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2 Institut Pasteur, Cnam, Unité PACRI, 25–28, rue du Docteur Roux, Paris, France, 3 Ecole des Hautes
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Abstract

Hospital-acquired infections (HAIs), including emerging multi-drug resistant organisms,

threaten healthcare systems worldwide. Efficient containment measures of HAIs must mobi-

lize the entire healthcare network. Thus, to best understand how to reduce the potential

scale of HAI epidemic spread, we explore patient transfer patterns in the French healthcare

system. Using an exhaustive database of all hospital discharge summaries in France in

2014, we construct and analyze three patient networks based on the following: transfers of

patients with HAI (HAI-specific network); patients with suspected HAI (suspected-HAI net-

work); and all patients (general network). All three networks have heterogeneous patient

flow and demonstrate small-world and scale-free characteristics. Patient populations that

comprise these networks are also heterogeneous in their movement patterns. Ranking of

hospitals by centrality measures and comparing community clustering using community

detection algorithms shows that despite the differences in patient population, the HAI-spe-

cific and suspected-HAI networks rely on the same underlying structure as that of the gen-

eral network. As a result, the general network may be more reliable in studying potential

spread of HAIs. Finally, we identify transfer patterns at both the French regional and de-

partmental (county) levels that are important in the identification of key hospital centers,

patient flow trajectories, and regional clusters that may serve as a basis for novel wide-scale

infection control strategies.

Author summary

Hospital-acquired infections (HAIs), including emerging multi-drug resistant organisms,

threaten healthcare systems worldwide. Efficient containment measures of HAIs must

mobilize the entire healthcare network. Thus, to best understand how to reduce the scale

of potential HAI epidemic spread, we explore patient transfer patterns in the French

healthcare system. We construct and compare the characteristics of three different patient
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transfer networks based on data on transfers of patients with diagnosed HAIs, suspected

HAIs, or of all patients. Our analyses show that these healthcare networks, the patient

populations that comprise them and the patient movement patterns are heterogeneous

and centralized. Despite the differences in patient populations, the HAI-specific and sus-

pected-HAI healthcare networks have the same underlying structure as that of the general

healthcare network. We identify key hospital centers, patient flow trajectories, at both the

regional and department (county) level that may serve as a basis for proposing novel

wide-scale infection control strategies.

Introduction

The emergence and spread of multi-drug resistant organisms threatens healthcare systems

worldwide.[1] This is particularly true concerning methicillin-resistant Staphylococcus aureus,

vancomycin-resistant enterococci, and multi-resistant gram-negative bacteria such as carbape-

nemase-producing Enterobacteriaceae (CPE). Spread of CPE is now a global public health

problem associated with patient transfers between healthcare facilities within the same country

as well as across national borders, as shown in many recent studies.[2–7]

In recent years, patient transfer or referral data has been used to construct “healthcare net-

works” to propose innovative approaches for hospital infection prevention and control.

Healthcare networks are cooperative healthcare systems where hospitals and other healthcare

centers are linked by shared patients through secondary transfers or referral.[8, 9] Rather than

being exclusive to one sole hospital, as Ciccolini et al. argue, the extent of hospital-acquired

infection (HAI) spread is dependent on the healthcare network connected by inter-institu-

tional patient transfers.[8] Heterogeneous hospital patient populations and the interactions

that occur between them and with the community are important in the understanding of the

spatial spread of HAI between hospitals across geographic regions.[9]

As early as 2007, studies applied more complex social network analysis approaches to

reconstructed healthcare networks in order to demonstrate that infection control measures

that take into account network properties can decrease the risk for outbreaks.[8, 10] Lee et al.

consider network properties to assess the individual influence of different hospitals and the

impact of hospital proximities on HAI spread on a regional scale.[11] Many studies show that

healthcare networks display a community structure.[8, 12–14] Network analysis is especially

effective in the identification of sensor hospitals for surveillance of HAIs.[15, 16] In addition,

mathematical models of healthcare networks may serve to inform decision-makers on

enhanced coordinated regional and national approaches to infection control strategies, in a

context where increasingly centralized healthcare systems favor the spread of HAIs.[8, 15, 17]

Although national healthcare networks are informative regarding novel HAI control strate-

gies, the impact of reconstructing these networks based on a general patient population rather

than a HAI-diagnosed patient population has rarely been addressed. In this study, we assess and

compare French healthcare networks based on either patients diagnosed with HAIs or the gen-

eral patient population, in order to better understand the potential implications in terms of HAI

spread predictions. To that aim, we perform social network analyses to describe the different

patient flow patterns, network topology characteristics, and community clustering structure.

Results

We analyzed and compared three different networks built using transfer data from an exhaus-

tive database of all hospital discharge summaries in France in 2014: (1) a network based on
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transfers of patients with diagnosed HAI (HAI-specific network); (2) a network based on

transfers of patients with suspected HAI (suspected-HAI network); and (3) the network of all

patient transfers (general network).

Characteristics of healthcare networks

More than 10 million hospital transfers were recorded in France in 2014, for a total of 2.3 mil-

lion transferred patients, creating a hospital network of 2063 hospitals (nodes) and 50026

patient trajectories (edges) linking them (Table 1). Patients with a HAI-specific diagnosis cre-

ated a healthcare network of 1266 hospitals and 3722 connections for 13627 patient transfers.

A larger population of patients suspected to have an HAI infection formed a healthcare net-

work of 1975 hospitals and 18812 connections for a total of 128681 patient transfers. With the

increasing number of patient transfers, the networks increased from an average 5.88, 19.05,

and 48.05 average connections per hospital (average degree �k) and an average 2.31, 4.92 to

14.02 transfers per connection (average strength �s) for the HAI-specific, suspected-HAI, and

general healthcare networks respectively (Table 1).

Overall, the three networks displayed “scale-free” and “small-world” characteristics that

indicated the presence of a small number of very highly connected hospitals with high degrees,

referred to as “hubs.” Analyses of the degree, strength, and shortest path length distributions

in addition to the small-world characteristics of the healthcare networks are discussed in S1–

S3 Texts and S1–S7 Figs. Compared to random networks, we also showed the general network

was more clustered and efficient in transferring patients (S4 Text, S1 Table). We identified sev-

eral high degree hospitals in all three networks with a consistent outlier–the Assistance Publi-

que—Hôpitaux de Paris (AP-HP)–a conglomerate of 39 hospitals predominately in Paris and

the Ile-de-France region represented as one hospital code in our database.[18] AP-HP also

acted as the most important intermediary hospital system in the networks due to having the

highest betweenness centrality measure.

Table 1. Networks characteristics of the French healthcare networks.

Network Characteristics General Network Suspected-HAI Network HAI-Specific Network

Patients 2300728 394859 21279

Patient Transfers 1033239 128681 13627

Hospitals 2063 1975 1266

Patient Trajectories* 50026 18812 3722

Average EdgeWeight** 14.02 4.92 2.31

Average Degree*** 48.50 19.05 5.88

Average In-Degree 24.25 9.53 2.94

Average Out-Degree 24.25 9.53 2.94

Average Betweenness*** 5292.32 6338.81 3824.91

Average Edge Betweenness 301.27 852.23 1556.94

Average Closeness*** 0.00016 0.000074 0.000032

Diameter 30 64 47

Average Path Length 2.99 3.63 5.23

Global Clustering Coefficient 0.23 0.16 0.08

Density 0.012 0.005 0.002

* Also referred to as edges, they represent the sum number of connections between the hospitals

** The average number of patients per trajectory

*** Measures of node (or hospital) centrality

https://doi.org/10.1371/journal.pcbi.1005666.t001
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The hospitals involved in the patient transfers recorded in the three networks were of vari-

ous types, including private rehabilitation and postoperative care facilities, acute-care hospitals

or clinics, and hospital centers (Table 2). However, the majority of hubs, defined as the top 5%

of hospitals by their degree, were large hospitals providing both acute and postoperative or

rehabilitation care (67%, 65%, and 88% in the general, suspected-HAI, and HAI-specific net-

works respectively). In addition, in the general and suspected-HAI networks, hubs were mostly

acute-care hospitals or clinics, hospital centers, or university hospitals centers, with many con-

centrated in the Ile-de-France, Marseille, and Lyon metropoles (31%, 33%, 28%, and 32%,

28%, 30% respectively). In contrast, university hospital centers rather than acute-care facilities

dominated the hub hospitals of the HAI-specific network, representing 48% of hubs (Table 2).

The hub university healthcare centers, which provided highly specialized services, included the

AP-HP, Hospices Civils de Lyon, and the Assistance Publique—Hôpitaux de Marseille

(AP-HM); among them there were also university hospitals of other major cities in France.

To better understand the role of hub hospitals across the networks, the shared hospitals

between the networks were ranked based on their degree, closeness, and betweenness (Fig 1).

Table 2. Healthcare facility types among the general, suspected-HAI, and HAI-specific networks and their hub hospitals.

Health Facility Type General Suspected-HAI HAI-Specific

All facilities Among
hubs*
(N = 103)

All facilities Among
hubs*
(N = 99)

All facilities Among
hubs*
(N = 63)

Type
1**

SSR*** 38.00% 0.97% 37.22% 2.02% 35.31% 1.69%

MCO**** & SSR 36.74% 66.99% 38.13% 64.65% 44.63% 88.14%

MCO 25.25% 32.04% 24.66% 33.33% 20.06% 10.17%

Type 2† Private hospitals authorized to provide SSR
services

30.63% 0 29.90% 1.03% 30.76% 1.72%

Acute-care hospitals or clinics 28.72% 30.69% 28.83% 31.96% 25.04% 5.17%

Hospital centers 23.50% 32.67% 24.44% 27.84% 30.29% 31.03%

Local hospitals 10.75% 0 10.77% 0 6.76% 0

University hospital centers†† 1.47% 27.72% 1.53% 29.90% 2.38% 48.28%

Nursing home 1.27% 0.99% 1.22% 0 1.35% 0

Cancer centers 0.93% 3.96% 0.97% 4.12% 1.27% 3.45%

Other health facilities practicing under the
healthcare law

0.59% 0 0.56% 2.06% 0.48% 1.72%

Armed forces hospitals 0.44% 2.97% 0.46% 3.09% 0.72% 8.62%

Long-term care hospitals 0.39% 0.99% 0.41% 0 0.24% 0

Other facilities for mental health 0.39% 0 0.26% 0 0.08% 0

Medical homes for handicapped adults 0.34% 0 0.26% 0 0.32% 0

Hospital centers specialized in mental health 0.24% 0 0.10% 0 0.08% 0

Home care facilities 0.20% 0 0.15% 0 0.16% 0

Outpatient dialysis centers 0.10% 0 0.10% 0 0 0

Home care or outpatient care for the handicapped 0.05% 0 0.05% 0 0.08% 0

The percent of different health facilities in the networks by Type 1 and Type 2 classification are given.

* Hubs are defined as facilities that comprise the top 5% of facilities by degree

** Type 1 refers to categorization of the general activities performed in the facility

*** SSR = postoperative and rehabilitation care (soins de suite et de réadaptation)

**** MCO =medical, surgery, and/or obstetrics care (médecine—chirurgie—obstétrique)
† Type 2 refers to the categorization of the facilities by hospital type or specialized services
†† Often referred to as regional hospital centers (centre hospitalier régionale)

https://doi.org/10.1371/journal.pcbi.1005666.t002
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Fig 1. Hospital rankings by degree, betweenness, and closeness across the networks.Hospitals in the HAI-specific network (HAISN)
(n = 1266), suspected-HAI network (SHAIN) (n = 1975), and general network (GN) (n = 2063) are displayed vertically and plotted against their
ranking by degree, betweenness, and closeness centrality measures (top row). Only the hospitals shared between the HAISN and GN or the SHAIN
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Overall, when comparing the degree, betweenness, and closeness, the hospital rankings did

not differ between the complete set of 1266 HAI-specific network hospitals and these same

hospitals in the general network (p = 0.81, p = 1, p = 0.99 respectively, Wilcoxon rank sum

test), or between the 1975 suspected-HAI network hospitals and the same hospitals in the gen-

eral network (p = 0.99, p = 1, p = 0.99, Wilcoxon rank sum test). For comparison and illustra-

tion purposes, we showed that random rankings for degree, betweenness, and closeness of all

hospitals differed significantly between patient specific networks and the general network

(p< 0.05 respectively, Wilcoxon rank sum test) (Fig 1).

Suspecting that the differences between rankings might exist between subsets of hospitals,

we tested the differences between rankings on an increasing subset of shared hospitals, starting

with the highest rank, adding the next ranked hospital, and testing for significant differences.

As a result, we determined the range of hospital rankings across the networks where the rank-

ings significantly differed. We defined significant differences as Wilcoxon rank sum test p-val-

ues under the 5% alpha risk which we represent as a grey area in Fig 1. Distributions of these

p-values are provided in S8 and S9 Figs. For the HAI-specific network, the range of statistically

significant degree ranking differences were observed between the 24th ranked hospital to the

1159th ranking hospital. For the suspected-HAI network, statistically significant degree rank-

ing differences were observed between the 405th ranked hospital to the 1078th ranked hospital.

For hospital rankings based on betweenness and closeness centrality measures, the hospitals

ranked with highest and lowest centralities in the general network were also the hospitals

ranked with highest and lowest centralities ranking in the HAI-specific and suspected-HAI

networks. Even though hospital rankings of all hospitals did not differ, the majority did differ

for betweenness ranks between the 33rd highest ranking to the 1183rd ranking in the HAI-spe-

cific network and the 71st highest ranking to the 1757th ranking in the suspected-HAI network

(p< 0.05, Wilcoxon rank sum test). Closeness rankings differences were observed for almost

all rankings after the first 3 rankings in the HAI-specific network and after the first 6 in the

suspected-HAI network. The lack of statistically significant differences for the highest rankings

may have been only due to insufficient power and for lowest hospital rankings due to a series

of repeating small closeness values. With this method, we highlight that differences do exist for

subsets of hospitals, but we also observe that the most highly connected hub hospitals were

consistently highly connected across the networks, irrespective of the different patient popula-

tion that connected them.

What community structures in patient sharing are observed?

To further assess patient movement patterns in the networks, we investigated how our health-

care networks displayed “community” or hospital clustering structure. We compared hospital

communities detected with two different community clustering algorithms: 1) the Greedy

algorithm [19] that selected members of the communities to maximize the density of links

between vertices as it reconstructed the network one vertex at a time and 2) the Map Equation

algorithm [20], based on network structure-induced movement using a flow-based and infor-

mation-theoretic method, detecting communities by measuring probability flows by taking

into consideration the directionality and weight of the edges. In general, we detected fewer

and GN were linked. The color gradient refers to the hospital ranking for each centrality measure and the line colors correspond to the rankings of the
hospitals in the GN. We tested the differences in rankings byWilcoxon rank sum test of an increasing subset of hospital degrees starting from the
highest rank and adding each consecutive rank and retesting. The grey area represents the range where the HAISN or SHAIN differed from the
general network hospital rankings. We chose rankings at random for the hospital degrees, betweenness, and closeness centrality measures for
comparison (bottom row). All random rankings were statistically different across the centrality measures between the HAISN and GN and the SHAIN
and GN shared hospitals.

https://doi.org/10.1371/journal.pcbi.1005666.g001
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communities with the Greedy algorithm given that it seeks to maximize modularity–a value

that measures the density of links inside communities by comparing the fraction of edges

within the communities to the fraction in a random network; a maximum value of 1 corre-

sponds to a network structure with the highest strength possible–as a result, the algorithm

searched for the repartitions that maximized the density of the edges.[21–23] The Greedy algo-

rithm considered pairwise interactions and the formation of the network whereas the Map

Equation considered the interdependence of links and the dynamics of an already formed

network.

For each network, we calculated the modularity, the number of communities, community

size, and average community clustering distance using the Greedy and Map Equation commu-

nity detection algorithms (Table 3). For each community, the pairwise clustering distance was

calculated as the average geographic distance between all pairs of hospitals of the same com-

munity in kilometers. Compared to the general healthcare network, the patient-specific net-

works had more communities. In the HAI-specific network, there were on average 35.17

hospitals per community (SD = 44.31) and 31.40 kilometers between pairs of hospitals in the

same community (SD = 25.60 km). In the larger networks, the larger community sizes resulted

in a higher average distance between community hospitals (41.60 km (SD = 34.71) and 39.01

km (SD = 45.63) for the suspected-HAI and general healthcare network respectively). For the

Map Equation-based communities, as the number of communities decreased from the HAI-

specific to suspected-HAI to the general healthcare network, the average community size and

average community distance between hospitals of the same community increased (Table 3).

Overall, the suspected-HAI network was more similar to the general network than the HAI-

specific network in terms of community structure (S5 Text).

The regional community clustering using the Greedy algorithm in the three networks are

represented in Fig 2. The hospitals in communities were geo-localized, color-coded, and

labelled across the networks according to the administrative region(s) they encompassed. We

observed that the Greedy-based communities accurately reflected the French regional admin-

istrative structure (Fig 2). The identified community clusters formed hospitals communities in

which most of the patients were shared between hospitals of the same region frequently cen-

tralized towards the hub acute-care centers, university hospital centers, and general hospital

Table 3. Community clustering distance.

General Network Suspected-HAI Network HAI-Specific Network

Map Equation algorithm

Modularity 0.764 0.716 0.698

Number of communities 132 160 193

Average community size 15.63 12.34 6.56

Average community clustering distance (km) 30.51 23.63 22.86

Greedy algorithm

Modularity 0.863 0.847 0.830

Number of communities 18 21 36

Average community size 114.61 94.05 35.17

Average community clustering distance (km) 39.01 41.60 31.40

Two community detection algorithms were used to assess community clustering for each network, both of which take into account weighted graphs. The

Greedy algorithm, developed by Clauset et al.[19] optimized modularity; however, it applied only to non-directed graphs. The Map Equation[20] algorithm

applied to directed graphs and detects communities based network structure-induced movement using a flow-based and information-theoretic method.

Average community size refers to the average number of hospitals within a detected community. For each community, the clustering distance in kilometers

was calculated as the average geographic distance between pairs of hospitals of the same community.

https://doi.org/10.1371/journal.pcbi.1005666.t003
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centers. On the other hand, the Map Equation-based communities displayed geographic com-

munity clustering at the French “departmental” or county level–the administrative division

between the administrative region and the municipalities, similar to “counties” or “districts”;

Fig 2. Regional clustering of communities detected with greedy algorithm.Network hospitals and patient trajectories of the
healthcare network in France of (a) the general healthcare network, (b) the suspected-HAI healthcare network, and (c) the HAI-specific
healthcare network. In the general healthcare network, 18 communities were detected by the community clustering algorithm. Four of
the 18 communities identified by the algorithm combine hospitals from two regions each, such that the 22 geographical regions are
mapped into 18 communities. The original 22 French metropolitan regions before they were reformed to 13 regions implemented in 2016
are shown to correspond to the 2014 data. For the HAI-specific and suspected-HAI networks, the algorithm detected a higher number of
communities (36 and 21 communities respectively). The communities, which overlapped the same regional communities in the general
network, were given the same color and the newly detected communities were given different colors.

https://doi.org/10.1371/journal.pcbi.1005666.g002
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of which 96 departmental divisions are present in continental France. The vast majority of

these departmental-level community clusters were acute-care centers followed by university

hospitals centers and long-term care facilities.

What are the patterns of patient transfer between communities?

To further understand the community structure, we constructed intercommunity networks by

combining patient flows between hospitals of the same community and across communities.

The Greedy-based intercommunity network was composed of 18 nodes representing the sum

of all patient transfers that occurred between hospitals of each community with 306 regional

transfer trajectories (Fig 3A). Out of the 22 French metropolitan regions in 2014, 4 pairs of 8

metropolitan regions were combined in this intercommunity network (Picardie and Cham-

pagne-Ardenne, Auvergne and Limousin, Aquitaine and Poitou-Charentes, and Bourgogne

and Franche-Comté). The network was completely connected. All regional communities were

connected to one another with an average of 4590 patients moving within these intercommu-

nity trajectories over the year. Certain trajectories played a larger role in patient movement,

notably Ile-de-France which admitted the largest number of patients from neighboring regions

Picardie and Champagne-Ardenne (4772 transfers) and Centre (3205 transfers) where health-

care hubs were most concentrated. The subsequent largest traffic came from the Rhone-Alpes,

the second largest regional center around the city of Lyon, which discharged patients to its

neighboring regions (1482 transfers to neighboring Bourgogne and Franche-Comté and

1342 transfers to neighboring Provence-Alps respectively). Nonetheless, the greatest amount

of transfers (93%) occurred within the communities themselves on average with up to 98%

of transfers occurring within Ile-De France for instance. Although most of these transfers

occurred within the communities, the regions remained highly interconnected and certain tra-

jectories played an important role in the interregional and nation-wide movement of patients

in France.

Fig 3. The intercommunity networks of patient transfers. (a) The intercommunity network from the 18 detected general patient
network Greedy-based communities named based on the Frenchmetropolitan regions they encompass. Edge size and color indicate the
source community and number of patients discharged. (b) The intercommunity network from 113 Map Equation communities detected in
the general network. The nodes of the networks represent the geographical center of hospitals within the shared community.

https://doi.org/10.1371/journal.pcbi.1005666.g003
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Building the intercommunity network where community affiliation was determined by the

Map Equation algorithm allowed us to consider communities based on the directionality of

patient flow, which was overlooked by the Greedy algorithm. The intercommunity network

was composed of 113 community nodes with 3215 trajectories with an average degree of 57

and an average of 2597 patients moving between these connections (Fig 3B). Map Equation-

based intercommunity communities demonstrated more comprehensive department-level

patient flow. Communities were composed of hospitals from many different departments

within and across regions; however, the majority of communities were of hospitals within the

same department where most of the patient exchange occurred. Concerning the most impor-

tant transfer routes with the highest traffic, discharged patients coming from many neighbor-

ing departments were preferentially going to hospitals in one or a few number of departments,

indicating that there was interdepartmental centralization of patient movement. For example,

a community composed of 200 hospitals from 9 Ile-de-France departments sent the largest

number of transfers (3137 patients) to 28 hospitals of which 24 were from one department

(Val-d’Oise). In exchange, this 28-hospital community sent back 2772 patients to the larger

community. Overall, patient transfers in Map-Equation communities displayed departmental

clustering, but also demonstrated asymmetric movements of patients, concentrating towards

small communities of hospitals usually in one department, illustrating the different nature of

the communities.

Patient sharing patterns and community clustering in the networks were also analyzed

based on patient age groups in which new communities were identified (S6 Text, S10–S12

Figs). Moreover, analysis of monthly temporal dynamics of the networks showed that monthly

communities may be less clustered and patients may not visit all of the hospitals each month

but they still retained the same regional patient sharing patterns seen in the annual network

(S7 Text).

Do HAI-diagnosed patients have specific transfer flows in the healthcare
network?

Having assessed the role of hospitals, hospital communities, and patient trajectories in each

network, we considered if the differences in the patient-specific networks and the general net-

works are due to the number of patient transfers that could lead to structural differences

between the specific patient population flows. We first compared the general patient network

to two sets of 1000 networks built from a subset of randomly chosen patients: in the first set we

selected the same number of patients as the HAI-specific network (21276 patients) at random

and in the second set the same number as in the suspected-HAI network (394859 patients) at

random 1000 times and reconstructed each network. Overall, both sets of random patient net-

works (RP) were smaller in size compared the general network in terms of the number of

nodes, edges, edge weight, and as a result average degree (Table 4). In addition, most of the

diameters and all average path lengths were larger in the RP networks. The diameters and path

lengths of the RP networks are skewed and not normally distributed (p< 0.001, Shapiro-Wilk

normality test). As a result, the number of patients used to reconstruct the networks did have

an impact of network characteristics.

We then compared the characteristics of the HAI-specific and suspected-HAI networks to

the RP networks with the same number of patients to assess if HAI patients modified network

structure differently than other patients. Overall, the RP networks were larger than their HAI-

specific and suspected-HAI healthcare networks analogues meaning that HAI patients were

transferred to fewer hospitals than other patients (Table 4). However despite these differences,

for some networks measures such as diameter, average path length, and global clustering
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coefficient, there was less of a difference between the RP networks and the HAI networks than

the RP networks and the general network. For example, 63% of suspected-HAI-like RP net-

works had a diameter equal to or less than that of the suspected-HAI network (64) while 1.9%

of these networks had a diameter equal to or less than that of the general network (30). The

average diameter (61.59) and the average path lengths (3.78) of these RP networks approached

more of that of the suspected-HAI network than the general network. Thus having controlled

for the number of patients and thus the size of the network, the differences observed between

the suspected-HAI and the general network diameter and average path length may have been

due to the suspected-HAI network being a subset of the healthcare network rather than due to

differences between HAI patient transfer patterns and non-HAI patient transfers.

Discussion

In this study we show that the French healthcare networks have heterogeneous patient flows,

demonstrate characteristics of small-world and scale-free networks, and are characterized with

highly centralized movement of patients towards hub hospital centers. Hub hospitals are char-

acterized as university hospitals and private hospitals in the large metropoles that dominate

patient flow. The healthcare networks displayed two-level community clustering: regional

community clustering reflecting the French administrative structure, and department or

county-level clustering. Certain patient transfer trajectories play a more important role in

transferring patients between the regional and departmental communities. Despite differences

in the patient population and size, both the HAI-specific and suspected-HAI specific health-

care networks seem to rely on the same underlying structure as that of the general healthcare

network.

Due to weak sensitivity and specificity of the PMSI database to detect nosocomial infections

with the sole ICD-10 Y95 diagnostic, the HAI-specific network is not reliable in demonstrating

Table 4. Network characteristics of the randompatient networks.

Network Topology
Measures

General
Network (GN)

Suspected-HAI
Network (SHAIN)

1000 Suspected-HAI-like
RP networks

HAI-Specific Network
(HAISN)

1000 HAI-Specific-like RP
networks

Mean %�
GN

%�
SHAIN

Mean %�
GN

%�
HAISN

Nodes 2063 1975 2032 100% 0% 1266 1583 100% 0%

Edges 50026 18812 22139 100% 0% 3722 3882 100% 0.3%

Average EdgeWeight 14.02 4.92 5.43 100% 0% 2.31 1.62 100% 100%

Average Degree 48.50 19.05 21.79 100% 0% 5.88 4.91 100% 100%

Diameter 30 64 61.59 1.9% 63.0% 47 36.27 7.0% 98.8%

Average Path Length 2.99 3.63 3.78 0% 0% 5.23 8.24 0% 0%

Global Clustering
Coefficient

0.23 0.16 0.19 100% 0% 0.08 0.09 100% 2.7%

Density 0.012 0.005 0.005 100% 0% 0.002 0.0016 100% 100%

Average Edge
Betweenness

301 852 796 0% 100% 1557 2384 0% 0%

Average Total
Closeness

1.6E-4 7.4E-5 1E-3 100% 11.5% 3.2E-5 1.7E-5 100% 100%

Comparison of the healthcare network topology measures with the average measures of 1000 simulated random patient (RP) networks that were

composed of the same number of patients as the patient-specific healthcare network. The proportion of network measures equal to and less than the

general network and the proportion equal to and less than the patient-specific network measures are shown in percent %. Note: “E” refers to the E-notation

for the scientific notation of “×10” followed by the power.

https://doi.org/10.1371/journal.pcbi.1005666.t004
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the real patient movement patterns for those infected with an HAI.[24–28] There was no con-

firmation if an infection was absent during admission and if an infection appeared during the

first 48 hours of their stay. We suspect that the degree ranking differences and the low percent

of acute-care facilities, notably private hospitals, in the HAI-specific network may be due to

differences in coding practicing among hospitals rather than the epidemiology of HAIs. The

suspected-HAI network reflects a standardized list of diagnoses used by the French HAI sur-

veillance network which has been shown to be more specific and sensitive at detecting patients

with HAIs.[28, 29] Having considered the network size differences in the patient-specific net-

works and the general network, we show that despite the differences in size of the patient pop-

ulation, both the HAI-specific and suspected-HAI specific healthcare networks seem to rely on

the same underlying structure as that of the general healthcare network. Indeed, patient-spe-

cific networks are a subset of the general patient network and are subject to the same network

dynamics.

Public university hospital centers and private hospitals in the main metropoles of France

dominate patient flow. A study conducted in the Bourgogne region of France has shown that

patient flow was centered towards the university hospital that admitted patients from the entire

region and based on the regional proximity of the patients’ residence and patients also sought

care in two of the closest main healthcare hubs for specialized care (Paris or Lyon).[30] Highly

connected hospitals may harbor more MRSA and MRSA bacteremia cases and may have the

most potential to transmit HAIs in the entire network.[12, 13, 31, 32] HAIs may spread at a

higher rate than expected at random due to the centralization of patient movement and due to

the small average number of transfers required for patients to move throughout the network.

A 2012 point prevalence study has shown that HAIs are most prevalent in cancers centers, uni-

versity hospitals, and armed forces.[33] HAI prevalence was high in the Ile-de-France region

which has many hubs, and the north-eastern regions which were not reflected by a higher

number of transfers in the patient specific.[33] Albeit some difference in prevalence and

patient transfer patterns, hubs should be proposed as targets for sentinel surveillance in addi-

tion to priority targets of HAI control strategies where HAI is most prevalent to achieve the

most effective reduction in transmission across the country.[15]

Regional community clustering patterns as a form of network connectedness are also im-

portant in the development of strategies for coordinated HAI control.[8, 13] Our regional com-

munity clustering findings are consistent with that of the healthcare network of England in

which communities tend to share more patients among clusters of hospitals in addition to

patient flows centered towards a university hospital within the community.[13] Important inter-

mediary trajectories may play a key role in the spread of HAI between hub hospitals and between

communities. A study has shown that modifying the number of patients moving between com-

munities may reduce the spread of MRSA.[34] Furthermore, we demonstrated that a two-tier

hospital community exists. Depending on the clustering algorithm used, we identified clustering

of healthcare communities at the regional level, consistent with the French administrative

regions, and department-level communities and inter-departmental hospital clusters that took

into account the directionality of patient flow. Coordinated department-level control such as

screening of patients based on the identification of key department-level cluster admissions may

be the first line of defense against HAI spread within the regions before spread reaches the hub

university hospitals. We identified differences between department-level communities of the sus-

pected-HAI and the general network that were overlooked at the regional community level. This

may be important in distinguishing hospitals with higher potential to harbor HAI patients, with

possible consequences in terms of HAI spread prediction.

Studies have proposed reducing hospital connectedness in order to reduce the risk of epi-

demic spread of HAI in networks.[13, 35] Decentralization of the healthcare system and more
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specifically human resource and specialized health services towards the regional and depart-

ment levels may help reduce the high connectedness of hubs in the metropole centers and redi-

rect patient transfers. France has moved towards regionalization strategies with the creation of

regional hospital agencies, albeit not very effective.[36, 37] In addition, the number of univer-

sity hospitals may be insufficient, below that of the UK, a country with a similar population

size. We recommend increasing the number facilities providing specialized services and dis-

tributing them at the local level to help redirect patient flow and potentially avoid large-scale

HAI dispersal.

We considered temporal dynamics, masked in a network constructed with data for the

entire year of 2014, in which observed that monthly healthcare networks were smaller and dis-

played less centralized patient flow; hence, infection control strategies–for short-term control–

should rely more on the local department-level dynamics to minimize hospital-level outbreaks

and transmission to neighboring hospitals. In the long term, regional community dynamics

may give us clues regarding the gradual propagation of specific HAI pathogens over time

assuming HAI carriage patterns follow that of patient flow patterns in the healthcare networks.

Further studies are required to assess the temporal dynamics of HAI spread in networks to

identify any potential seasonality patterns of flow and how to prevent emerging multi-drug

resistant bacteria from becoming endemic.

Our study was subject to certain limitations which should be considered. Many of the uni-

versity hospitals represent more than one public hospital or healthcare facility due to sharing

the same identification number. For example, the largest outlier hub in Paris (AP-HP) repre-

sented 39 hospitals, 12 hospitals and 2 specialized health facilities constituted Hospices Civils

de Lyon, 9 hospitals make up the university hospital of Toulouse, and 4 hospitals make up the

APHM of Marseille. Consequently, university hospital centers accommodated a larger patient

population than hospital centers or local hospitals, influencing the network characteristics,

which may have led us to overestimate the specific patient movement patterns to and from

these centers. However, the high concentration of other hospitals especially hub private hospi-

tal centers, armed forces hospitals, cancer centers, psychiatric hospitals, and private post-oper-

ative and rehabilitation centers within proximity of these public hospital hubs demonstrates

that despite this, major cities such as Paris play the most important role in connecting patients

in the national network and that the French healthcare network is a highly centralized system.

The healthcare networks did not include patient flow from private nursing homes that have

been shown to play an important role in HAI spread.[38–42] Without private nursing homes

included in our study, our results only describe the network topology of hospital patient popu-

lations which may be both younger, have shorter duration stay, and may spread HAI differ-

ently than the complete nursing home population. As a result, transmission dynamics in our

networks may over or underestimate average hospital centrality measures, the volume of

patient movements, and the speed at which HAI can spread.

By considering all HAIs as a whole, our networks and recommendations reflect action for a

broad spectrum of HAIs; however, one should consider that specific HAIs can vary in terms of

carriage and transmission patterns. In addition, recommendations based on our networks

would overlook the potential exposure to community-acquired infections, although these may

later spread in hospital settings, leading to healthcare-associated outbreaks. Future studies

should consider all potential components of patient exposure to both community-associated

and healthcare-associated infections and account for individual exposure histories to these

infections.

Despite these limitations, our study provides a first description and analysis of the health-

care networks in France. The identified characteristics and community structures may greatly

improve future inter-hospital HAI control strategies. The general patient network responds
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best to informing regional control strategies targeting key patient trajectories and hub hospital

centers. We show that the scale-free structure, the number of communities, and their distribu-

tion over the country remain qualitatively similar across all networks and that patient-specific

networks rely on the underlying structure of the general patient network. Future studies

should take into consideration network topology in the prediction of HAI spread and should

consider the potential impact of different community definitions for multi-level infection con-

trol strategies.

Methods

Materials

The Programme de Médicalisation des Systèmes d’information (PMSI) database, a compre-

hensive French medico-administrative database of hospital activity and patient discharge

information, is used to construct the hospital networks.[24, 25] The PMSI database has been

used for epidemiological and medical research regarding HAIs.[24–28, 43] A lack of sufficient

specificity and sensitivity of the PMSI to detect HAIs is highlighted in these studies. Compari-

son between laboratory data and hospital data shows that the PMSI has limited coverage of

detecting nosocomial conditions.[25–28]

Hence, Gerbier et al. [28] use patient discharge summaries from the PMSI to detect nosoco-

mial infections in the University Hospital of Lyon in 2006 and 2007 for the identification of

HAIs in surgery, intensive care and obstetric units. They compare the PMSI data to a gold

standard by systematic review of patient files for those classified under surgery, the Centre de

Coordination de la Lutte contre les Infections Nosocomiales (CClin) Southwest surveillance

network for ICU patients, and a combination of surveillance data from CClin and patient

information data for obstetrics. The list of ICD-10 codes related to nosocomial conditions,

which we entitle “suspected-HAIs,” can be found in S1 Annex. Gerbier et al. find a sensitivity

and specificity for case identification of nosocomial infections to be 26.3% (95% CI 13.2–42.1)

and 99.5% (95% 98.8–100.0) for the identification of surgical site infections (78.9% and 65.7%

by expanding the number of diagnostic codes) respectively; 48.8% (95% CI 42.6–55.0) and

78.4% (95% CI 76.1–80.1) in intensive care respectively, and 42.9% (95% CI 25.0–60.7) and

87.3% (95% CI 85.2–89.3) for identification of postpartum infections respectively.[28]

Inclusion and exclusion criteria

Using patient transfer data from 2014, three healthcare networks are reconstructed based on

the following criteria:

▪ All patient transfers (non-specific diagnoses)

▪ Patient transfers with the ICD-10 code of Y95 (for nosocomial conditions or HAI) as their

principal, related, or associated diagnosis in the medical, surgery, obstetric hospitals

(MCO) and postoperative and rehabilitation centers (SSR)

▪ Patient transfers identified with all possible and suspected cases of HAIs in the surgical,

intensive care, and obstetric wards in 2014, by referencing the diagnoses with known speci-

ficities and sensitivities listed in Gerbier et al. publication[28] with supplementary informa-

tion from other publications.[24–26]

Only direct transfers of patients who are discharged from a hospital and sent to another in

another jurisdiction (“transfer”) or those who are discharged from one medical unit and move

to another in the same hospital jurisdiction (“mutation”) are included. The hospital discharge

summaries reflected the overall hospital stay of patients and a single diagnosis made them
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eligible without specification if it occurred during admission or at discharge. Patients who are

discharged to their residence or deceased in a hospital are excluded. Patients hospitalized in

non-continental European departments are also excluded.

Construction of patient transfer network matrices

First, the networks of hospitals and healthcare centers are re-built in silico using patient trans-

fer data to model the potential movement of patients with HAIs from one hospital to another.

In the PMSI database, each patient discharge summary contains information on the hospital

facility of stay. Each hospital facility is identified by its unique FINESS number (Fichier

National des Etablissements Sanitaires et Sociaux).[44] For this study, the FINESS and stay

number of each patient discharge summary are used to merge two PMSI databases: one for

acute-care and one for long-term care hospitals. Each patient stay is also numbered by order of

stay across different hospitals. To create the logical sequence of patient movement, we sort

each discharge summary: by patient ID and patient stay number for all observations.

The adjacency matrix [21], a graph of N nodes and E edges can be described by its’ N × N

adjacency matrix A defined as:

Aij ¼

(

¼ 1 if i and j are connected

¼ 0 otherwise

In our patient transfer network, nodes (N) are defined as hospitals and edges (E) as the patient tra-

jectories that connect hospitals. We computed origin i and target j hospitals for each patient stay

by assessing if for each discharge the patient entered the hospital i as a transfer or mutation and

left hospital i as a transfer or mutation. The same is computed for each j hospital. Using the

iGraph package for R statistical software, we create the adjacency matrix of all i and j hospitals,

including i and j if i did not transfer out any patients but received them and vice versa for j.[45]

We also compute the number of patients moving between hospitals i and j, as wij. The sum

of the edge weights of the adjacent edges, the weight strength, is given by:

swi ¼
X

j2GðiÞ

wij

in which Γ(i) is the set of neighbor hospitals of i.[21] Edge weights represent the number of

patients within the trajectories between two healthcare facilities.

To identify the most important hospitals of a network, a series of centrality measures are

calculated. The degree of a hospital, k, is the number of hospitals one hospital is connected to

through its patient trajectories [21] defined as:

ki ¼
X

j

Aij

The average degree of a network[21] is given by:

hki ¼
1

N

X

i

ki ¼
2E

N

In addition, Aij is a directed graph in which the directionality of patient transfers from one

hospital to another is taken into account. Consequently, we can calculate the indegree (deg-)

and outdegree (deg+) of any given node in which the degree sum formula is given by:
X

n2N

degþðnÞ ¼
X

n2N

deg�ðnÞ ¼ jEj
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Betweenness centrality measures the importance of hospital acting as an intermediary between

other hospitals defined as:

g ið Þ ¼
X

s6¼t

sstðiÞ

sst

Where betweenness centrality g(i) is equal to the sum of the σst the number of shortest paths

going from s to t through hospital imeasuring the importance of hospital i to the organization

of flow in the network.[21] The same measure is calculated for patient trajectories defined as:

g eð Þ ¼
X

e2E

sstðeÞ

sst

where edge betweenness centrality g(e) is equal to the sum of the σst the number of shortest

paths going from s to t through edge emeasuring the importance of edge e to the organization

of flow in the network.[21]

Community clustering

Two community detection algorithms are used to assess community clustering for each net-

work, which both take into account weighted graphs.[45] A common measure of the quality of

partitions of a network into communities of densely connected nodes is modularity. Modularity

is a scalar value between the vales of -1 and 1 that measures the density of links inside communi-

ties compared to links between them.[21, 22] The modularity and different communities of our

network are defined using a community detection algorithm. The Greedy algorithm developed

by Clauset et al.[19] optimizes modularity as the algorithm relies on network formation and as a

result, computes a smaller range of communities as modularity approaches 1; however, the

Greedy algorithm does not take into account edge directionality and we detect communities for

undirected graphs of the healthcare networks. On the other hand, the Map equation algorithm

developed by Rosvall et al. detects communities based on patterns of flow and takes into account

edge directionality and the directed graphs are assessed.[20] This algorithm detects communi-

ties based on network structure and how it influences the system’s behavior.

Based on the community partitioning for each network, the mean geographic distance

between hospitals of the same community is measured. To geo-localize hospitals, we used public

government data on French hospital facilities and postal code addresses (https://www.data.gouv.

fr/). Using an online batch geocoding server (http://www.findlatitudeandlongitude.com/), the

hospitals’ addresses were converted to latitude and longitude coordinates. A distance matrix was

calculated using the haversine formula to measure great-circle distances between all hospitals.[46]

Two intercommunity matrices were developed to assess patient sharing between different

communities 1) Greedy algorithm-based communities 2) Map Equation-based communities.

Based on the algorithm, each hospital node is assigned a community number. A matrix sum-

ming the individual hospitals transfers for hospitals that share the same community is con-

structed and converted into a directed graph. In addition, the mean latitude and longitude are

calculated for each community from individual geocodes of the member hospitals. For the

Map Equation intercommunity network, the Greedy algorithm is applied to identify the num-

ber of communities present when modularity is maximized.

Ranking of hospitals

Hospitals were ranked by their degree, betweenness, and closeness centrality measures for each

network. When the centrality measures were equal, we replaced the rankings by the mean
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rankings. We tested the differences between rankings on an increasing subset of shared hospitals

with theWilcoxon rank sum test. The test was conducted as follows: starting with the highest

ranked hospital in the general network, adding the next ranked general network hospital, and test-

ing for significant differences between the general network rank and either the HAI-specific or

suspected-HAI network rank of the same hospital until we compared all shared hospitals. As a

result, we determined the thresholds where hospital rankings across the networks start to signifi-

cantly differ which was defined asWilcoxon rank sum test p-values under the 5% alpha risk.

Random patient networks

To compare the networks between each other, we built 1000 random patients networks from the

general network. We selected the same number of patients as either the HAI (21276 patients) or

suspected HAI networks (394859 patients) from the general patient network at random and

reconstructed these networks using their hospital discharge summaries. We calculated various

network measures and the proportion of random patient networks that had values greater than,

equal to, or less than the general patient network and the respective patient-specific networks.
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transfers and number of hospital connections were highly positively correlated (r = 0.95). The

best-fitting power law model was s(k) = k1.36 (dashed line). The curves for s(k) = k (dotted

line) and s(k) = 10�k (dash-dot line) are shown for comparison.

(PDF)

S3 Fig. Average strength and degree distribution of the HAI-specific network. Distribution

of hospital connections k of each hospital in the HAI-specific network and the average strength

s(k) or number of patient transfers as a function of degree. The number of patient transfers

and number of hospital connections were highly positively correlated (r = 0.99). The best-fit-

ting power law model was s(k) = k1.26 (dashed line). The curves for s(k) = k (dotted line) and

s(k) = 10�k (dash-dot line) are shown for comparison.

(PDF)

S4 Fig. Cumulative distribution functions and fit for degree and strength distribution of the

general, suspected-HAI, and HAI-specific network. Cumulative distribution functions of degree

k (top left) and strength s (bottom left) for the general network, suspected-HAI network (top cen-

ter, bottom center), and HAI-specific network (top right, bottom right). Fitted power-law (red),

log-normal (green), and Poisson (blue) distributions are shown when: x-min for degree = 77 and

strength = 1191 in the general network; x-min for degree = 20 and strength = 119 in the sus-

pected-HAI network; and x-min for degree = 7 and strength = 32 in the HAI-specific network.

(PDF)

S5 Fig. Cumulative distribution functions and fit for indegree and instrength distribution

of the general, suspected-HAI, and HAI-specific network. The cumulative distribution func-

tions of k- indegree for the general network (top left) and s- instrength (bottom left), sus-

pected-HAI networks (top center, bottom center), and HAI-specific network (top right,

bottom right). Fitted power-law (red), log-normal (green), and Poisson (blue) distributions

are shown when: x-min for indegree = 36 and instrength = 698 in the general network; x-min

for indegree = 13 and instrength = 131 in the suspected-HAI network; and x-min for inde-

gree = 5 and instrength = 18 in the HAI-specific network. Power-law and log-normal had

good fit for indegree and instrength in the three networks (KS-statistic p-values> 0.15) with

the exception of log-normal distribution of indegree in the general and suspected-HAI net-

work (KS-statistic p-value< 0.04). Poisson distribution was not a good fit for indegree and

instrength in all networks (KS-statistic p-value< 0.0001).

(PDF)

S6 Fig. Cumulative distribution functions and fit for outdegree and outstrength distribu-

tion of the general, suspected-HAI, and HAI-specific network. The cumulative distribution

functions of k+ outdegree for the general network (top left) and s+ outstrength (bottom left),

suspected-HAI networks (top center, bottom center), and HAI-specific network (top right,

bottom right). Fitted power-law (red), log-normal (green), and Poisson (blue) distributions

are shown when: x-min for outdegree = 101 and outstrength = 1102 in the general network; x-

min for outdegree = 27 and outstrength = 70 in the suspected-HAI network; and x-min for

outdegree = 7 and outstrength = 3 in the HAI-specific network. Only power-law distribution

had a good fit for both outdegree and outstrength (KS-statistic p-values> 0.41) while log-nor-

mal distribution was only a good fit for the HAI-specific network (KS-statistic p-value = 0.15).

(PDF)

S7 Fig. Shortest path length distributions in the networks. The length of the shortest paths

or steps between any two nodes in the networks are calculated and plotted by their frequency.

(PDF)
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S8 Fig. Distributions of p-values of hospital rank subsets using the Wilcoxon rank sum test

in the HAI-specific network compared to the general network hospital ranks.

(PDF)

S9 Fig. Distributions of p-values of hospital rank subsets using the Wilcoxon rank sum test

in the suspected-HAI network compared to the general network hospital ranks.

(PDF)

S10 Fig. Healthcare networks by age for all patients.Healthcare networks for all transferred

patients (a) aged 18 and younger (b) aged 18 to 60 (c) older than 60 years old. Greedy commu-

nities were colored by the corresponding general network community regions with additional

community color if not present for (a) 23 communities in which 3 were black (<5 hospitals)

(b) 17 communities in which 1 was black (<5 hospitals) (c) 29 communities in which 14 were

black (<5 hospitals).

(PDF)

S11 Fig. Healthcare networks by age for suspected-HAI patients.Healthcare networks for

all transferred patients (a) aged 18 and younger (b) aged 18 to 60 (c) older than 60 years old.

We detected a total number of Greedy-based communities for each age network (a) 22 total

and 19 with over 2 hospitals from a network of 1894 hospitals and 11234 edges (b) 30 total

with 17 with over 2 hospitals from a network of 1559 hospitals and 5423 edges (c) 29 total with

14 with over 2 hospitals per community from a network of 218 hospitals and 318 trajectories.

(PDF)

S12 Fig. Healthcare networks by age for HAI-specific patients.Healthcare networks for all

transferred patients (a) aged 18 and younger (b) aged 18 to 60 (c) older than 60 years old. Net-

work communities are detected using the Greedy algorithm and colored according to commu-

nity membership for (a) 1143 hospitals and 2260 edges with 50 total communities with only 28

composed of more than 5 hospitals (b) 603 hospitals and 593 edges with 41 total communities

and 19 with over 5 hospitals (c) 44 hospitals and 33 edges, 18 total communities, 2 communi-

ties with more than 5 hospitals, and 9 communities with more than 2 hospitals.

(PDF)

S1 Table. Network characteristics of the Erdos-Renyi random networks. Comparison of the

healthcare network topology measures with the average measures of 100 simulated Erdos-

Renyi (ER) networks that are parameterized with same number of nodes, edges, and Poisson-

distributed average edge weight. For each measure, a t-test is conducted to compare the differ-

ence between the health network value and the average values of the ER networks with given

95% confidence intervals and p-values.

(PDF)
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29. Apport du système d’information médicalisé dans la surveillance en hygiène hospitalière. CClin Sud-
Ouest, 2009.

30. Nuemi G, Afonso F, Roussot A, Billard L, Cottenet J, Combier E, et al. Classification of hospital path-
ways in the management of cancer: application to lung cancer in the region of burgundy. Cancer epide-
miology. 2013; 37(5):688–96. Epub 07/16. https://doi.org/10.1016/j.canep.2013.06.007 10.1016/j.
canep.2013.06.007. Epub 2013 Jul 10. PMID: 23850083

31. Chase-Topping CLG, Bram ADvB, Oliver B, Chris R, Thibaud P, Laura I, et al. Not just a matter of size:
a hospital-level risk factor analysis of MRSA bacteraemia in Scotland. BMC Infectious Diseases. 2016;
16(1):222. https://doi.org/10.1186/s12879-016-1563-6 PMID: 27209082

32. Lee BY, McGlone SM,Wong KF, Yilmaz SL, Avery TR, Song Y, et al. Modeling the spread of methicil-
lin-resistant Staphylococcus aureus (MRSA) outbreaks throughout the hospitals in Orange County, Cal-
ifornia. Infection Control and Hospital Epidemiology. 2011; 32(6):562–72. https://doi.org/10.1086/
660014 PMID: 21558768
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santé, France, mai-juin 2012. Résultats. Saint-Maurice: Institut de veille sanitaire, 2013.

Spread of HAIs: A comparison of healthcare networks

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005666 August 24, 2017 21 / 22

https://doi.org/10.1073/pnas.1308062111
http://www.ncbi.nlm.nih.gov/pubmed/24469791
https://doi.org/10.1073/pnas.0409523102
http://www.ncbi.nlm.nih.gov/pubmed/15677330
https://doi.org/10.1097/QCO.0b013e3283462362
http://www.ncbi.nlm.nih.gov/pubmed/21467930
http://www.aphp.fr/nous-connaitre
https://doi.org/10.1103/PhysRevE.72.026132
https://doi.org/10.1103/PhysRevE.72.026132
http://www.ncbi.nlm.nih.gov/pubmed/16196669
https://doi.org/10.1073/pnas.0706851105
http://www.ncbi.nlm.nih.gov/pubmed/18216267
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526
https://doi.org/10.1017/S0950268813000253
http://www.ncbi.nlm.nih.gov/pubmed/23445665
https://doi.org/10.1016/s0399-077x(02)00005-7
https://doi.org/10.1016/s0399-077x(02)00005-7
https://doi.org/10.1016/j.jhin.2011.05.006
http://www.ncbi.nlm.nih.gov/pubmed/21742413
https://doi.org/10.1016/S0399-077X(05)80551-7
https://doi.org/10.1016/j.respe.2010.08.003
https://doi.org/10.1016/j.respe.2010.08.003
http://www.ncbi.nlm.nih.gov/pubmed/21237594
https://doi.org/10.1016/j.canep.2013.06.007
http://www.ncbi.nlm.nih.gov/pubmed/23850083
https://doi.org/10.1186/s12879-016-1563-6
http://www.ncbi.nlm.nih.gov/pubmed/27209082
https://doi.org/10.1086/660014
https://doi.org/10.1086/660014
http://www.ncbi.nlm.nih.gov/pubmed/21558768
https://doi.org/10.1371/journal.pcbi.1005666


34. Donker T, Wallinga J, Grundmann H. Dispersal of antibiotic-resistant high-risk clones by hospital net-
works: changing the patient direction can make all the difference. Journal of Hospital Infection. 2014; 86
(1):34–41. https://doi.org/10.1016/j.jhin.2013.06.021 PMID: 24075292

35. NewmanMEJ. The spread of epidemic disease on networks. 2002. 10.1103/PhysRevE.66.016128.

36. Decentralization in health care. Strategies and outcomes. 2007.
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