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A new scheme is proposed for spread spectrum communication which transmits both analog
and binary data via chaotic carriers. The proposed systems have some standard properties
of spread spectrum communication. Some computer simulations and performance analysis are
given to examine the validity of this scheme.

1. Introduction

There are two principal types of spread spectrum
(SS) systems–frequency hopping (FH) and direct se-
quence (DS) [Magill et al., 1994; Flikkéma, 1997].
The direct-sequence signaling is accomplished by
phase modulating the data signal with a pseudo-
random sequence. The frequency-hopping spread
spectrum divides the available bandwidth into N
channels and hops between these channels accord-
ing to pseudorandom code known to both the mod-
ulator and demodulator. A key problem for spread
spectrum communication based on pseudorandom
spreading sequences is synchronization. This is
typically accomplished by means of a correlator
which evaluates the autocorrelation function and
looks for the isolated maximum corresponding to
synchronization.
A pseudorandom sequence generator used in

FH and DS is considered to be a special case of a
chaotic system, the principal difference being that
the chaotic system has an infinite number of states,
while the pseudorandom generator has a finite num-
ber. A pseudorandom sequence is produced by
visiting each state of the system once in a deter-
ministic manner; with a finite number of states to
visit, the output sequence is necessarily periodic.
By contrast, a chaotic generator can visit an infi-
nite number of states in a deterministic manner and

therefore produce an output sequence which never
repeats itself. The inherent periodicity of pseudo-
random sequence compromises the overall security.
The greater the length of pseudorandom sequence,
the higher is the level security.
Recently, there has been much interest in

utilizing chaotic signals for spread spectrum com-
munication because nonperiodic synchronizable
chaos-based systems offer potential advantage over
conventional pseudorandom-based systems in terms
of security and synchronization. The problem of
synchronizing chaotic systems was solved for a
class of so-called drive-response system [Pecora &
Carroll, 1990]. Some interesting schemes are pro-
posed, which implement spread spectrum communi-
cation (of binary data) utilizing these synchronized
chaotic systems or one common chaotic system
at both the modulator and demodulator [Heidari-
Bateni & McGillem, 1994; Parlitz & Ergezinger,
1994; Lipton & Dabke, 1996; Milanović & Zaghloul,
1996; Milanović et al., 1997; Schweizer & Hasler,
1996].
Over past ten years, four new chaos-based

spreading techniques have been developed: chaotic
masking, chaotic modulation, chaos shift keying,
and predictive Poincaré control modulation. The
first two techniques spread analog information data
by chaotic signals, and the remainings spread
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binary information data. In chaotic masking, the
analog information signal s(t) is spread by adding
it to the output x(t) of a chaotic system. The re-
sulting signal s(t) + x(t) is modulated and trans-
mitted [Kocarev et al., 1992]. In chaotic modula-
tion, the analog information signal s(t) is injected
into a chaotic circuit. This addition modifies the
dynamics of the chaotic circuit, and so the infor-
mation signal s(t) is modulated [Halle et al., 1993;
Itoh & Murakami, 1995]. In chaos shift keying, a
binary information signal is encoded by transmit-
ting one chaotic signal when a binary “1” needs to
be transmitted, and another chaotic signal when
a binary “0” needs to be transmitted. The two
chaotic signals come from two different systems
(or the same systems with different parameters)
[Parlitz et al., 1992; Dedieu et al., 1993]. In
predictive Poincaré control modulation, symbolic
analysis of a chaotic system is used to encode and
decode the information. In a suitable Poincaré sec-
tion of the analog chaotic system in the transmitter,
two or more disjoint regions are identified and as-
signed values for coding information (for example
“0” and “1”). By an appropriate control method,
the state space trajectory of the transmitter system
is successively steered through the desired regions
of the Poincaré section such that the resulting suc-
cession of assigned values corresponds to the infor-
mation signal that is to be transmitted [Schweizer
& Kennedy, 1994].
Since most information is digital today, the

pseudorandom-based SS techniques are mainly used
to spread binary data sequences. On the other
hand, the chaos-based SS techniques are dealing
with both analog and binary information data. It
is due to the following reasons:

(a) A chaotic signal (as a carrier wave) is essentially
analog, and so chaos can deal with real numbers
(analog data) directly.

(b) If analog information data can be spread di-
rectly, then binary data can be also spread by
the same method. Furthermore, additional in-
formation data, besides binary data, can be
transmitted simultaneously by using more com-
plicated waveforms of the analog-based DS and
FH. Then, we can use frequency resources more
effectively.

In this paper, a new scheme for transmitting
and encoding analog data by using chaotic carri-
ers is proposed. The basic DS and FH techniques
are employed to encode and spread analog data

sequences. The modulators consist of multiplication
of chaotic carriers by the information signals. The
decoding is performed by dividing or multiplying
the transmitted signals by the chaotic carriers and
after that averaging (or calculating correlation func-
tions). That is, the binary data and pseudorandom
sequences in DS and FH are replaced by the ana-
log data and chaotic sequences, respectively. Hence,
the pseudorandom-based system is considered to be
a special case of the chaos-based system. Further-
more, some spread spectrum communication sys-
tems are unified by this scheme. The proposed
systems have the following standard properties of
DS and FH [Magill et al., 1994; Flikkéma, 1997;
Pickholtz et al., 1982]:

(1) Multiple user random access communication.
(2) Resistance to multi-user interference from other
transmitters in the network.

(3) Interference rejection.
(4) Antijamming.

Finally, in order to examine the validity of this
scheme, some computer simulations and perfor-
mance analysis will be given.

2. Chaos-Based Direct Sequence

Consider a discrete-time chaotic dynamical system

x[n+ 1] = f(x[n]) , (1)

where x[n] = (x1[n], x2[n], . . . , xM [n]) is the state,
and f = (f1, f2, . . . , fM) maps the state x[n] to
the next state, x[n + 1]. Starting with an initial
condition x[0], repeated applications of the map f
give rise to the sequence of the points {x[n]}. A
new sequence {y[n]} is obtained by mapping x[n]
by a smooth function g(·), that is, y[n] = g(x[n]).
The function g is known as a coding function, which
plays an important role in the decoding process. We
discuss it in the next subsection.
The direct sequence signaling is accomplished

by multiplying the data signal by a chaotic se-
quence. Thus, the modulation method consists of
multiplication of the carrier, y[n], by the informa-
tion signal, s[n], representing analog data. Assume
that |s[n]| ≤ 1. The transmitted signal is given by

p[n] = y[n]s[n] = g(x[n])s[n] . (2)

The decoding is done by dividing p[n] by y[n]. The
recovered signal q[n] is given by

q[n] = p[n]y[n]−1 = s[n] , for y[n] 6= 0 . (3)
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In case of y[n] = 0, the information signal can-
not be recovered. However, the measure of the set
{m| y[m] = 0} is expected to be zero.

2.1. Multiple user access

Consider the case where there are a number of users.
The modulator consists of multiplication of the de-
layed carriers y[n − lj] (lj are positive integers) by
the information signals sj[n]. Therefore, the trans-
mitted signal for K(≥ 2) users is given by

p[n] =
K
∑

j=1

y[n− lj ]sj[n] . (4)

The decoding is done by dividing p[n] by y[n− lk]

qk[n]
△
= p[n]y[n− lk]

−1 (5)

=
K
∑

j=1

y[n− lj ]

y[n− lk]
sj [n] (6)

= sk[n] + ek[n] , (7)

where

ek[n] =
K
∑

j=1, j 6=k

y[n− lj ]

y[n− lk]
sj[n] . (8)

If ek[n] is sufficiently small, then the informa-
tion signal sk[n] can be recovered from qk[n]. How-
ever, it is not always true. For example, if y[n−lk] is
sufficiently small compared with y[n− lj ], then the
term y[n− lj]/y[n− lk] takes sufficiently large num-
ber, which makes a large impulse in the sequence
{qk[n]}.

1 To remove this impulse, we choose the
coding function g of x[n] such that

y[n] = g(x[n]) = x[n]r , (r : integer) . (9)

Then, for sufficiently large r, there exists small
ε > 0 such that

y[n− lj ]

y[n− lk]
< ε for

x[n− lj]

x[n− lk]
< 1 , (10)

y[n− lj ]

y[n− lk]
>
1

ε
for

x[n− lj ]

x[n− lk]
> 1 . (11)

That is, if x[n− lj ]/x[n − lk] 6= 1, then the coding
function g divides the terms y[n− lj]/y[n− lk] into
two groups: One is greater than 1/ε, the other is
less than ε. Therefore, if we can remove the terms
(y[n− lj ]/y[n− lk])/sj [n] which is greater than 1/ε
from ek, then |ek| ≤ K. It is approximately done
by using an amplitude limiter, that is, by replacing

qk[n] ∈ {qk[m] | |qk[m]| ≥ 1} , (12)

with the nearest

qk[n− l] ∈ {qk[m] | |qk[m]| ≤ 1} , (l > 0) ,

(13)

or holding the previous qk[n − 1] (m is an integer
satisfying the relation m ≤ n). This is due to the
following reason:

if |qk[n]| = |sk[n] + ek[n]| ≤ 1

(14)

and |sk[n]| ≤ 1 , then |ek[n]| ≤ 2 ≤ K .

Let {e′k[n]} and {q
′
k[n]} be the modified sequence

of {ek[n]} and {qk[n]}, respectively, and therefore
ek[n] is replaced by ek[n−l] or ek[n−1] if |qk[n]| ≥ 1.
By averaging this modified sequence {q′k[n]}

over n, we get

q′k ≈ sk + e
′
k , (15)

where the symbol≈means approximately equal and

q′k =
1

N

n+N−1
∑

m=n

q′k[m] , (16)

sk =
1

N

n+N−1
∑

m=n

sk[m] , (17)

e′k =
1

N

n+N−1
∑

m=n

e′k[m] . (18)

Here, N is some constant.
Next, we claim the quick decay of e′k for large

N and k, since y[n] and y[n − k] are uncorrelated
for large k. Indeed, the autocorrelation function

1The division operation was used to spread the information signals of the secure communication systems [Halle et al., 1993].
In this system, the recovered signals had the saturated waveforms. However, the error which due to saturation was short in
time, and so it was negligible. For more details, see [Halle et al., 1993].
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c(y) satisfies

c(y) = lim
N→∞

1

N

N
∑

n=1

y[n]y[n− k]→ 0 for k →∞ ,

(19)
if the mean value of y[n] is chosen to be zero.
Then, we can expect that ek ≈ 0 for sufficiently

large N and k, and therefore the information signal
is recovered by

q′k ≈ sk ≈ sk[n] . (20)

Here, we assumed that sk is slowly varying, that is,

sk[n] ≈ sk[n+ j]

≈ sk , (j = 1, 2, . . . , N − 1) . (21)

Thus, this scheme offers the chaos-based code-
division multiple access (CDMA).

2.2. Synchronization requirements

We note that the recovery of the information sig-
nal requires the receiver’s own copy of the chaotic
spreading sequence be synchronized with the trans-
mitter’s one. To see this, let the receiver’s local
sequence ŷ[n], instead of being exactly time-aligned
(or in phase), be offset in time, ŷ[n] = y[n+ i](i 6=
0). Then the recovered signal of the kth user will
be

qk[n] = p[n]ŷ[n− lk]
−1 = p[n]y[n− lk + i]

−1 (22)

=
K
∑

j=1

y[n− lj ]

y[n− lk + i]
sj[n] (23)

=
y[n− lk]

y[n− lk + i]
sk[n]

+
K
∑

j 6=k

y[n− lj ]

y[n− lk + i]
sj[n] . (24)

Therefore, the information signal sk[n] is spread
again by y[n − lk]/y[n − lk + i] and lost, since we
cannot expect that y[n− lk] = y[n− lk+ i] for all n.
Similar results hold for the cases where the se-

quence ŷ[n] is corrupted by noise or the synchro-
nization errors occur. Then, the sequence ŷ[n] has
the form

ŷ[n] = y[n] + w[n] , (25)

where w[n] indicates noise or an error. The recov-
ered signal of the kth user will be

qk[n]=p[n]ŷ[n−lk]
−1=p[n](y[n− lk]+w[n−lk])

−1

(26)

=
K
∑

j=1

y[n−lj]

y[n−lk]+w[n−lk]
sj [n] (27)

=
y[n−lk]

y[n−lk]+w[n−lk]
sk[n]

+
K
∑

j 6=k

y[n−lj]

y[n−lk]+w[n−lk]
sj[n] (28)

=
1

1+
w[n−lk]

y[n−lk]

sk[n]

+
K
∑

j 6=k

y[n−lj]

y[n−lk]+w[n−lk]
sj[n]

for y[n−lk] 6=0 , (29)

and therefore the information sk[n] is lost when
w[n− lk] becomes large compared to y[n− lk]. That
is, the error of the recovered signal becomes large
when the sequence y[n−lk] is sufficiently small com-
pared to w[n− lk]. Furthermore, we note that chaos
has a strong and sensitive dependence on initial
conditions. Tiny differences or errors in the initial
conditions lead quickly to large differences. Thus,
once chaotic synchronization is broken, the differ-
ence w[n] becomes large quickly. Therefore, syn-
chronization is a key requirement in chaos-based
spread spectrum system design. In the sequel, to
maintain focus on the spread-spectrum concept, we
assume perfect synchronization.

2.3. Interference suppression and
channel noise

Suppose that the channel contains an interferer:
An unknown periodic signal, I[n], is added to the
received signal. The received sequence is

q[n] = p[n] + I[n] . (30)

Dividing this equation by y[n − lk] and using an
amplitude limiter, we get

q′k ≈ sk + e
′
k + d

′
k . (31)
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Here, the term dk = I[n]y[m− lk]
−1 is modified by

the amplitude limiter, and we described it by d′k.
Thus,

d
′
k =

1

N

n+N−1
∑

m=n

d′k . (32)

Since y[n] and I[n] are uncorrelated (i.e. I[n] is

spread by y[n]), we can expect that d
′
k ≈ 0 for suf-

ficiently large N . Thus, we obtain

qk ≈ sk ≈ sk[n] . (33)

Next, assume that the transmitted signal is cor-
rupted by white Gaussian noise w[n]. Then the re-
ceived sequence is given by

q[n] = p[n] + w[n] , (34)

and the recovered signal has the form

q′k ≈ sk + e
′
k + d

′
k . (35)

where {d′k} is the modified sequence of {dk}(=
{w[n]y[m − lk]

−1}) by the amplitude limiter. The
term d′k and e

′
k remains as noise. Thus, if the chan-

nel noise increases, the recovered signals are cor-
rupted by noise.

2.4. Interference from other
transmitters

Now we consider the case where there is multi-user
interference from other transmitters in the network,
that is, the K signals simultaneously share a chan-
nel. Assuming time synchronization among the sig-
nals, the received signals is

q[n] =
K
∑

j=1

y(j)[n− lk(j) ]s
(j)[n] , (36)

where y(j)[n−lk(j) ] and s
(j)[n] are a chaotic sequence

and an information signal of the jth transmitter, re-
spectively. It follows that the averaging procedure
and the amplitude limiter for signal k = 1 generate

q ′
(1)
≈ s(1) + e ′

(1)
, (37)

where {e ′(1)} is the modified sequence, that is, we
modified

e(1)=
K
∑

j=2

y(j)[n−lk(j)]y
(1)[n−lk(1)]

−1s(j)[n] , (38)

by using the amplitude limiter. We can expect that

e ′(1) ≈ 0 for large N , since the cross-correlation of
chaotic signals satisfies

lim
N→∞

1

N

N
∑

n=1

y(j)[n−lk(j)]y
(i)[n−lk(i)]=0 , (i 6=j) .

(39)
Thus, the recovered signal is given by

q(1) ≈ s(1) ≈ s(1)[n] . (40)

2.5. Other encoding and
decoding techniques

In the encoding process, the delayed carriers
y[n− lk] are used. A number of different sequences
are available too, if they satisfy the quick decay of
the correlation.
Next, we assume that the information se-

quences {sk[n]} are given by binary data (±1),
and for each information bit, instead of one pulse,
a sequence of N pulses is transmitted, that is,
sj[n] = sj[n + 1] = · · · = sj[n+N − 1] (= ±1; n =
0, N, 2N, . . .). Then, we can recover the signal by
multiplying p[n] by y[n− lk], instead of y[n− lk]

−1,

qk[n] = p[n]y[n− lk] (41)

=
K
∑

j=1

y[n− lj]y[n− lk]sj [n] . (42)

The receiver makes the decision as follows

1 was sent for qk ≥ 0 , (43)

−1 was sent for qk < 0 , (44)

where qk = (1/N)
∑n+N−1
m=n qk[m] (for more details,

see [Parlitz & Ergezinger, 1994]).

2.6. Continuous-time version of
DS systems

In this section, we discuss the continuous-time ver-
sion of chaos-based direct sequence. Consider a
chaotic dynamical system

dx

dt
= F(x) ∈ Rn , (45)

where x(t) = (x1(t), x2(t), . . . , xn(t)) is the state
vector and F is a smooth map on Rn. A chaotic
carrier is given by

y(t) = g(x(t)) , (46)

where g(·) is a coding function.
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The modulator consists of multiplication of de-
layed carriers y(t− τj) (τj are real numbers) by in-
formation signals sj[t],

p(t) =
K
∑

j=1

y(t− τj)sj(t) . (47)

The decoding is done by multiplying p(t) by
y(t− τk)

−1

qk(t) = p(t)y(t− τk)
−1 (48)

=
K
∑

j=1

y(t− τj)

y(t− τk)
sj(t) (49)

= sk(t) +
K
∑

j=1, j 6=k

y(t− τj)

y(t− τk)
sj(t) (50)

= sk(t) + ek(t) , (51)

where

ek(t) =
K
∑

j=1, j 6=k

y(t− τj)

y(t− τk)
sj(t) . (52)

Next, we replace

qk(t) ∈ {qk(t) | |qk(t)| ≥ 1} , (53)

with the nearest

qk(t− τ
′) ∈ {qk(t− τ) | |qk(t− τ)| ≤ 1} , (54)

and so ek(t) is replaced with ek(t− τ
′) too. Here, τ

is a positive real number.
Let q′k(t) and e

′
k(t) be the modified sequence of

qk(t) and ek(t), respectively. Averaging this modi-
fied q′k(t) over t, we get

q′k ≈ sk + e
′
k , (55)

where

q′k =
1

T

∫ t+T

t
q′k(t)dt , (56)

sk =
1

T

∫ t+T

t
sk(t)dt , (57)

e′k =
1

T

∫ t+T

t
e′k(t)dt , (58)

where T is some constant.
Here, we assume that sk(t) are slowly varying

and T is sufficiently large. Furthermore, we claim

the quick delay of e′k for large τ , since the auto-
correlation function of chaotic signals satisfies

lim
T→∞

1

T

∫ t+T

t
y(t)y(t− τ)dt→ 0 , for τ →∞ .

(59)

Then, we can expect that e′k ≈ 0, and so the infor-
mation signal is recovered by

q′k(t) ≈ sk(t) ≈ sk(t) . (60)

Therefore, all the discussions are as same as that
for the discrete-time communication systems.

3. Pseudorandom-Based
Direct Sequence

In the case of a pseudorandom sequence, the num-
ber N becomes a period of a sequence. The series
{y[n]} are chosen to be a binary sequence satisfying
the following relations

1

N

N
∑

n=1

y[n− lj ]y[n− lk] = −
1

N
, for j 6= k ,

1

N

N
∑

n=1

y[n− lj ]y[n− lk] = 1 , for j = k .

(61)

where y[n] = ±1. Such a sequence is realized by the
maximum length code (sequence) [Flikkéma, 1997;
Pickholtz et al., 1982]. Without loss of generality,
the formal inverse of y[n− lk] is defined as follows

y[n− lk]
−1 △= y[n− lk] , (n = 1, 2, . . . , N) . (62)

Furthermore, we assume that for each information
bit, instead of one pulse, a sequence of N pulses
is transmitted, that is, sj[n] = sj[n + 1] = · · · =
sj[n+N − 1] (= ±1; n = 0, N, 2N, . . .). Then, all
the discussion for the pseudorandom-based commu-
nication system is as same as that for the chaos-
based communication system. That is, the trans-
mitted signal is given by

p[n] =
K
∑

j=1

y[n− lj ]sj[n] , (63)

where sj[n] is a message signal representing a binary
signal (±1).
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The decoding is done by multiplying p[n] by
y[n− lk]

qk[n] = p[n]y[n− lk] (64)

=
K
∑

j=1

y[n− lj]y[n− lk]sj [n] . (65)

Averaging qk[n] over one period, we obtain

qk = sk + ek , (66)

where

qk=
1

N

n+N−1
∑

m=n

qk[m] , (67)

sk=
sk[n]

N

n+N−1
∑

m=n

y[m−lk]
2=sk[n] , (68)

ek=
1

N

K
∑

j=1, k 6=j

(

n+N−1
∑

m=n

y[m−lj ]y[m−lk]sj [m]

)

=−
1

N

K
∑

j=1

sj [n] . (69)

Therefore, assuming that N is sufficiently large, we
can expect that ek ≈ 0, and therefore we get

qk ≈ sk ≈ sk[n] . (70)

4. Chaos-Based Frequency Hopping

The FH spread spectrum system divide the avail-
able bandwidth into N channels and hops between
those channels according to the pseudorandom se-
quence. The chaos based FH hops to any frequency
in the available band according to chaotic sequence
{x[n]}.
The carriers for FH are given by

y(j)[n] = sin(nΩ(j)) (71)

Ω(j) = ω(j) + g(x[n− lj ]) , (72)

where ω(j) and lj are constants and g(·) is a coding
function.2 The modulation consists of multiplica-
tion of y(j)[n] by the information signal sj [n]

p[n] =
K
∑

j=1

y(j)[n]s(j)[n] . (74)

The decoding is done by multiplying p[n] by
y(k)[n]

qk[n] = p[n]y
(k)[n] (75)

=
K
∑

j=1

y(j)[n]y(k)[n]s(j)[n] (76)

= s(k)[n]y(k)[n]2

+
K
∑

j=1, j 6=k

y(j)[n]y(k)[n]s(j)[n] (77)

=
sk[n]

2
−
sk[n] cos(2nΩ

(k))

2

+
K
∑

j=1, j 6=k

y(j)[n]y(k)[n]s(j)[n] (78)

=
sk[n]

2
+ es + ek , (79)

where

es[n] = −
sk[n] cos(2nΩ

(k))

2
, (80)

ek[n] =
K
∑

j=1, j 6=k

y(j)[n]y(k)[n]s(j)[n] , (81)

and es[n] can be removed by averaging qk[n] or us-
ing a lowpass filter. Therefore, by averaging qk[n],
we get the equation

qk =
sk
2
+ es + ek , (82)

2The carriers y(j)[n] can be written in the form:

y
(j)[n] = h(x[n− lj]) , (73)

where h(z) = sin(n(ω(j) + g(z))) is a coding function and g(x) is a function of x. In the direct sequence signaling, h(z) is
given by a polynomial: h(z) = zr (r: integer). Therefore, the coding function makes the difference between DS and FH spread
spectrum systems.
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where

qk =
1

N

n+N−1
∑

m=n

qk[m] , (83)

sk =
1

N

n+N−1
∑

m=n

sk[m] , (84)

es =
1

N

n+N−1
∑

m=n

es[m] , (85)

ek =
1

N

n+N−1
∑

m=n

ek[m] . (86)

We claim the quick decay of and ek, since y
(j)[n]

and y(k)[n] are uncorrelated. Thus, we obtain the
relation

qk[n] ≈
sk[n]

2
. (87)

Accordingly, the chaos based FH has the stan-
dard property of FH: Interference rejection, mul-
tiple user access, and so on. Furthermore, if we
replace {x[n]} with any pseudo random sequence,
then the standard FH system is obtained. We can
derive the continuous-time version of chaos-based
FH, but only a slight variation is needed.

5. Synchronization Problems
and Multiplexing

One of the common features of the spread spec-
trum scheme is that the transmitter and receiver
synchronize. In case where the receiver can use the
transmitter’s chaotic generator, no synchronization
mechanism is needed [Lipton & Dabke, 1996]. In
this section, we discuss two methods for achieving
synchronization between two systems, that is, self-
synchronization and adaptive synchronization.

5.1. Self-synchronization

The synchronization method we consider here is
unidirectional; the master system (the transmit-
ter) sends a signal to the slave system (the re-
ceiver); the output of the slave system approaches
that of the master asymptotically in time. In this
way, the master influences the slave system but the
slave system does not influence the master. Un-
like a pseudorandom-based system, where a corre-
lator is required to perform synchronization, self-
synchronization chaos-based schemes do not require
separate synchronization and tracing hardware.

This scheme decomposes a chaotic system
x[n+ 1] = f(x[n]) into

x1[n+ 1] = f1(x1[n], x2[n]),

x2[n+ 1] = f2(x1[n], x2[n]),

}

master system

(88)

z2[n+ 1] = f2(x1[n], z2[n]) , slave system (89)

where x[n] = (x1[n], x2[n]) and f = (f1, f2). Here,
the master system impose one of its state, x1[n],
directly onto the slave system. If synchronization
occurs, the remaining state z2[n] of the slave sys-
tem asymptotically follow their counter parts x2[n]
in the master system [Pecora & Carroll, 1990].
The communication systems proposed in this

paper require fundamentally two communication
channels; one is used for transmitting the synchro-
nization signal x1[n] and the other for transmitting
the modulated signal p[n] = y[n]s[n] = g(x[n])s(n).
In order to transmit multiple user signals with one
communication channel, two kinds of techniques are
available: Impulsive synchronization [Stojanovski
et al., 1997; Yang & Chua, 1997] and chaotic mul-
tiplexing [Itoh & Chua, 1997a, 1997b].

5.1.1. Impulsive synchronization

In order to transmit multiple user signals by us-
ing one communication channel, we can use impul-
sive synchronization method, which was proposed
in [Stojanovski et al., 1997; Yang & Chua, 1997].
In this method, the transmitted signal consists

of a sequence of frames. Every frame has a length
of T and consists of two regions. The first region of
the frame is a synchronization region consisting of
synchronization pulses. The synchronization pulses
are used to impulsively synchronize the chaotic sys-
tems in both transmitter and receiver. That is,
the self-synchronization method is impulsively ap-
plied to the receiving system. The second region is
the spread spectrum signal region, which is used to
transmit a modulated signal of DS or FH. Within
every time frame, the synchronization region has a
length of Q and the remaining time interval T–Q is
the modulated signal region. SinceQ is usually very
small compared with T , the lost of time for packing
an information signal is negligible. The stability of
the impulsive synchronization and the robustness to
additive channel noise and parameter mismatch are
guaranteed by the results in [Yang & Chua, 1997].
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5.1.2. Chaotic multiplexing

The other technique for transmitting multiple user
signals with one communication channel is chaotic
multiplexing. First, we modify the master–slave
system, and define the transmitting system as
follows

x1[n+ 1] = f1(x1[n], x2[n]) + εp[n] ,

x2[n+ 1] = f2(x1[n], x2[n]) ,
(90)

where

p[n] =
K
∑

j=1

y[n− lj ]sj[n] , (91)

y[n] = g(x1[n], x2[n]) , (92)

g is a smooth functions, sj[n] are information sig-
nals, and ε is sufficiently small. The transmitted
signal is given by x1[n]. The receiving system has
the form

z2[n+ 1] = f2(x1[n], z2[n]) , (93)

q[n] = ε−1(x1[n+ 1]− f1(x1[n], z2[n])) . (94)

When the master and slave systems are synchro-
nized, that is, |x2[n]− z2[n]| → 0, we get

q[n] = p[n] =
K
∑

j=1

y[n− lj ]sj [n] . (95)

Thus, multiplying q[n] by y[n− lk]
−1 and averaging

the modified q′[n], we can recover the signal

q′k ≈ sk ≈ sk[n] . (96)

For more details, see [Itoh & Chua, 1997a, 1997b].
In this scheme, the properties of antijamming, inter-
ference rejection, and resistance to multiple user in-
terference are lost, which the spread spectrum com-
munication systems inherently have.

5.2. Adaptive synchronization
and multiplexing

The adaptive controller can synchronize the two
systems and make the driven system’s parameters
converge towards the driving system’s parameters
even though the parameters of the two systems
differ. Consider a discrete-time chaotic dynamical
system

x[n+ 1] = f(x[n], a) , (97)

where a = (a1, a2, . . . , am) is system parameters.
In [Huberman & Lumer, 1990], the following adap-
tive controller is proposed

z[n+ 1] = f(z[n], b[n]) , (98)

b[n+ 1] = b[n]−G

(

z[n]− x[n],
∂f

∂b

)

, (99)

where b[n] = (b1[n], b2[n], . . . , bm[n]) are the con-
trol parameters and G is a continuous map. The
controller adjusts b[n] such that two systems will
synchronize. That is, the adaptive controller main-
tain synchronization by continuously tracking the
change in the modulated parameter a. If the pa-
rameters a = (a1, a2, . . . , am) are modulated by
multiple signals: s[n] = (s1[n], s2[n], . . . , sm[n])
at the transmitter, then the adaptive controller
can recover the parameters a, and therefore the
multiple signals s[n] can be decoded (it is known
as a parameter modulation; for more details see
[Wu et al., 1996]).

6. Computer Simulations

In this section, the multiple user access and the in-
terference rejection are examined by using computer
simulations.

6.1. Direct sequence

6.1.1. Discrete-time dynamical systems

Consider the chaotic dynamical system (Ikeda map
[Ikeda, 1979])

u[n+ 1] = a+ b(u[n] cos w[n]− v[n] sin w[n]) ,

(100)

v[n+ 1] = b(u[n] sin w[n] + v[n] cos w[n]) , (101)

where w[n] = 0.4 − 6/u[n]2 + v[n]2, a = 0.84, and
b = 0.95. Assume that three users are sharing a
channel. The coding function g(·) is given by a
polynomial of u[n]

g(u[n]) = (u[n]− 0.5)r (r = 11) , (102)

and so the sequence {y[n] = g(u[n])} is used as a
carrier. The delay lj and the average number N are
given by

l1 = 0 , l2 = 60 , l3 = 100 , N = 60 . (103)
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Fig. 1. Sequence of a chaotic carrier. (a) Chaotic sequence {x[n]} of Ikeda map, (b) chaotic carrier {y[n]}, (c) transmitted
signal {p[n]}.
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Fig. 2. Recovering process. (a) Information signal s1[n] = sin(0.007n), (b) recovered signal q1[n] (before averaging),
(c) recovered signal q1[n] (after averaging).
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Fig. 3. Recovered signals qj [n] (thin solid lines) and information signals sj[n] (thick solid lines) when the communication
channel is shared by three users. (a) Information signal: s1[n] = sin(0.007n), (b) s2[n] = 0.5(sin(0.005n) + sin(0.009n)),
(c) s3[n] = 0.5(sin(0.003n) + sin(0.008n)).
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Fig. 4. Recovered signal with carrier mismatch; decoding is done by using the mismatched carrier y[n− lj−1] (or y[n− lj+1])
instead of y[n− lj ]; only one time-step is mismatched.
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Fig. 5. Recovered signal with synchronization errors. The synchronization is broken by the impulsive noise at n = 27 500.
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Fig. 6. Interference rejection. (a) and (b) Ikeda map is used for generating chaotic carriers. (c) Hénon map is used for
generating a chaotic carrier. Recovered signals are shown in thin solid lines.
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Fig. 7. Interference rejection. A periodic signal I[n] = sin(0.0065n) is injected to the channel. Recovered signals are shown
in thin solid lines.
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Fig. 8. Quick decay of the autocorrelation functions for the sequence (a) {x[n]} and (b) {y[n]}.

The computer results are given in Figs. 1–8.
The encoded and decoded signals are shown in
Figs. 1–3. Some distortions still remain in the recov-
ered signals. It is due to the following reason: The
delays of the chaotic carriers are chosen to be finite,
and so the cross correlation of the delayed carriers
does not vanish completely. Thus, some errors (dis-
tortions) remain. Furthermore, the recovered sig-
nals are corrupted near the extremum points, which
satisfies dsk(t)/dt = 0. At these points, sk(t) does
not increase nor decrease, and after that it starts
moving rapidly (except the extremum points, the
information signals sk(t) are monotone increasing or
decreasing). Therefore, the recovered signal cannot
trace the information signal (rapid change) quickly.
However, if the information signal is slowly varying,
then the errors are small as shown in Fig. 2.
Figure 4 shows the recovered signals with the

mismatched carriers (one time-step is mismatched).
The information signals cannot be recovered at all.
Figure 5 shows the recovered signals when the syn-
chronization errors occur in the receiver. The infor-
mation signals cannot be recovered at all when the
synchronization is broken.
Next, we verify the interference rejection from

the other transmitter. In this case, two users are
communicating with Ikeda map and the other is
using Hénon map, which becomes the interference

for the users communicating with Ikeda map. The
dynamics of Hénon map is given by

u[n+ 1] = 1 + v[n]− cu[n]2 , (104)

v[n+ 1] = du[n] , (105)

where c = 1.4 and d = 0.3. The decoded sig-
nals are slightly distorted as shown in Fig. 6.
The interference suppression for the periodic sig-
nal: sin(0.0065n) is shown in Fig. 7. In this case,
the averaged powers of the transmitted signal and
the interference signal are adjusted to be on the
same level. Finally, we show the quick decay of the
autocorrelation functions in Fig. 8.

6.1.2. Continuous-time dynamical systems

Consider the Lorenz system [Lorenz, 1963]

du

dt
= 10(v − u) , (106)

dv

dt
= −uw + 60u− v , (107)

dw

dt
= uv −

8

3
w . (108)

This system has the flat power spectrum
[Lipton & Dabke, 1996]. Assume that the chan-
nel is shared by three users. The coding function
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Fig. 9. Sequence of a chaotic carrier. (a) Chaotic waveform v(t) of Lorenz system, (b) chaotic carrier y(t), (c) transmitted
signal p(t). (5.0e15 means 5.0 × 10−15.)
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Fig. 10. Recovering process. (a) Information signal s1 = sin(0.026t), (b) recovered signal q1(t) (before averaging),
(c) recovered signal q1(t) (after averaging).
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Fig. 11. Recovered signals qj(t) (thin solid lines) and information signals sj(t) (thick solid lines) when the communication
channel is shared by three users. (a) Information signal: s1(t) = sin(0.026t), (b) s2(n) = 0.5(sin(0.02t) + sin(0.009t)),
(c) s3[n] = 0.5(sin(0.018t) + cos(0.007t)).
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Fig. 12. Recovered signal with carrier mismatch; decoding is done by using the mismatched carrier y(t − τ ′j) instead of
y(t− τj), where |τ

′

j − τj | = 0.1.
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Fig. 13. Recovered signal with synchronization errors. The synchronization is broken by the impulsive noise at t = 600.
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Fig. 14. Interference rejection. (a) and (b) Lorenz system is used for generating chaotic carriers. (c) Chua’s oscillator is used
for generating a chaotic carrier. Recovered signals are shown in thick solid lines.
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Fig. 15. Interference rejection. A periodic signal I(t) = sin(0.03t) is injected to the channel. Recovered signals are shown in
thick solid lines.
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Fig. 16. Quick decay of autocorrelation functions for (a) x(t) and (b) y(t).

g(·) is given by a polynomial of v(t)

g(v(t)) = (v(t))r (r = 11) . (109)

The sequence {y(t) = g(v(t))} is used as a carrier.
The delay τj and the period T are given by

τ1 = 0 , τ2 = 0.5 , τ3 = 1 , T = 0.07 . (110)

The computer results are shown in Figs. 9–16. The
encoded signals and decoded signals are shown in
Figs. 9–11. Small phase lag is observed in the re-
covered signals because of the averaging procedure
[Carlson, 1975] (we can easily compensate the phase
lag). Figures 12 and 13 show the recovered signals
with the mismatched carriers and the synchroniza-
tion errors, respectively. The information signals
cannot be recovered. Next, the interference rejec-
tion is examined. In this case, two users are com-
municating with Lorenz map, and the other is using
Chua’s oscillator [Madan, 1993]. The dynamics of
Chua’s oscillator in a dimensionless form is given by

dx

dτ
= α(y − x− f(x)) , (111)

dy

dτ
= x− y + z , (112)

dz

dτ
= −βy − γz , (113)

where f(x) = bx + 0.5(a − b)[|x + 1| − |x − 1|].
The following parameters are used in our computer
experiments:

α = 10 , β = 15 , γ = 0.1 ,

a = −1.27 , b = −0.68 .
(114)

The decoded signals are slightly distorted as shown
in Fig. 14. The interference suppression for a peri-
odic signal sin(0.03t) is shown in Fig. 15. The quick
decay of the autocorrelation functions is shown in
Fig. 16.

6.2. Frequency hopping

6.2.1. Discrete-time dynamical systems

Consider the Ikeda map as a chaotic generator. As-
sume that three users are sharing a channel. The
parameters used in the computer simulations are
given by

l1 = 0 , l2 = 250 , l3 = 400 , N = 110 ,

Ω(j) = 0.1 + 0.01x[n] , g(x) = 0.01x .
(115)

We made the same computer simulation as those
for the DS. Their results are shown in Figs. 17–24.
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Fig. 17. Sequence of a chaotic carrier. (a) Chaotic sequence {x[n]} of Ikeda map, (b) chaotic carrier {y[n]}, (c) transmitted
signal {p[n]}.
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Fig. 18. Recovering process. (a) Information signal s1[n] = sin(0.007n), (b) recovered signal q1[n] (before averaging),
(c) recovered signal q1[n] (after averaging).
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Fig. 19. Recovered signals qj [n] (thin solid lines) and information signals sj[n] (thick solid lines) when the communication
channel is shared by three users. (a) Information signal: s1[n] = sin(0.007n), (b) s2[n] = 0.5(sin(0.005n) + sin(0.009n)),
(c) s3[n] = 0.5(sin(0.003n) + sin(0.008n)).
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Fig. 20. Recovered signal with carrier mismatch; decoding is done by using the mismatched signal x[n−lj−1] (or x[n−lj+1])
instead of x[n− lj ]; only one time-step is mismatched.
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Fig. 21. Recovered signal with synchronization errors. The synchronization is broken by the impulsive noise at n = 26 000.
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Fig. 22. Interference rejection. (a) and (b) Ikeda map is used for generating chaotic carriers. (c) Hénon map is used for
generating a chaotic carrier. Recovered signals are shown in thin solid lines.
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Fig. 23. Interference rejection. A periodic signal I[n] = sin(0.0065n) is injected to the channel. Recovered signals are shown
in thin solid lines.
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Fig. 24. Autocorrelation functions for (a) x[n] and (b) y[n].

6.2.2. Continuous-time dynamical systems

Consider the Lorenz map as a chaotic generator.
Assume that the channel is shared by three users.
The parameters are given by

τ1 = 0 , τ2 = 0.5 , τ3 = 1 , T = 0.15 ,

Ω(j) = 4 +
v(t)

30
, g(x) =

x

30
.

(116)

The computer results are shown in Figs. 25–32.

7. Performance Analysis of DS and FH

In this section, we evaluate the following quanti-
ties to analyze the performance of the proposed
systems

(1) SNRs (Signal to Noise Ratios) for analog infor-
mation data sequences,

(2) BERs (Bit Error Rates) for binary information
data sequences,

as a function of multiple users by using white
Gaussian noise and burst impulsive noise. We also

examined the impulsive synchronization method to
transmit signals through some noisy channels. Re-
ferring the report of [Kennedy & Kolumban, 1997],
we found that a BER of less than 10−3 is required
for digital communication; otherwise the communi-
cation link is broken at a system level.3

7.1. Discrete-time dynamical systems

7.1.1. Analog information data

We use the signal to noise ratio (SNR) to examine
the error rates of recovered signals. The SNR of the
kth user is defined as

SNR(k) = 10 log10

M
∑

n=1

sk[n]
2

M
∑

n=1

ek[n]
2

, (117)

where ek[n] = rk[n]− sk[n] is an error (i.e. “noise”
generated by the recovering process). Here,
rk[n] and sk[n] are the recovered signal and the

3Their system required a SNR of at least 30 dB to achieve a BER of 10−2. If the SNR fell below 30 dB, their system failed to
operate. For more details, see [Kennedy & Kolumban, 1997].
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Fig. 25. Sequence of a chaotic carrier. (a) Chaotic waveform v(t) of Lorenz system, (b) chaotic carrier y(t), (c) transmitted
signal p(t).
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Fig. 26. Recovering process. (a) Information signal s1(t) = sin(0.026t), (b) recovered signal q1(t) (before averaging),
(c) recovered signal q1(t) (after averaging).
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Fig. 27. Recovered signals qj(t) (thin solid lines) and information signals sj(t) (thick solid lines) when the communica-
tion channel is shared by three users. (a) Information signal s1(t) = sin(0.026t), (b) s2(n) = 0.5(sin(0.02t) + sin(0.009t)),
(c) s3[n] = 0.5(sin(0.018t) + cos(0.007t)).
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Fig. 28. Recovered signal with carrier mismatch; decoding is done by using the mismatched signal x(t−τ ′j) instead of x(t−τj),
where |τ ′j − τj | = 0.05.
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Fig. 29. Recovered signal with synchronization errors. The synchronization is broken by the impulsive noise at t = 600.
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Fig. 30. Interference rejection. (a) and (b) Lorenz system is used for generating chaotic carriers. (c) Chua’s oscillator is used
for generating a chaotic carrier. Recovered signals are shown in thick solid lines.



194 M. Itoh

Fig. 31. Interference rejection. A periodic signal I(t) = sin(0.03t) is injected to the channel. Recovered signals are shown in
thick solid lines.
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Fig. 32. Autocorrelation functions for (a) x(t) and (b) y(t).

Fig. 33. Average signal to noise ratios (SNRs) of DS and FH.

information signal of the kth user, respectively. The
mean values of s[n] is chosen to be zero. The aver-
age SNR is given by

Average SNR =

K
∑

k=1

SNR(k)

K
, (118)

where K is the number of users.

We now show the SNRs of DS and FH as a func-
tion of multiple users in Fig. 33. The sine curves are
chosen as the information signals. Furthermore, the
delayed information signals are used to obtain the
SNRs, since the recovered signals have some phase
lag as stated before. The DS has a good perfor-
mance for a few users, but the average SNR of DS
decreases quickly as the number of users increases.



196 M. Itoh

Next, we verify the SNRs by using a white
Gaussian channel. The transmitted signal to noise
ratio is defined as

10 log10

M
∑

n=1

p[n]2

M
∑

n=1

w[n]2
, (119)

where M is the total length of the transmitted
signal, and p[n] and w[n] are the transmitted

signal and white Gaussian noise, respectively. The
mean values of p[n] and w[n] are chosen to be
zero. By sending synchronization data, we made
the chaotic system in the receiver to synchronize.
Then, we added white Gaussian noise to a channel.
Therefore, in this case, the synchronization was not
disturbed by noise. The experimental results are
shown in Figs. 34 and 35, which indicate that the
DS is weak in white Gaussian noise.
We also examined the impulsive synchroniza-

tion method to transmit signals through noisy

Fig. 34. Average signal to noise rations (SNRs) of DS. White Gaussian Noise is added to the channel.

Fig. 35. Average signal to noise rations (SNRs) of FH. White Gaussian Noise is added to the channel.
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Fig. 36. Waveform of burst impulsive noise. (a) Information signal s1(t) = sin(0.0005n), (b) modulated signal p[n] of DS,
(c) burst impulsive noise w[n].
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Fig. 37. Waveform of burst impulsive noise. (a) Information signal s1(t) = sin(0.0005n), (b) modulated signal p[n] of FH,
(c) burst impulsive noise w[n].
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channels. It is known that the impulsive synchro-
nization is robust to additive channel noise. In
the case of the discrete-time dynamical systems,
the synchronization error increases gradually as
the iteration increases. This is because the syn-
chronization impulses are continuously corrupted
by white Gaussian noise. Furthermore, chaos has
a strong and sensitive dependence on initial con-
ditions. In short, tiny differences or errors in the
initial conditions lead quickly to large differences in
the discrete states. Hence, we need to study the
noise suppression property under the other situa-
tions. In this paper, we verified it by using burst
impulsive noise (see Figs. 36 and 37). In the ab-
sence of noise, there is a chance to make the chaotic
system in the receiver to synchronize by using im-
pulsive synchronization. Then, we can evaluate the
SNRs of chaos-based DS and FH. The noise sup-
pression properties are shown in Figs. 38 and 39.
Their performances are almost as same as those for
white Gaussian noise.

7.1.2. Binary information data

As stated before, we can transmit binary data by
using the analog-based DS and FH. In this case,
for each information bit, instead of one pulse, a se-
quence of N pulses are sent. Hence, N discrete-
time pulses are sent to present the bit of informa-

tion. The duration of data bit is partitioned into
subintervals. The sub-bits are known as chips. The
decision by majority was used to determine the bit
information (= ±1) from N pulses.
Figures 40–43 show the transmission proper-

ties of the binary data. The bit errors increase as
the number of users increases. Figure 44 shows the
BERs of DS and FH when a single bit consists of
100 chips. Furthermore, we study the cases where a
single bit consists of 200 and 300 chips. The FH has
a good performance for the binary data transmis-
sion, and the BERs decrease quickly as the num-
ber of users increases as shown in Figs. 45 and
46. We examined the impulsive synchronization
method to transmit signals through noisy channels.
Figures 47 and 48 show the waveforms of the burst
impulsive noises. Figures 49 and 50 show the sup-
pression property for burst impulsive noise. The
BERs of DS and FH decrease as the number of users
increases.

7.2. Continuous-time dynamical
systems

7.2.1. Analog information data

The average SNRs of DS and FH as a function of
multiple users are shown in Fig. 51. Next, we ex-
amine the SNRs by using white Gaussian channel.

Fig. 38. Average signal to noise ratios of DS. The impulsive burst noise is added to the channel. The impulsive synchronization
technique is used to make the system in the receiver to synchronize with that in the transmitter through a noisy channel. The
frame length and the synchronization region are chosen as T = 1000 and Q = 100, respectively.
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Fig. 39. Average signal to noise rations of FH. The impulsive burst noise is added to the channel. The impulsive synchro-
nization technique is used to make the system in the receiver to synchronize with that in the transmitter through a noisy
channel. The frame length and the synchronization region are chosen as T = 1000 and Q = 100, respectively.

Fig. 40. Binary information signals (thick solid lines) and
recovered signals of DS (thin solid lines). A single bit con-
sists of 200 chips and five users are sharing a communication
channel. The information signals are completely recovered.

Fig. 41. Binary information signals (thick solid lines) and
recovered signals of DS (thin solid lines). A single bit con-
sists of 200 chips and eight users are sharing a communica-
tion channel. Some errors occurred in the recovered signals.



Spread Spectrum Communication via Chaos 201

Fig. 42. Binary information signals (thick solid lines) and
recovered signals of DS (thin solid lines). A single bit con-
sists of 100 chips and five users are sharing a communication
channel. The information signals are completely recovered.

Fig. 43. Binary information signals (thick solid lines) and
recovered signals of DS (thin solid lines). A single bit con-
sists of 100 chips and fifteen users are sharing a communica-
tion channel. Some errors occurred in the recovered signals.

Fig. 44. Average bit error rates (BERs) of DS and FH.
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Fig. 45. Average bit error rates (BERs) of DS.

Fig. 46. Average bit error rates (BERs) of FH.
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Fig. 47. Waveform of the burst impulsive noise of the channel. (a) Binary information signal s1[n], (b) modulated signal p[n]
of DS, (c) burst impulsive noise w[n].
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Fig. 48. Waveform of the burst impulsive noise of the channel. (a) Binary information signal s1[n], (b) modulated signal p[n]
of FH, (c) burst impulsive noise w[n].
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Fig. 49. Average bit error rates (BERs) of DS. The impulsive burst noise is added to the channel. We used the impulsive
synchronization technique to make the system in the receiver to synchronize with that in the transmitter through a noisy
channel. The frame length and the synchronization region are chosen as T = 300 and Q = 2, respectively. (A single bit
consists of 300 chips.)

Fig. 50. Average bit error rates (BERs) of FH. The impulsive burst noise is added to the channel. We used the impulsive
synchronization technique to make the system in the receiver to synchronize with that in the transmitter through a noisy
channel. The frame length and the synchronization region are chosen as T = 200 and Q = 2, respectively. (A single bit
consists of 200 chips.)
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Fig. 51. Average signal to noise ratios (SNRs) of DS and FH.

Fig. 52. Average signal to noise rations (SNRs) of DS. White Gaussian noise is added to the channel.
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Fig. 53. Average signal to noise rations (SNRs) of FH. White Gaussian noise is added to the channel.

Fig. 54. Average signal to noise rations (SNRs) of DS. White Gaussian noise is added to the channel. We used the impulsive
synchronization technique to make the system in the receiver to synchronize with that in the transmitter through a noisy
channel. The frame length and the synchronization region are chosen as T = 1 and Q = 0.02, respectively.
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Fig. 55. Average signal to noise rations (SNRs) of FH. White Gaussian noise is added to the channel. We used the impulsive
synchronization technique to make the system in the receiver to synchronize with that in the transmitter through a noisy
channel. The frame length and the synchronization region are chosen as T = 1 and Q = 0.02, respectively.

Fig. 56. Average signal to noise ratios (SNRs) of DS. The impulsive burst noise is added to the channel. We used the
impulsive synchronization technique to make the system in the receiver to synchronize with that in the transmitter through
a noisy channel. The frame length and the synchronization region are chosen as T = 1 and Q = 0.02, respectively.
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Fig. 57. Average signal to noise ratios (SNRs) of FH. The impulsive burst noise is added to the channel. We used the
impulsive synchronization technique to make the system in the receiver to synchronize with that in the transmitter through
a noisy channel. The frame length and the synchronization region are chosen as T = 1 and Q = 0.02, respectively.

Fig. 58. Average bit error rates (BERs) of DS.
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Fig. 59. Average bit error rates (BERs) of FH.

Fig. 60. Average bit error rates (BERs) of FH. The impulsive burst noise is added to the channel. We used the impulsive
synchronization technique to make the system in the receiver to synchronize with that in the transmitter through a noisy
channel.
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Fig. 61. Average bit error rates (BERs) of FH. The impulsive burst noise is added to the channel. We used the impulsive
synchronization technique to make the system in the receiver to synchronize with that in the transmitter through a noisy
channel. The frame length and the synchronization region are chosen as T = 10 and Q = 4, respectively. (The pulse duration
is chosen as T = 10.)

First, by sending synchronization data, we made
the chaotic system in the receiver to synchronize.
Then, we added white Gaussian noise to the chan-
nel. Therefore, in this case, the synchronization was
not disturbed by noise. The experimental results
are shown in Figs. 52 and 53. We also examined
the impulsive synchronization method to transmit
signals through noisy channels. In the case of the
continuous-time dynamical systems, the impulsive
synchronization is robust to additive channel noise.
However, the noise level is supposed to be suffi-
ciently low to satisfy the high SNRs. The average
SNRs for both white Gaussian noise and burst im-
pulsive noise are illustrated in Figs. 54–57. The DS
is weak for a burst impulsive noise. On the contrary,
the FH is weak for a white Gaussian noise.

7.2.2. Binary information data

Figures 58 and 59 show the average BERs of DS
and FH as a function of multiple users. In our
computer study, three kinds of pulse durations are
examined, that is, durations 10, 15, and 20 are ex-
amined for DS, and 2.5, 5.0, and 7.5 for FH. Fur-
thermore, we verified the average BERs by using
a burst impulsive noise. The computer results are
given in Figs. 60 and 61.

8. Chaos-Based Time-Division and
Frequency-Division Multiplexing

In addition to the code-division multiplexing (the
direct sequence and the frequency hopping), there
are two basic multiplexing techniques: One is
frequency-division multiplexing (FDM), and the
other is time-division multiplexing (TDM) [Carlson,
1975]. Recently, new chaos-based FDM and TDM
techniques are proposed in [Itoh & Chua, 1997a]. In
this section, these multiplexing techniques are dis-
cussed from the viewpoint of the chaos-based spread
spectrum communication systems (chaos-based DS
and FH systems).

8.1. Chaos-based TDM

Time-division multiplexing is a technique for trans-
mitting several messages on one facility by divid-
ing the time domain into slots, one slot for each
message. The principle of TDM is described as
follows [Carlson, 1975]: Several input signals, all
bandlimited to W by lowpass filters, are sequen-
tially sampled at the transmitter by a rotary switch.
The switch makes one complete revolution in Ts ≤
1/2W , extracting one sample from each input. If
there are M inputs, the pulse to pulse spacing is
Ts/M . At the receiving side a similar rotary switch
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separates the samples and distributes them to a
bank of lowpass filters, which in turn reconstruct
the original message.
A key problem for TDM is identical revolu-

tion of rotary switches at both transmitting and
receiving sides. Since chaotic dynamical systems
inherently generate broadband spectrum signals or
spread spectrum signals, the high frequency sig-
nal for rotating the switch is extracted by apply-
ing the chaotic sequences {x[n]} to some highpass
or bandpass filters (digital filters) [Itoh & Chua,
1997b]. These filters have the form of the difference
equation

y[n] =
r
∑

i=0

Lix[n− i]−
m
∑

i=1

Kiy[n− i] , (120)

where the sequence {y[n]} is the output of the fil-
ter and Li, Ki are some constants. That is, the
delayed chaotic sequence is used to create the revo-
lution signals. Since the output sequence {y[n]} is
chaotic, the switching interval is also chaotic. How-
ever, if we use an identical revolution at the trans-
mitting and receiving sides, that is, if we can use
transmitter’s chaotic sequences, the demodulation
is possible. There are a number of ways to rotate
the switches. For example, if the K users share the
channel, then the revolution sequence is given by

p[n] = sk[n] , (121)

k =

(

n
∑

m=0

y[m] + |y[m]|

2|y[m]|
+ 1

)

(mod K) + 1 ,

(122)

where sk[n] is the information signal of the kth user.
Decoding is done by calculating the number k from
y[n] and sending p[n] to the kth output.
If we replace {y[n]} with the sequence

{sin nω|ω = const.}, then the standard TDM
system is obtained.

8.2. Chaos-based FDM

The principle of FDM is described as follows
[Carlson, 1975]: Several bandlimited input mes-
sages individually modulate the subcarriers f1, f2,
etc. The modulated signals are then summed to
produce the baseband signal xb(t). The baseband
signal may then be transmitted directly or used to
modulate a transmitted carrier frequency f . The
demodulation of FDM is accomplished in three
steps. First, the carrier demodulator reproduces the

baseband signal xb(t). Then the modulated subcar-
riers are separated by a bank of bandpass filters in
parallel, and the messages are individually detected.
In FDM, several input messages individually

modulate the subcarriers. By applying the chaotic
sequence {x[n]} to some highpass filters or band-
pass filters,

y(j)[n] =
r
∑

i=0

L
(j)
i x[n− i]−

m
∑

i=1

K
(j)
i y

(j)[n− i] ,

(123)

we get the chaotic subcarriers y(j)[n] which are sepa-
rable in the frequency domain [Itoh & Chua, 1997b].
The modulator consists of multiplication of subcar-
riers y(j)[n] by sj[n]

p[n] =
K
∑

j=i

y(j)[n]sj[n] . (124)

Decoding is done by averaging q[n] = p[n]y(j)[n]−1

or applying q[n] with lowpass filters. The infor-
mation signal can be recovered, if some identical
subcarriers are obtained at the receiving side. Con-
sidering the property of the chaos-based FH and
DS, we don’t need the completely separable carriers
in the frequency domain. Hence, the chaos-based
FDM is considered to be a special case of the chaos-
based FH. Furthermore, if we replace {y(j)[n]} with
the sequence {sin nω(j)|ω(j) = const.}, then the
standard FDM system is obtained.

8.3. Continuous-time version of
chaos-based TDM and FDM

In case of continuous-time dynamical systems, the
chaotic carriers y(j)(t) for TDM and FDM are ex-
tracted from a chaotic signal x(t) by using the fol-
lowing differential equations:

dmy(j)

dtm
=

r
∑

i=0

A
(j)
i

dix

dti
−
m−1
∑

i=0

B
(j)
i

diy(j)

dti
, (125)

where A
(j)
i and B

(j)
i are constants. That is, the

lowpass filters and bandpass filters are realized by
using these equations. Therefore, we can derive the
continuous-time version of chaos-based TDM and
FDM easily. Their details and computer simula-
tions are given in [Itoh & Chua, 1997a, 1997b].

9. Conclusion

We have proposed a new scheme for spread spec-
trum communication which transmits both analog



Spread Spectrum Communication via Chaos 213

and binary data by using chaotic carriers. Many
spread spectrum communication systems are us-
ing the delayed chaotic sequences to create carri-
ers. Our computer studies show that some systems
have a SNR of at least 20 dB and a BER of less
than 0.001 for ten users.
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