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Introduction 

The invasion of ecosystems by exotic organisms 

represents a problem of increasing importance; in- 

vaders are conspicuous among the flora and fauna 

of most ecosystems (Mooney and Drake 1986), and 

in many instances these invaders are major pest spe- 

cies (Wilson and Graham 1986). Since Elton's clas- 

sic treatise (Elton 1958), there has been great in- 

terest in the conditions that make habitats invasible 

(Mooney and Drake 1986), in the life histories and 

genetics of invaders (Baker and Stebbins 1965), and 

in the ecological impact of invasions (Mooney and 

Drake 1986). 

Successful invasion involves a number of stages, 

including initial introduction; establishment in the 

new habitat; and range expansion. When an in- 

vader is a pest species or alternatively, a beneficial 

species purposely introduced, it would be extremely 

useful to be able to predict its rate of geographic 

spread after establishment. In order to make such 

predictions, one must answer several basic ques- 

tions: 

(i) Does range expansion occur primarily as the 

sum of many short steps, or does it reflect a few 

great leaps? 

(ii) Do expanding populations achieve an asymp- 

totic (i.e., constant) rate of spread; and if so, how 

rapidly? 

(iii) Can the asymptotic rate of spread of a popu- 

lation, which is observable only over a large geo- 

graphic area, be related to locally measured demo- 

graphic and behavioral parameters? 

(iv) How sensitive is spread to variation in 

habitat? 

Our approach to these questions has been to fo- 

cus on three particularly well-documented exam- 

ples of successful invasions: the muskrat (Ondatra 

zibethica) invasions of Europe, the cereal leaf bee- 

tle (Oulema melanopus) invasion of North Ameri- 

ca, and the small cabbage white butterfly (Pieris 

(= Artogeia) rapae) invasion of North America. 

Elsewhere (Andow et al. 1990) we use these case 

studies to probe for statistical patterns regarding 

range expansions, and to quantify the variation in 

spread among habitats. Here we ask whether 

microscale observations of individual movement 

and demography can be used to predict the rate at 

which an invader's range will expand on a geo- 

graphical scale. The diffusion model that we apply 

to this problem is an explicit attempt to address 

questions (i)-(iii) above: it implies that range ex- 

pansion is a result of short steps that lead to an 

asymptotic rate of spread, which can be calculated 

from microscale observations. 

Theoretical predictions 

Apart from some early work on epidemics (Brown- 

lee 191 l), the first mathematical descriptions of 

spread originated with population geneticists (Fish- 

er 1937; Kolmogorov et al. 1937; Dobzhansky and 

Wright 1943, 1947). In the ecological literature, the 
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major early contributions were Skellam (1951) and 

Kierstead and Slobodkin (1953). These seminal 

models were based on particular cases of the diffu- 

sion and growth equation: 

- aN = f(N) + D [ - a2N +$] (1) 
at ax2 

in which N=N(x, y, t) denotes local population 

density (organismdarea) at time t and spatial coor- 

dinates x, y. D is the coefficient of diffusion, and 

f(N) is a functi-n describing net population change 

from birth and death (Skellam 1973). 

Diffusion models have the advantages of being 

testable and easily quantifiable; moreover, in many 

cases they provide remarkably good descriptions of 

animal movement (Kareiva 1983; Okubo 1980). 

The philosophy underlying their application to bio- 

logical populations is that the patterns of spread 

observed at the population level do not depend on 

the intricate details of how individual organisms 

move, but rather can be deduced from certain 

statistical properties of ensembles of organisms; 

similar assumptions underlie the theory of molecu- 

lar diffusion and heat flow. The use of such simplis- 

tic models can be criticized on the grounds that the 

underlying assumptions of independent and ran- 

dom movements do not apply to organisms; but the 

same objections could be raised to the application 

of diffusion equations to the flow of heat. We think 

the best way of evaluLting diffusion models is to as- 

sess how useful they are. If these simple models can 

explain and describe observed population-level pat- 

terns while neglecting the detail of individual be- 

havior, then the fact that organisms violate some of 

the theory’s assumptions is irrelevant at the macro- 

scopic level of description. Indeed, the philosophy 

behind the use of these models is that they allow us 

to focus on the key processes underlying patterns, 

and to ignore noise. To that end, in this paper we 

determine the adequacy of (1) in explaining and 

predicting the observed spread of species after they 

have entered new habitats. In order to do this we 

consider a colonizing population of size N =No 

with all individuals initially located at (x, y) = (0, 

0), and then use (1) to determine how rapidly the 

growing population will spread from (0, 0). 

The simplest version of (1) to which this analysis 

can be applied assumes a homogeneous, unstruc- 

tured population growing exponentially and 

spreading in a one-dimensional, uniform environ- 

ment: 

aN a2N 
- = D- + a N  
at ax2 

where a is the intrinsic rate of population growth. 

This model predicts that the population will have an 

infinite speed of propagation, with some individu- 

als instantaneously moving an infinite distance 

from the point of introduction. This nonsense, 

which also applies when the model is used to 

describe the flux of heat, arises because the diffu- 

sion approximation is not good at distances far 

from the release point. However, if we assume 

that there is some threshold level, N = N,, below 

which the population cannot be detected, then 

(2) predicts that that threshold will propagate as 

a front. Indeed, we can extend the logic to the 

two-dimensional version of (2), and explicitly pre- 

dict the average rate of spread for that advancing 

front. In particular, the velocity (distancekime) 

for this advancing front, denoted V,, at time t is 

given by: 

V, = [4aD + (4D/t) In ( N , / ~ N , ) ] 1 / 2  (3) 

where D, a,  N,, and No are as defined above. This 

result makes sense only if the bracketed term is 

positive (which corresponds to the population being 

large enough or having grown enough that the 

threshold density for detection is surpassed). For 

large time, (3) asymptotically approaches: 

v, = (4) 

Remarkably, this asymptotic rate of spread is in- 

dependent of the threshold density required for de- 

tection. 

Equation (2) can be generalized to include non- 

linear forms of f(N). Provided f(N) is of a biologi- 

cally reasonable form, one obtains analogous 
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results to (4). More precisely, one does not need to 

rely on the notion of a detection threshold: true ad- 

vancing fronts form, with asymptotic speeds given 

by (4), provided CY is defined as the per capita 

growth rate when N is small. This important gener- 

al result was stated by Fisher (1937) and confirmed 

mathematically by Kolmogorov et al. (1937). The 

mathematical details concerning exactly which 

forms of f(N) lead to asymptotic spread at the rate 

given by (4), and which initial distributions of or- 

ganisms will converge to an asymptotic front, may 

be found in Bramson (1983). Less detailed but more 

accessible discussion may be found in Okubo (1980) 

or Levin (1986). The extension of these analyses to 

two-dimensional habitats (Eq. 1) is discussed by 

Skellam (1951) and Okubo (1980). 

The beauty of (2) and its extensions is that they 

lead to clear-cut predictions based on extrapola- 

tions of empirical data across scales of space and 

time. For a two-dimensional homogeneous habitat, 

the main qualitative prediction is that the radius of 

a species range should asymptotically increase 

linearly with time. More precisely, the slope of this 

asymptotic linear increase should be m). Ap- 

plication of this model in complex habitats is com- 

plicated by environmental heterogeneity and the 

fact that spread is not radial; but it provides a start- 

ing point. 

Tests of the theoretical predictions 

Lubina and Levin (1988) provide a detailed analysis 

of the application of this approach to the California 

sea otter, a case in which spread is essentially one- 

dimensional since the otters stay relatively close to 

the shoreline. Much earlier, Skellam also applied 

diffusion models to data on the spread of a mam- 

mal species, the muskrat in Europe (Skellam 1951). 

But both of these studies lacked microscale data on 

the demography and movements of individual 

animals; for that reason they could only test the 

qualitative prediction that the rate of spread should 

be asymptotically linear, and to try to use macro- 

scale patterns to determine the processes that must 

be operating on smaller scales. In contrast, the 

three case studies we selected included sufficient 

microscale data to predict quantitatively a rate of 

spread from short-term, local observations of in- 

dividual organisms. However, we still faced the 

problem of measuring the observed rate of spread. 

The pertinent data come in the form of range maps, 

which are based on isolated sightings of individual 

animals and consequently show boundaries that are 

highly erratic. This means there is no obvious single 

number that represents the radius of the range. 

Two-dimensional stochastic versions of (1) can be 

introduced, but do not resolve the problem of 

quantifying rates of spread. In addition, the 

habitats into which species expand may include 

major topographic irregularities such as mountain 

ranges and large bodies of water. Under these cir- 

cumstances, it does not make sense to calculate a 

rate of spread as though the environment were uni- 

form. Any practical test of simple range expansion 

models must be sensitive to these complications. 

One approach is to modify (1) so that it explicitly 

includes parameters that vary in space, and then to 

estimate this variation from spatially structured 

data (Dobzhansky et al. 1979); unfortunately, the 

data are not adequate for this approach (Banks et 

al. 1985). The alternative approach that we adopted 

is to develop an approximate description using 

averaged parameters, and to hope that the model 

predictions continue to apply. For those species in- 

vading relatively homogeneous environments, we 

obtained these averages simply by dividing their 

range into eight sectors and measuring the radius of 

spread in each sector separately. For successive 

points in time we then calculated the average radius 

as the root mean squared radius (denoted rs) over 

the eight sectors. Since the invasions occurred in 

conspicuously heterogeneous regions, we divided 

the spread records into sectors whose boundaries 

reflected the major irregularities (e.g., rivers, 

mountain ranges, etc.). To extract an average 

radius for each geographic sector we took the root 

mean square radius of the maximum and minimum 

radial distances of the pertinent sector. A detailed 

discussion of our protocol for measuring spread by 

using range maps can be found in (Andow et al. 

1989), where we treat the three species discussed in 

this paper as well as rice water weevil, for which 

adequate microscale information is not available to 
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Table 1. Test of the linear spread hypothesis for range expansion by muskrat, cereal leaf beetle, and small cabbage white butterfly. The 

linear spread hypothesis predicts that average acceleration of spread is zero. Means with standard errors given. 

df Average Average 

spread rate acceleration of spread 

(km/yr) (km/yr2) 

Muskrat 

Prague, Czechoslovakia 

S 

ESE 

NW 

N 

W 

France 

Eure 

Ardennes 

Belfort 

Finland 

Pohj 

Piek 

Koke 

Unsi 

Cereal Leaf Beetle 

Michigan, USA 

NE 

ON 

VI 

TN 

IL 

WI 

Small Cabbage White 

Quebec City, Canada 

SL 

Q 
NE 

S 

GP 

GL 

South 

North 

South 

West 

North 

East 

West 

West 

New York City, USA 

South Carolina, USA 

Florida, USA 

Indiana, USA 

Chicago, USA 

20 

22 

23 

19 

14 

2 

2 

2 

2 

2 

1 

1 

5 

4 

5 

5 

4 

5 

13 

4 

6 

16 

17 

17 

2 

3 

4 

3 

2 

3 

2 

2 

21.3 f 0.3**** 

25.4 f OX**** 

18.7 f 0.5**** 

11.5 t 0.5**** 

10.3 f 0.4**** 

4.6 t 0.8* 

0.9 f 0.3NS 

3.0 t 0.2** 

4.0 f 0.6* 

5.7 f 0.4** 

6.1 t 0.1** 

3.5 f 1.4Ns 

89.5 t 2.7**** 

89.2 t 3.8**** 

75.8 t 4.8**** 

44.8 t 2.9**** 

48.6 t 2.0*** 

26.5 f 2.3*** 

73.7 f 6.2**** 

42.6 f 3.0*** 

65.2 t 6.1**** 

169.6 f 13.4**** 

137.8 t 6.6**** 

145.4 t 8.7**** 

153.0 -1- 25.5* 

42.5 f 2.4*** 

27.4 f 3.9** 

74.0 t 15.9* 

97.0 * 23.9NS 

14.7 -1- 1.7** 

79.0 f 21.3NS 

91.5 t 24.gNS 

0.27 t 0.36NS 

0.51 f 0.39NS 

-0.05 t 0.23NS 

-0.25 f 0.25NS 

0.04 -1- 0.09NS 

0.23 f 0.53NS 

0.03 * 0.16NS 

0.10 f 0.09NS 

-0.58 f 0.09Ns 

-0.50 t 0.04* 

-0.67 f 1.82Ns 

45.52 f 24.15NS 

-1.08 f 3.0SNS 

-1.92 t 1.33” 

45.03 f 26.25NS 

-2.51 t 0.94Ns 

7.31 f 1.48*** 

1.66 f 1.07Ns 

10.89 t 3.30* 

18.53 f 3.35**** 

6.85 f 2.10** 

10.97 t 1.84**** 

63.00 f 31.03NS 

8.00 f 1.73* 

34.50 f 12.82Ns 

-1.30 f 1.84NS 

52.00 f 14.25NS 

-0.99 t 0.74Ns 

41.50 f 17.05NS 

50.00 f 17.39NS 

NS Not statistically significantly different from zero 

* p < 0.05 *** p < 0.001 

** p < 0.01 **** p < 0.0001 
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ods (on the order of days), Sawyer and Haynes 

(1985) estimated a diffusion coefficient of 52,000 

cm2/min. We translated this coefficient into an an- 

nual rate by assuming 10 hours of beetle activity per 

day and 120 days of activity per year, which implies 

a coefficient of 0.4 km2/yr. Intrinsic rates of in- 

crease for cereal leaf beetles were obtained from 

rates of population growth observed after the bee- 

tles had just colonized wheat fields; these rates 

ranged between 1.6 and 1.9/yr. When equation (4) 

is used to extrapolate these microscale beetle data 

into macroscale predictions, the theory is wrong by 

two orders of magnitude (see Table 2). The cereal 

leaf beetle is spreading much faster than the 

microscale data suggest should be possible. It is un- 

likely that this discrepancy is due to erroneously 

low microscale estimates: rates of population 

growth in wheat fields and rates of movement 

where there in no wheat should be overestimates of 

the averages for this species. We interpret the 

failure of (4) to predict cereal leaf beetle spread as 

an indication that the macroscale spread is 

governed by processes not observable on the 

microscale used by Sawyer and Haynes (1985). 

Such processes could be long-range movement on 

air currents and hitchhiking on human transport. 

The final invasion we examined involves the 

small cabbage white butterfly, Pieris rapae. This 

butterfly has invaded North America several times 

(Scudder 1887; Shapiro 1974); here we examine its 

spread from Quebec, New York City, Charleston, 

Florida, Chicago, and Indiana. All data were taken 

from Scudder’s detailed account of Pieris rapae 

spread (Scudder 1887), and only spread from Que- 

bec was broken into sectors (Fig. 5). We estimated 

diffusion coefficients for these butterflies from 

data collected by Jones et al. (Jones et al. 1980) on 

the daily movements of marked females. Mean dis- 

placements for butterflies ranged between .5 and 

1.2 km/day, which corresponds to diffusion coeffi- 

cients between 0.16 and 0.92 km2day. To convert 

these daily rates into annual rates, we multiplied by 

life expectancy for adults (the caterpillar stage is 

sedentary), which ranges from 10-20 days, and by 

the number of generations per year, which ranges 

from 3-7 depending on locale (Harcourt 1966; 

Parker 1970). The resulting yearly diffusion coeffi- 

cients are between 4.8 and 129 km2/yr. We ob- 

tained estimates of intrinsic rate of increase by com- 

bining egg-to-adult survivorship (5 - 15070, Parker 

1970), number of female eggs per female (100-600, 

Harcourt 1966; Baker 1968; Suzuki 1978), and 

number of generations per year. Performing these 

calculations, we found that a for Pieris rapae in 

North America could range between 9 and 31.5/yr. 

Once again, substituting our microscale informa- 

tion into (4), we calculated an expected range of 

spread rates for these butterflies and contrasted the 

prediction with the observed range in spread rates 

(Table 2). The ranges agree surprisingly well 

(13-127 versus 15-170 km/yr) even to the extent 

that where we would predict higher spread rates be- 

cause of more generations (i.e., more southern 

locales), we indeed observed the higher spread 

rates. 

Discussion 

In this paper we have examined the usefulness of 

diffusion models as aids to understanding observed 

patterns of spread, and as devices for prediction. 

Our central thesis has been that the principal objec- 

tive of any modeling effort is to abstract those de- 

tails that are relevant to patterns on particular 

scales of investigation, separating signal from noise 

by suppressing unnecessary detail. Thus, the ade- 

quacy of a particular model can be evaluated only 

relevant to the purposes at hand, and to particular 

scales of investigation. 

When this philosophy is applied to models of 

spread, it is clear that the most useful models are 

not necessarily those that retain great detail at the 

level of the individual behavior. Thus, even for 

highly intelligent animals that make extensive use 

of environmental cues in navigating, the population 

level patterns may be as well described by models 

that assume individuals move randomly as by 

models that include complex navigational behavior 

(especially if movements are not correlated among 

individuals). When simple models adequately cap- 

ture population spread even though complex be- 

haviors are known to be involved, we follow the 

principle of parsimony; that is, the most appropri- 
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Tab/e 2. Comparing observed rates of spread to the rates predicted by a population growth and diffusion model. 

Invading species Finite rate Diffusion Predicted rates Observed rates 

of increase coefficients of spread (km/yr) of spread (km/yr) 

(yr-9 (km*/yr) 

Oulema melanopus 1.6-1.9 0.4 1.6- 1.7 26.5-89.5 

Pieris rapae 9-31.5 4.8-129 13-127 14.7-170 

Ondatra zibethica 0.2- 1.1 51.2-230.1 6.4-31.8 0.9-25.4 

order to focus on essential features. The diffusion 

model is an approximation. It must be understood 

that its predictions can be valid only across a range 

of scales, and that it is not possible apriori to know 

what those scales will be, unless fairly complete 

knowledge is available concerning all modes of 

transport of individuals. Across the range of scales 

where the model applies, it can represent a powerful 

tool for interpreting observed patterns of spread. 

What are the future extensions of this approach? 

For heterogeneous landscapes, detailed simulation 

models have proven useful adjuncts to the basic 

theory, as in Murray’s discussion of the potential 

spread of rabies in England (Murray 1986, 1987). 

Two-phase models such as those implicit in Molli- 

son’s scheme (Mollison 1977) or others that take 

into account higher-order moments in the move- 

ments of individuals, seem to hold promise when 

knowledge is available on two scales of movement. 

For example, for diseases such as influenza, it 

seems reasonable to use models such as those of 

Rvachev (see Rvachev and Longini 1985) to explain 

inter-city transport, and couple them with diffusion 

models to describe the spread from points of in- 

troduction. Similar models should also apply to the 

spread of agricultural and other pest species, such 

as the Africanized bee Apis rnellifera. 

Finally, for the fragmented habitats that charac- 

terize many environments, percolation theory 

models provide a new and complementary set of 

techniques, just beginning to be applied to ecologi- 

cal problems (see for example, Turner et al. 1988). 

Durrett (personal communication) has conjectured 

analogous results for these systems, mirroring the 

results proved for first passage percolation (Cox 

and Durrett 1981) and for a variety of interacting 

particle systems (Durrett 1988, Chapters 1, 3, and 

11). Thus, there now exist a variety of mathematical 

methods, in varying states of development and re- 

quiring varying degrees of detail, for describing the 

spread of introduced species. The success achiev- 

able with even the simplest models such as those 

described in this paper, is cause for optimism con- 

cerning the usefulness of these approaches. 
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