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Abstract—In this paper we introduce the class of Spread

Codes for the use in random network coding. Spread

Codes are based on the construction of spreads in finite

projective geometry. The major contribution of the paper

is an efficient decoding algorithm of spread codes up to

half the minimum distance.

I. INTRODUCTION

In [KK07] Kötter and Kschischang develop a novel

framework for random network coding. In this frame-

work information is encoded in subspaces of a given

ambient space over a finite field. A natural metric is

introduced where two subspaces are ‘close to each other’

as soon as their dimension of intersection is large.

This new framework poses new challenges to design

new codes with large distances and to come up with

efficient decoding algorithms. Several new papers have

been written on the topic and we mention [SKK07]

and [MU07].

In this paper we study the class spreads from finite

projective geometry (see e.g. [Hir98]) for possible use

in network coding theory. A spread S is a partition

of a vector space by subspaces of a fixed dimension.

Elements of a spread are subspaces of a fixed vector

space F
n
q which pairwise only intersect in the origin.

The codewords derived in this way are all subspaces of

the same dimension. In other words the spread S is a

subset of the finite Grassmannian G(k, Fn
q ) consisting

of all k-dimensional subspaces in F
n
q . We will call

the obtained code a Spread code. Since two different

elements of S only intersect in the origin the spread

code S has maximal possible distance among all subsets
of G(k, Fn

q ).

First and third author were partially supported by Swiss National

Science Foundation under Grant no. 113251. Second Author was

supported by the Forschungskredit of the University of Zurich under

Grant no. 57104101 and by the Swiss National Science Foundation

under Grant no. 107887.

The paper is structured as follows. In the next section

we will explain the construction of spreads and we derive

some basic properties. In Section 3 the main results of

the paper are given. We provide an efficient decoding

algorithm for spread codes essentially ‘up to half the

minimum distance’ with its complexity. The decoding

algorithm requires methods from linear algebra and the

application of the Euclidean algorithm.

II. ALGEBRAIC CONSTRUCTION OF A SPREAD CODE

Let Fq be the finite field with q elements. We denote

with G(k, Fn
q ) the Grassmannian of all k-dimensional

subspaces of F
n
q . Following [KK07] we define a distance

function d : G(k, Fn
q ) × G(k, Fn

q ) → Z+ through:

d(A,B) := dim(A + B) − dim(A ∩ B) (1)

= dim(A) + dim(B) − 2 dim(A ∩ B).

It has been observed in [KK07] that d(A,B) satisfies the
axioms of a metric on the finite Grassmannian G(k, Fn

q ).
A constant-dimension code S ⊂ G(k, Fn

q ) has maximal
possible minimum distance as long as the intersection of

two different codewords of S is trivial. If two subspaces
A,B ⊂ F

n
q intersect only in the zero vector then the

corresponding subspaces of projective space are non-

intersecting. Based on this we will call A,B ⊂ F
n
q

nonintersecting subspaces as long as they intersect only

in the zero vector.

We want to construct an MDS-like code S ⊂
G(k, Fn

q ), i.e. code having maximum possible distance

and maximum number of elements. In order to do this we

need to restrict our k, n ∈ N to some particular cases. It

is a well known result that there exists an S ⊂ G(k, Fn
q )

that partitions F
n
q (i.e. there is no vector in F

n
q which does

not lie in a subspace) and such that any two elements of

S are nonintersecting if and only if k divides n. Those

subsets are called spreads and this result can be found

in [Hir98].

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

881978-1-4244-2571-6/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 8, 2009 at 20:34 from IEEE Xplore.  Restrictions apply. 



Consider the case n = rk. Let also p ∈ F
n
q [x] be

an irreducible polynomial of degree k. If we denote

with P the k × k companion matrix of p over Fq, it

follows that the Fq-algebra Fq[P ] ⊂ Matk×k(Fq) is
isomorph to the finite field Fqk . Denoting with 0k, Ik ∈
Matk×k(Fq) respectively the zero and the identity matrix
and given the above assumptions, we are ready to state

the following theorem.

Theorem 1: The collection of subspaces

S :=
r

⋃

i=1

{rowsp [0k · · · 0k Ik Ai+1 · · · Ar] |

Ai+1, . . . , Ar ∈ Fq[P ]} ⊂ G(k, Fn
q )

is a spread of F
n
q .

Proof: The cardinality of S is exactly the maximum
number of k-dimensional nonintersecting subspaces of

F
n
q , i.e.

qn
−1

qk−1 = qk(r−1) + qk(r−2) + · · · + q + 1.

It remains to be shown that any pair of subspaces in S
do only intersect trivially that is equivalent to show that

the 2k×n matrix obtained putting together two matrices

generating two different subspaces is full-rank.

We have only two cases. The first where the matrices

Ik are not placed at the same column “level”. In this

case we can find a full-rank submatrix of the form
[

Ik A

0k Ik

]

.

The second case is when matrices Ik are at the same

“level”. There exists a submatrix of the form
[

Ik A1

Ik A2

]

where A1, A2 ∈ Fq[P ] and A1 �= A2. It follows that the

determinant of the above matrix is equal to det(A1−A2)
and is nonzero since A1 �= A2.

Is it possible to find a previous and less general version

of this theorem in [CGR07].

Definition 2: Let p be an irreducible polynomial of

degree k over Fq. A spread code S is a subset of

G(k, Fn
q ) constructed as in the previous theorem. Fol-

lowing the definition of [KK07] a spread code is a q-ary

code of type [n, k, logq

(

qn
−1

qk−1

)

, 2k].

Remark 3: Spread codes can be viewed as a subcodes

of the Reed-Solomon-like codes over Grasmannians

presented in the paper [KK07] under the following

assumptions: let both the parameters l,m of [KK07] be

equal to k and take in consideration only those linearized

polynomials which evaluate in an element of Fq[P ].

There is an algebraic geometric way to view the

spreads we just introduced. For this identify the set of

polynomials in Fq[x] having degree at most k − 1 with
the field Fqk . Consider the natural isomorphism

ϕ : Fqk → Fq[P ]

f �→ f(P ).

This isomorphism induces the natural embedding

ϕ̃ : G(l, Fm
qk) → G(kl, Fkm

q )

with

ϕ̃

⎛

⎜

⎝
rowsp

⎛

⎜

⎝

f11 . . . f1m

...
...

fl1 . . . flm

⎞

⎟

⎠

⎞

⎟

⎠

= rowsp

⎛

⎜

⎝

f11(P ) . . . f1m(P )
...

...

fl1(P ) . . . flm(P )

⎞

⎟

⎠
.

The following theorem is then not difficult to establish.

Theorem 4: If S ⊂ G(l, Fm
qk) is a spread of F

m
qk then

ϕ̃(S) ⊂ G(kl, Fkm
q ) is a spread of F

km
q .

Clearly G(1, Fr
qk) is a spread itself and it therefore

follows that the subset defined in Theorem 1 is a spread

of F
n
q as well.

III. DECODING ALGORITHM

We will continue restricting our study to the case

where n = 2k and k is odd. From now on we will

consider fixed the irreducible polynomial p ∈ Fq[x].
In a first step we want to establish a simple alge-

braic criterion which characterizes the spread code S ⊂
G(k, F2k

q ). For this assume that C1, C2 ∈ Matk×k(Fq)
are matrices such that

C := rowsp[C1 C2] ∈ G(k, F2k
q ).

If C1 is not invertible then C ∈ S if and only if C1 = 0k.

If C1 is invertible then C ∈ S if and only if A :=
(C1)

−1C2 ∈ Fq[P ].
We therefore establish a criterion which guarantees

that a matrix A is in Fq[P ]. Let Fqk be the splitting field

of p over Fq and S ∈ Glk(Fqk) be an invertible matrix
diagonalizing the matrix P , i.e.

D := SPS−1 =

⎡

⎢

⎢

⎢

⎣

λ

λq

. . .

λqk−1

⎤

⎥

⎥

⎥

⎦

where λ ∈ Fqk is a root of p.

Lemma 5: Let A ∈ Matk×k(Fq). Then A ∈ Fq[P ] if
and only if AP = PA.
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Proof: If A ∈ Fq[P ] then clearly AP = PA. As-

sume now AP = PA and SPS−1 = D. Since the eigen-

values of P are pairwise different and D(SAS−1) =
(SAS−1)D it follows that SAS−1 is a diagonal matrix

as well with diagonal entries in Fqk . Let {1, γ, . . . , γk−1}
be a basis of Fqk over Fq. One has an expansion:

SAS−1 =

k−1
∑

i=0

ciD
i =

k−1
∑

i=0

k−1
∑

j=0

ci,jγ
jDi

with ci ∈ Fqk and ci,j ∈ Fq.

Equivalently we have:

A =

k−1
∑

j=0

(

k−1
∑

i=0

ci,jP
i

)

γj .

It follows that A =
∑k−1

i=0 ci,0P
i and A ∈ Fq[P ].

The following gives an algebraic criterion when a

subspace is a codeword.

Corollary 6: The subspace rowsp[Ik A] ∈ G(k, F2k
q )

is a codeword of S if and only if SAS−1 is a diagonal

matrix.

We state now the unique decoding problem. As-

sume C := rowsp[C1 C2] ∈ S was sent and R :=
rowsp[R1 R2] ∈ G(k, F2k

q ) was received. If

dim(C ∩ R) ≥
k + 1

2
(2)

then unique decoding is possible. In the sequel we will

consider the received subspace R ∈ G(k, F2k
q ) such that

there exists a codeword C ∈ S such that (2) holds.

A. Case R1 not invertible.

Let R and C be subspaces satisfying the condition (2).

The goal of this subsection is to analyze the behavior of

the decoding problem when R1 is not invertible.

This situation splits in two different ones. The first one

is when 0 ≤ rank(R1) ≤
k−1
2 . The closest codeword in

this case is only the subspace rowsp[0k Ik].
The second case is characterized by k+1

2 ≤
rank(R1) ≤ k − 1. With the following lemma we bring
back the decoding problem of the subspace R to the one

of a subspace R̃ close related to R and lying to the same

ball with center in the codeword C .

Lemma 7: Let R ∈ G(k, F2k
q ) such that k+1

2 ≤
rank(R1) ≤ k−1 and C ∈ S such that it holds (2). Then
there exists a subspace R̃ := rowsp[R̃1 R̃2] ∈ G(k, F2k

q )
satisfying:

• R̃1 is invertible,

• dim(R ∩ R̃) = rank(R1), and
• dim(C ∩ R̃) ≥ k+1

2 .

Proof: Let t := rank(R1). Row reducing the

matrix [R1 R2] we obtain the matrix

[

R̄1 R̄2

0 E

]

where

R̄1, R̄2 ∈ Matt×k(Fq) with R1 fullrank and 0, E ∈
Matk−t×k(Fq) where 0 is the zero matrix.
Since rowsp[0 E] ⊂ rowsp[0k Ik] we deduce that

dim(C ∩ rowsp[0 E]) = 0. It follows immediately that

dim(C ∩ rowsp[R̄1 R̄2]) = dim(C ∩ R̃) ≥
k + 1

2
.

The matrix representing the subspace R̃ can then be

constructed as it follows:

• R̃1 is the completion of the matrix R̄1 to an

invertible matrix, and

• R̃2 is the completion of the R̄2 to a k-square matrix

by adding rows of zeros.

Corollary 8: The unique decoding problem applied

to both the subspaces R and R̃ decode to the same

codeword C ∈ S.

B. Case R1 invertible.

We can now construct an algorithm for the unique

decoding problem of subspaces with R1 invertible.

Theorem 9: Let R := rowsp[R1 R2] ∈ G(k, F2k
q ) a

subspace with R1 invertible. Then there exists a unique

matrix A ∈ Fq[P ] and a unique matrix N ∈ Matk×k(Fq)
of rank at most k−1

2 such that

R−1
1 R2 = A + N.

In this case rowsp[Ik A] is the closest codeword to R

by the distance (1).

Proof: The uniqueness follows from the distance

properties of the code. Assume rowsp[Ik A] be the
closest codeword to R. Since

rowsp

[

Ik A

R1 R2

]

= rowsp

[

Ik A

0k R−1
1 R2 − A

]

has dimension at most 2k − k+1
2 = k + k−1

2 it follows

that the matrix N := R−1
1 R2 −A has rank at most k−1

2 .

Corollary 10: Let R := rowsp[R1 R2] ∈ G(k, F2k
q ) a

subspace with R1 invertible. Let Y := S(R−1
1 R2)S

−1.

Then there is a unique polynomial f ∈ Fq[x] with
deg f < k such that Y − f(D) has rank at most k−1

2 .

Proof: The existence follows directly from the last

theorem. Concerning the uniqueness assume that Y =
f1(D) + N1 = f2(D) + N2. It then follows that

R−1
1 R2 = f1(P ) + S−1N1S = f2(P ) + S−1N2S

and because of the uniqueness part of Theorem 9 the

result follows.
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The algorithm extrapolates the evaluations of the poly-

nomial f ∈ Fq[x] from the matrix Y − f(D). Once the
polynomial f ∈ Fq[x] is found, its evaluation at P gives

us the matrix A ∈ Fq[P ] such that rowsp [Ik A] is the
codeword closest to R. Notice that the coefficients of f

are exactly the coefficients of the expression of f(λ) in
the basis {1, λ, . . . , λk−1} of Fqk over Fq.

The following two remarks from finite field theory

(see [LN94]) will be important. First, given any f ∈
Fq[x] and any μ ∈ Fqk , then f(μq) = f(μ)q. Second,
given a finite field Fq with q elements it holds

xq − x =
∏

α∈Fq

(x − α).

We outline now the complete decoding algorithm.

Let R := rowsp [R1 R2] be the received subspace
satisfying condition (2). Assume that R1 is invertible.

Compute Y := S(R−1
1 R2)S

−1. If the matrix Y is

diagonal, then R is already a codeword of S by Corollary
6.

Otherwise the matrix Y − f(D) is of the form
⎛

⎜

⎜

⎜

⎝

y1,1 − f(λ) y1,2 · · · y1,k

y2,1 y2,2 − f(λq) · · · y2,k

...
...

. . .
...

yk,1 yk,2 · · · yk,k − f(λqk−1

)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

y1,1 − f(λ) y1,2 · · · y1,k

y2,1 y2,2 − f(λ)q · · · y2,k

...
...

. . .
...

yk,1 yk,2 · · · yk,k − f(λ)q
k−1

⎞

⎟

⎟

⎟

⎠

where some entries off of the diagonal are nonzero.

Denote by X the matrix obtained from Y − f(D) by
substituting x for f(λ). By Corollary 10 there exists
a unique value for x ∈ Fqk (namely x = f(λ)) such
that rank(X) ≤ k−1

2 . The decoding problem reduces to

finding such a value.

The condition on the rank is equivalent to having all

minors of size k+1
2 of the matrix X being zero. This

gives us a system of univariate equations which apriori

may be hard to solve. However since the system has a

unique solution, every minor is divisible by (x− f(λ)).
Hence in order to find f(λ) it suffices to compute the

gcd of the field equation xqk

−x with enough equations

from our system. More precisely we look for a nonzero

minor of size k−1
2 which does not involve any diagonal

entry. If no such minor exists, then look for a nonzero

minor of smaller size which again does not involve any

diagonal entry. Let t be the size of the minor. Complete

the corresponding size t submatrix to a submatrix of

X of size k+1
2 . Notice that this can be done by adding

k+1
2 − t rows and columns with the same index. The

determinant of this submatrix is a nonzero polynomial

m ∈ Fqk [x] which has f(λ) as a root.
Apply the Euclidean Algorithm in order to compute

g := gcd(xqk

− x,m).

If the degree of g is small, compute its roots and

substitute them in X in order to find f(λ).
Otherwise compute another minor in the same way as

for the previous one. Proceed by computing the gcd of

this polynomial with g.The algorithm ends once it finds

f(λ).

C. Complexity

The overall complexity of the algorithm is dominated

by the Euclidean Algorithm. In the worst case scenario,

i.e. when the maximal nonzero minor has small size, the

algorithm’s complexity is O(qk log
2
3 log qk) in Fqk .

The complexity could be drastically decreased by

the following conjecture: for every error matrix N ∈
Matk×k(Fq) of rank t ≤ k−1

2 there exists a size nonzero

minor of size t of the matrix X which doesn’t involve

any diagonal entry.

Consider now such a nonzero minor of X and extend

the related submatrix adding one row and one column

with the same index. The determinant of this submatrix

leads to an equation of the type xqi

= α with α ∈ Fq.

Raising both sides of the equation to the qk−i-th power

and using the field equation of Fqk we get: x = αqk−i

.

Using the Repeated Squaring Algorithm for computing

powers in Fqk , the complexity of the decoding algorithm

decreases to O(log qk−i) = O(k − i) operations in Fqk .

A reference for efficient algorithms is [GG03]. In

particular see Section 4.3 for the Repeated Squaring

Algorithm, Section 11.1 for performing the Euclidean

Algorithm, Chapter 14 for factoring univariate polyno-

mials and Section 25.5 for computing determinants.

D. Non-perfectness of a Spread Code

Spreads are perfect in the sense that every nonzero

vector of F
n
q is in one and only one subspace of the

spread.

In coding theory a code is perfect if the total ambient

space is covered with the balls centered in the codewords

and having radius half the minimum distance. It arises

the question if spread codes are perfect in this sense.

The answer turns out to be negative in general and this

result can be found in [MZ95].
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