphering algorithms in
microblaze-based embedded systems,” IEE Comput. Digital Technol.,
vol. 153, no. 2, pp. 87–92, Mar. 2006.

[26] T. Wollinger, M. Wang, J. Cuajardo, and C. Paar, “How well are high-
end DSPs suited for the AES algorithm?” in Proc. 3rd AES Candidate

Conf., Apr. 2000, pp. 94–105.

[27] TMS320C62x/C67x Power Consumption Summary. (Jul. 2002) [Online].
Available: http://www.ti.com/lit/an/spra486c/spra486c.pdf

[28] Z. Li, R. Iyer, S. Makineni, and L. Bhuyan, “Anatomy and performance
of SSL processing,” in Proc. IEEE Int. Symp. Perf. Anal. Syst. Softw.,
Mar. 2005, pp. 197–206.

[29] Intel Pentium 4 Processor. (2012) [Online]. Avaliable:
http://ark.intel.com/products/27435/

[30] S. A. Manavski, “CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography,” in Proc. IEEE Int. Conf. Signal

Commun., Nov. 2007, pp. 65–68.

[31] NVIDIA Inc. (2012) [Online]. Avaliable: http://www.geforce.com/
Hardware/

[32] Data Encryption Standard (DES) Implementation on

the TMS320C6000. (Nov. 2000) [Online]. Available:
http:// www.ee.ic.ac.uk/ pcheung/ teaching/ ee3_Study_Project/ DES%20
Implementation%28702%29.pdf

[33] G. Agosta, A. Barenghi, F. D. Santis, and G. Pelosi, “Record setting
software implementation of des using CUDA,” in Proc. 7th Int. Conf.

Inf. Technol., Apr. 2010, pp. 748–755.

[34] G. Liu, H. An, W. Han, G. Xu, P. Yao, M. Xu, X. Hao, and Y. Wang, “A
program behavior study of block cryptography algorithms on GPGPU,”
in Proc. 4th Int. Conf. Frontier Comput. Sci. Technol., Dec. 2009,
pp. 33–39.

[35] G. Xu, H. An, G. Liu, P. Yao, M. Xu, W. Han, X. Li, and X. Hao, “Per-
formance and power efficiency analysis of the symmetric cryptograph
on two stream processor architectures,” in Proc. 5th Int. Conf. Intell.

Inf. Hiding Multimedia Signal, Sep. 2009, pp. 917–920.

Ying Wang received the B.S. degree from Xidian University, Xian, China, the
M.S. degree from the East-China Institute of Computer Technology, Shanghai,
China, and the Ph.D. degree from Fudan University, Shanghai, in 1999, 2005,
and 2009, respectively, all in computer science.

She continued her research on partial reconfiguration in the State Key
Laboratory of ASIC and System, Fudan University, as a Post-Doctoral
Researcher, from 2009 to 2012. Her current research interests include com-
puter architecture, the development of partially reconfigurable systems, and
computing resource virtualization.

Xuegong Zhou received the B.S. and Ph.D. degrees in computing science
from Fudan University, Shanghai, China, in 1989 and 2007, respectively.

He joined Fudan University in 2007, where he is currently a Research
Assistant with the State Key Laboratory of ASIC and System, and the School
of Microelectronics. His current research interests include logic synthesis and
reconfigurable computing.

Lingli Wang (M’99) received the M.S. degree from Zhejiang University,
Hangzhou, China, in 1997, and the Ph.D. degree from Edinburgh Napier
University, Edinburgh, U.K., in 2001, both in electrical engineering.

He was with Altera European Technology Center for four years. In 2005,
he joined Fudan University, Shanghai, China, where he is currently a Full
Professor with the State Key Laboratory of ASIC and System in the School
of Microelectronics. His current research interests include logic synthesis,
reconfigurable computing, and quantum computing.

Jian Yan received the B.S. degree in telecommunication from Shanghai
University, Shanghai, China, in 2011. He is currently pursuing the M.S. degree
with the School of Microelectronics, Fudan University, Shanghai.

His current research interests include partially reconfigurable hardware
accelerator customization, and system-on-chip design.

Wayne Luk (F’09) received the M.A., M.Sc., and D.Phil. degrees in
engineering and computing science from the University of Oxford, Oxford,
U.K.

He is a Professor of computer engineering with the Department of
Computing, Imperial College London, London, U.K., and leads the Custom
Computing Group there. He is also a Visiting Professor with Stanford Univer-
sity, Stanford, CA. His current research interests include theory and practice of
customizing hardware and software for specific application domains, such as
media processing, networking, and finance. Further information can be found
in: http://cc.doc.ic.ac.hk.

Chenglian Peng received the B.S. degree in mathematics from Fudan
University, Shanghai, China, in 1964.

He was a Visiting Scholar with Erlangen University, Erlangen, Germany, in
1994. He is a Professor with the School of Computer Science and Technology,
Fudan University. His current research interests include computer architecture,
design automation of digital systems, and fault tolerant computing.

Jiarong Tong received the B.S. degree in physics from Fudan University,
Shanghai, China, in 1965.

He was a Visitor with Electronics Data Systems, Plano, TX, from 1988
to 1989. He served as a Visiting Scholar with Texas University, College
Station, in 1995. He is a Professor with the Department of Microelectronic,
former Dean of the Microelectronic School, Fudan University. His current
research interests include reconfigurable computing, computer-aided design of
integrated circuits, FPGA architecture, and digital integrated circuit design.


