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Abstract—Watermarking has become a technology of choice for
a broad range of multimedia copyright protection applications.
Watermarks have also been used to embed format-independent
metadata in audio/video signals in a way that is robust to common
editing. In this paper, we present several novel mechanisms for ef-
fective encoding and detection of direct-sequence spread-spectrum
watermarks in audio signals. The developed techniques aim at i)
improving detection convergence and robustness, ii) improving
watermark imperceptiveness, iii) preventing desynchronization
attacks, iv) alleviating estimation/removal attacks, and finally, v)
establishing covert communication over a public audio channel.
We explore the security implications of the developed mechanisms
and review watermark robustness on a benchmark suite that
includes a combination of audio processing primitives including:
time- and frequency-scaling with wow-and-flutter, additive and
multiplicative noise, resampling, requantization, noise reduction,
and filtering.

Index Terms—Audio signals, covert communication, desynchro-
nization, estimation attacks, spread-spectrum, watermarking.

I. INTRODUCTION

W
ITH the growth of the Internet, unauthorized copying

and distribution of digital media has never been easier.

As a result, the music industry claims a multibillion dollar an-

nual revenue loss due to piracy [1], which is likely to increase

due to peer-to-peer file sharing Web communities. One source

of hope for copyrighted content distribution on the Internet lies

in technological advances that would provide ways of enforcing

copyright in client-server scenarios. Traditional data protection

methods such as scrambling or encryption cannot be used since

the content must be played back in the original form, at which

point, it can always be rerecorded and then freely distributed. A

promising solution to this problem is marking the media signal

with a secret, robust, and imperceptible watermark (WM). The

media player at the client side can detect this mark and conse-

quently enforce a corresponding e-commerce policy.

Recent introduction of a content screening system that uses

asymmetric direct sequence spread-spectrum (SS) WMs has

significantly increased the value of WMs because a single

compromised detector (client player) in that system does not

affect the security of the content [2]. In order to compromise

the security of such a system without any traces, an adversary

needs to break in the excess of 100 000 players for a two-hour

high-definition video.
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A. Watermarking Technologies

Audio watermarking schemes rely on the imperfections of

the human auditory system (HAS) [3]. Numerous data hiding

techniques explore the fact that the HAS is insensitive to small

amplitude changes, either in the time [4] or frequency [5]–[7]

domains, as well as insertion of low-amplitude time-domain

echoes [8]. Information modulation is usually carried out using:

SS [9] or quantization index modulation (QIM) [10]. The main

advantage of both SS and QIM is that WM detection does not

require the original recording and that it is difficult to extract

the hidden data using optimal statistical analysis under certain

conditions [11].

However, it is important to review the disadvantages that both

technologies exhibit. First, the marked signal and the WM have

to be perfectly synchronized at WM detection. Next, to achieve

a sufficiently small error probability, WM length may need to

be quite large, increasing detection complexity and delay. Fi-

nally, the most significant deficiency of both schemes is that by

breaking a single player (debugging, reverse engineering, or the

sensitivity attack [12]), one can extract the secret information

(the SS sequence or the hidden quantizers in QIM) and recreate

the original (in the case of SS) or create a new copy that in-

duces the QIM detector to identify the attacked content as un-

marked. While an effective mechanism for enabling asymmetric

SS watermarking has been developed [2], an equivalent system

for QIM does not exist to date.

B. Techniques for SS Watermarking of Audio

In this paper, we restrict our attention to direct-sequence SS

WMs and develop a set of technologies to improve the effec-

tiveness of their embedding and detecting in audio. WM robust-

ness is enabled using i) block repetition coding for prevention

against de-synchronization attacks [13] and ii) psycho-acoustic

frequency masking (PAFM). We show that PAFM creates an im-

balance in the number of positive and negative WM chips in the

part of the SS sequence that is used for WM correlation detec-

tion and that corresponds to the audible part of the frequency

spectrum. To compensate for this anomaly, we propose a iii)

modified covariance test. In addition, to improve reliability of

WM detection, we propose two techniques for reducing the vari-

ance of the correlation test: iv) cepstrum filtering and v) chess

WMs. Since we embed SS WMs in the frequency domain, the

energy of a WM is distributed throughout the entire synthesis

block, making SS WMs audible in blocks that contain quiet pe-

riods. We solve this problem using vi) a procedure that identifies

blocks where SS WM may be audible to decide whether to use

a particular block in the WM embedding/detection process. Fi-

nally, we propose vii) a technique that enables reliable covert

communication over a public audio channel.
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In order to investigate the security of SS WMs, we explore

the robustness of such a technology with respect to watermark

estimation attacks [2]. To launch that attack, an adversary is

assumed to know all the details of the WM codec, except the

hidden secret. We present a modification to the traditional SS

WM detector that viii) undoes the attack and, hence, forces the

adversary to add an amount of noise proportional in amplitude to

the recorded signal in order to successfully remove an SS WM.

We have incorporated these techniques i)-viii) into a system

capable of reliably detecting a WM in an audio clip that has

been modified using a composition of attacks that degrade the

original audio characteristics beyond the limit of acceptable

quality. Such attacks include fluctuating scaling in the time and

frequency domain, compression, addition and multiplication of

noise, resampling, requantization, normalization, filtering, and

random cutting and pasting of signal samples.

In Section II, we review the basic aspects of SS watermarking,

and in Section III, we describe the specifics for audio WM. We

consider the overal security aspects in Section IV and present

final remarks in Section V.

II. BASICS OF SPREAD-SPECTRUM WATERMARKING

The media signal to be watermarked can be mod-

eled as a random vector, where the elements are independent

identically distributed (i.i.d.) Gaussian random variables, with

standard deviation , i.e., . 1 Because actually

represents a collection of blocks of samples from an appropriate

invertible transformation on the original audio signal [5], [7],

[9], such modeling is arguable and is further discussed in Sec-

tion V. A watermark is defined as a direct SS sequence , which

is a vector pseudo-randomly generated in . Each

element is usually called a “chip.” WM chips are generated

such that they are mutually independent with respect to the orig-

inal recording . The marked signal is created by ,

where is the WM amplitude. The signal variance directly

impacts the security of the scheme: the higher the variance, the

more securely information can be hidden in the signal. Simi-

larly, higher yields more reliable detection, less security, and

potential WM audibility.

Let denote the normalized inner product of vectors and

, i.e., with . For example, for

as defined above, we have . A WM is detected by

correlating (or matched filtering) a given signal vector with :

(1)

Under no malicious attacks or other signal modifications, if

the signal has been marked, then , else

. The detector decides that a WM is present if ,

where is a detection threshold that controls the tradeoff be-

tween the probabilities of false positive and false negative de-

cisions. We recall from modulation and detection theory that

under the condition that and are i.i.d. signals, such a de-

1N (a; b) denotes a Gaussian with mean a and variance b .

Fig. 1. Process of WM embedding: conversion of a block of time-domain
samples into the MCLT domain, SS WM addition, and conversion back to the
time-domain.

tector is optimal [14]. The probability of a false positive

detection (false alarm) is

erfc (2)

and the probability of a false negative detection (misde-

tection) is

erfc (3)

Straightforward application of the principles above provides

neither reliability nor robustness. In the following subsections,

we outline the deficiencies of the basic SS WM paradigm and

provide solutions for improved WM robustness, detection reli-

ability, and resilience to certain powerful attacks.

III. HIDING SPREAD-SPECTRUM SEQUENCES

IN AUDIO SIGNALS

In our watermarking system, the vector is composed of

magnitudes of several frames of a modulated complex lapped

transform (MCLT) [15] in a decibel (dB) scale. The MCLT is a

2 -oversampled filterbank that provides perfect reconstruction.

The MCLT is similar to a DFT filterbank, but it has properties

that makes it attractive for audio processing, especially when

integrating with compression systems, because signals can

easily be reconstructed from just the real part of the MCLT

[15]. After addition of the WM, we generate the time-domain

marked audio signal by combining the vector with

the original phase of and passing these modified frames to

the inverse MCLT. Fig. 1 illustrates this process on an example

time-domain frame. Typically, WM amplitude is set to a fixed

value in the range 0.5–2.5 dB. For example, for dB,
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Fig. 2. PAFM: (Left) Example MCLT frequency block with an identified
masking function and (right) an example of how WM addition increases the
number of positive chips that correspond to the audible part of the MCLT block.

trained ears cannot statistically pass a distinction test between

watermarked and original content for a benchmark suite con-

sisting of pop, rock, jazz, classical, instrument solo, and vocal

musical pieces. For the typical 44.1 kHz sampling, we use a

length-2048 MCLT. Only the coefficients within 200 Hz–2 kHz

are marked, and only the audible magnitudes in the same

sub-band are considered during detection. Sub-band selection

aims at minimizing carrier noise effects as well as sensitivity to

downsampling and compression.

A. Psycho-Acoustic Frequency Masking: Consequences and

Remedies

The WM detector should correlate only the audible frequency

magnitudes with the WM [7] because the inaudible portions of

the frequency spectrum are significantly more susceptible to at-

tack noise. That reduces the effective watermark length because

the inaudible portion often dominates the frequency spectrum

of an audio signal [6].

In order to quantify the audibility of a particular frequency

component, we use a simple PAFM model [16]. For each MCLT

magnitude coefficient, the likelihood that it is audible averages

0.6 in the crucial 200 Hz–2 kHz subband in our audio bench-

mark suite. Fig. 2 illustrates the frequency spectrum of an MCLT

block as well as the PAFM boundary. PAFM filtering introduces

the problem of SS sequence imbalance: a problem also illus-

trated in Fig. 2. When embedding a positive chip ( ),

an inaudible frequency magnitude becomes audible if

, where returns the level of audibility for the ar-

gument magnitude for a given MCLT block. Similarly, when

embedding a negative chip ( ), an audible magnitude

becomes inaudible if . We define , , and

as the ratios of frequency magnitudes that fall within the

corresponding ranges

(4)

The expectation for the relative difference in the number of

positive and negative chips in the correlated audible part of the

SS sequence equals

(5)

where if corresponding is audible and

if is inaudible.

Asymmetric distribution of positive and negative chips in the

masked SS sequence can drastically influence the convergence

of the correlation test in (1). The convergence is affected be-

cause the expected value of the correlation test has

an additional component proportional to . For our benchmark

suite, averaged 0.057 at dB, with peak values reaching

for recordings with low harmonic content. Thus, when-

ever PAFM is used, the normalized correlation test (1) must be

replaced with a covariance test that compensates for using a

nonzero-mean SS sequence. Assuming , and , are

the mean and variance of the audible portion of selected by

positive and negative SS chips, respectively, and signal is wa-

termarked, the correlation test in (1) can be rewritten as

(6)

where the noise component of the detection test has

a mean and variance

. The mean value of the part of the

original signal that corresponds to the audible part of can be

expressed as , whereas the mean

value of the audible part of equals , where

if signal is watermarked and in the alternate

case. Thus, by using a traditional covariance test

(7)

the detector would induce a mean absolute error of

to the covariance test because of the mutual dependency of

and . Consider the following test:

(8)

which results in a noise component for this test equal

to and .
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Computation of from can be made relatively

accurate as follows. First, and are computed as means of

the audible part of the signal selected by positive and negative

chips respectively. Then, if , we conclude

that the signal has been watermarked and compensate the test in

(8) for ; in the alternate case, we compensate for

. Parameter is a constant equal to , which ensures

low likelihood of a false alarm or misdetection through selection

of (2), (3).

An error of 2 in the covariance test occurs if the original

signal is bipartitioned with the SS chips such that

. This case can be detected at WM encoding time. Then,

the encoder could signal an audio signal block as hard-to-mark,

or it could extend the length of the WM. Such cases are excep-

tionally rare for relatively long SS sequences and typical music

content rich in sound events. Note that the exact computation of

and would also resolve the error problem incurred in the

original covariance test in (6) through exact computation of .

Thus, the two tests in (6) and (8) are comparable and involve

computation of similar complexity. On super-pipelined archi-

tectures, we expect the test in (8) to have better performance via

loop unfolding, as it does not use branch testing.

B. Preventing the Desynchronization Attack

The correlation metrics from (1)–(3) are reliable only if

the majority of detection chips are aligned with those used

in marking. Thus, an adversary can attempt to desynchronize

the correlation by fluctuating time- or frequency-axis scaling

within the loose bounds of acceptable sound quality. To prevent

such attacks, we use a multitest methodology that relies on

block repetition coding of chips of the WM pattern.

It is important to define the degrees of freedom for time- and

frequency-scaling that preserves the relative fidelity of the at-

tacked recording with respect to the original. The HAS is much

more tolerable to constant scaling rather than wow-and-flutter

(variations in scaling over time). Hence, we adopt the following

tolerance levels, which are appropriate in practice: for

constant time-scaling and for constant frequency-

scaling and scaling variance along both time and

frequency.

1) Block Repetition Coding: In the first step, we provide

resilience against fluctuations in playtime and pitch bending

(wow-and-flutter) of up to a fixed parameter , which de-

limits the maximum fluctuation magnitude independently along

any of these two dimensions. As common standard values for

wow-and-flutter for modern turntables are significantly below

0.01, we adopt this value as our robustness limit.

We represent an SS sequence as a matrix of chips

, , and , where is the number

of chips per MCLT block, and is the number of blocks of

chips per WM. Within a single MCLT block, each chip

is spread over a sub-band of consecutive MCLT coefficients.

Chips embedded in a single MCLT block are then replicated

along the time axis within consecutive MCLT blocks. An ex-

ample of how redundancies are generated is illustrated in Fig. 3

(with fixed parameters , for all and ). Widths

Fig. 3. Example of block repetition coding along the time and frequency
domain of an audio clip. Each block is encoded with the same bit, whereas the
detector integrates only the center locations of each region.

of the encoding regions , are computed using a

geometric progression

(9)

where is the width of the decoding region (central to the en-

coding region) along the frequency. Similarly, the length of the

WM in groups of constant , MCLT

blocks watermarked with the same SS chip block is delimited

by , where is the width of the decoding

region along the time-axis. Lower bound on the replication in

the time domain is set to 100 ms for robustness against crop-

ping or insertion.

If a WM length of MCLT blocks does not produce

satisfactory correlation convergence, additional MCLT blocks

( ) are integrated into the WM. Time-axis replica-

tion , for each group of these blocks is recursively

computed using the geometric progression (10). Within a region

of samples watermarked with the same chip , only the

center samples are integrated in (1). It is straightforward

to prove that such generation of encoding and decoding regions

guarantees that regardless of induced wow-and-flutter limited to

, the correlation test is performed in perfect synchronization.

Typical redundancy parameters are i) constant replication along

time axis 5–10 MCLT blocks and ii) geometrically progressed

replication along the frequency axis such that typically 50–120

chips are embedded within the target sub-band 200–2 kHz.

2) Multiple Correlation Tests: The adversary can combine

wow-and-flutter with a stronger constant scaling in time and

frequency. Constant scaling of up to along the time

axis and along the frequency axis can be performed

on an audio clip with good fidelity with respect to the orig-

inal recording. Resilience to static time- and pitch-scaling is ob-

tained by performing multiple correlation tests as follows:

1) pointer 0; progress ; ( de-

notes WM length in MCLT blocks.
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Fig. 4. Example of how a WM is detected during the search process. The
correlation test that corresponds to one particular time- and frequency-scaling
has synchronized the WM with the MCLT block indexed 671.

2) load buffer with MCLT co-efficients

from progress consecutive MCLT blocks

starting from the MCLT block indexed with

pointer.

3) for time.scaling to step

and for frequency.scaling to

step , correlate buffer with WM

scaled according to time.scaling and fre-

quency.scaling.

4) if (WM found in buffer with

time.scaling ) then progress

else progress .

5) pointer progress; goto 2).

The search algorithm initially loads a buffer of MCLT

coefficients from consecutive MCLT blocks. Then,

the loaded contents are correlated with different scalings of

the searched WM; the scalings are such that they create a

grid over with minimal distance

between points (tests). Due to block redundancy coding, each

test can detect a WM if the actual scaling of the clip is

within the region. The test

yielding the greatest correlation

is compared with the detection threshold to determine WM

presence. If WM is found, the entire buffer is reloaded with

new MCLT coefficients. Otherwise, the content of the buffer is

shifted for MCLT blocks, and a new set of tests is performed.

In a typical implementation, for , in order to cover

and , the WM detector computes 105 dif-

ferent correlation tests. The search step along the time axis de-

noted as typically equals between one and four MCLT blocks.

An example is shown in Fig. 4. Note that the main incentive

for providing such a mechanism to enable synchronization is

the fact that, within the length of the WM, the adversary re-

ally cannot move away from the selected constant time and fre-

quency scaling more than ; such a change would induce

intolerable sound quality. If the attacker is within the assumed

attack bounds, the described mechanism enables the detector to

Fig. 5. Demonstration of an original MCLT block and its cepstrum filtering.
The dashed line represents the CF-envelope subtracted from the original MCLT
block.

conclude whether there is a WM or not in the audio clip based

on the SS statistics from (1) and regardless of the presence of

the attack.

C. Cepstrum Filtering

The variance of the original signal directly affects the car-

rier noise in (1). Audio clips with large energy fluctuations or

with strong harmonics are especially bound to produce large .

Thus, we propose here a nonlinear processing step to reduce

the carrier noise. One approach is to subtract a moving average

from the frequency spectrum right before correlation: a sort of

whitening step. Unfortunately, as bits of the SS sequence are

spread over frequency ranges, this technique induces partial re-

moval of the WM chips. We have developed a cepstrum filtering

(CF) technique that produces significantly better results than

just spectral whitening. With CF, we reduce in (1) through

the following steps:

1) DCT —compute the cepstrum of the

dB magnitude MCLT vector under test via

the discrete cosine transform.

2) , —filter out the first

(typically ) cepstrum coeffi-

cients.

3) IDCT —reconstruct the frequency

spectrum via an inverse DCT. The filtered

frequency spectrum replaces in the cor-

relation detector (1).

The rationale behind CF is that large variations in can only

come from large variations in since is limited to a small

value . Thus, by filtering out large variations in , we can

reduce the carrier noise significantly, without affecting much the

expected value . That is particularly efficient if the WM

sequence has a nonwhite spectrum containing more noise at

higher frequencies, as discussed in the next subsection. Fig. 5
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Fig. 6. (a) Convergence of the normalized correlation C(y;w) with WM
length for a nonwatermarked signal. Top three plots: 90% percentile limits of
C(y; w) (90% of the correlation values are under each curve), for a traditional
purely random SS sequence, a perfect WM (PW), and a chess WM (CW).
Bottom three plots: Corresponding standard deviations of C(y; w) in the same
order. (b) Simple state machine that produces a chess WM (p > 0:5).

illustrates the impact of CF on the signal variance, which is typ-

ically reduced by a factor of almost four. Thus, in order to attain

the performance of CF detector, a non-CF detector must inte-

grate almost four times more magnitude points.

D. Chess Watermarks

Because of the relatively short MCLT frames (30 ms), we

assume that the audio signal has a slowly varying magnitude

spectrum. Thus, for short WMs, a possible sequence in time of

several consecutive positive WM chips can pose false alarms if

correlated with large positive values. In practice, that problem

occurs frequently for quiet clips with strong harmonics (e.g.,

piano or sax solo). To alleviate the problem, it is important to

attenuate the DC component of the WM chips along the time

direction.

We define a perfect WM (PW) as a sequence of alternating

positive and negative chips, along both the time and frequency

axis. Correlation with PW results in highly improved correla-

tion convergence for a nonwatermarked signal, as illustrated

in Fig. 6. To leverage the convergence efficacy of PW with

the security of pseudo-random SS sequences, we introduce a

chess-WM (CW). We define a CW as a stochastic approximation

to a PW by using the simple first-order state machine depicted

in Fig. 6. Whereas the probability of switching from the “0”

state to the “1” state for traditional SS sequences is desired to

be one-half, we built CWs to enforce frequent toggling of bits

along the time axis or, equivalently, to emphasize high frequen-

cies in the WM sequence. We typically select . For a

sufficiently large , the randomness reduction in the sequence

domain does not pose a security threat, while resulting in corre-

lation convergence similar to PW (typically ).

E. Improving the Inaudibility of Spread-Spectrum Watermarks

in Audio

SS WMs can be audible when embedded in the MCLT do-

main, even at low magnitudes (e.g., dB). This can happen

in blocks where certain parts (up to 10 ms) are quiet, whereas

the remainder of the block is rich in audio energy. Since the SS

sequence spreads over the entire MCLT block, it can cause au-

dible noise in the quiet portion of the MCLT block (see Fig. 7).

To alleviate that problem, we detect MCLT blocks with dy-

namic content where an SS WM may be audible if added. The

blocks are identified according to an energy criterium, for ex-

ample, as descried below. WMs are not embedded nor detected

in such blocks. Fortunately, such blocks do not occur often in

audio content; in our benchmark set, we identified up to

of MCLT blocks per WM as potential hazard for audibility.

By not marking these blocks, the corresponding correlation is

bound to a lower expected value , which

causes only a minor effect on detector’s decision. The detec-

tion of hazardous blocks is performed on each length- MCLT

block using the following algorithm.

1) Compute the interval energy level

,

for each of the interleaved subin-

tervals of the tested signal in the

time-domain (commonly ). Block

subintervals are illustrated in Fig. 7.

2) if ( ) then WM

is audible in the block. Parameter is

empirically determined.

F. Covert Communication Over Audio Channels

SS provides only means of embedding (hiding)

pseudo-random bit sequences into a given signal carrier

(audio clip). One trivial way to embed an arbitrary message

into a SS sequence is to use a pool of WMs such that each WM

represents a symbol from an alphabet used to create the covert

message. Depending on the symbol to be sent, the encoder

selects one of the WMs from the pool and marks the next

consecutive part of audio with this WM. The detector tries all

WMs from the pool, and if any of the correlation tests yields

a positive test, it concludes that the word that corresponds to

the detected WM has been sent. Since a typical WM length

in our implementation ranges from 11 to 22 s, to achieve a

covert channel capacity of just 1 b/s, the detector is expected

to perform between 210 and 221 different WM tests. Besides

being computationally expensive, this technique also raises the

likelihood of a false alarm or misdetection by several orders of

magnitude.

Therefore, it is clear that a covert channel cannot rely solely

on WM multiplicity, and thus, some form of WM modulation

must be considered. A basic concept for the design of a mod-

ulation scheme is the observation that if we multiply all WM

chips by 1, the normalized correlation changes sign but not

magnitude. Therefore, the correlation test can detect the WM

by the magnitude of the correlation and the sign carries one bit

of information.

The covert communication channel that we have designed

uses two additional ideas. First, to add message bits, the SS

sequence is partitioned along the time-axis into equal-length

subsets , , where each consists of all WM chips

such that . Thus, there are
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Fig. 7. Example of audibility of a SS WM when embedded in the frequency domain. The black plot denotes a single MCLT block of time domain sample of the
original recording, whereas the grey line denotes the corresponding marked recording with audible noise prior to the signal peak.

Fig. 8. Embedding a permuted covert communication channel over the
temporal and spectral domain.

chip blocks of chips per each . Each bit of a message

is used to multiply the chips of the corresponding

while creating the marked content , where

and are content blocks that correspond to . A typical

example is shown in Fig. 8.

At detection time, the squared value of each partial covariance

test —computed using (1)—is accumulated to create

the final test value as follows:

(10)

Therefore, in this case has three components: i) a

mean and ii) a zero-mean Gaussian random variable (both of

them equal to zero if the content is not marked) and iii) a sum of

squares of Gaussian random variables. Thus, the likelihood of a

false alarm (2) can be computed using the upper tail of the

chi-squared pdf with degrees of freedom:

(11)

where is the Gamma function. The lower bound on the like-

lihood of a WM misdetection is computed according to (3) as

the third component in (10) can be neglected for marked sig-

nals because it is always positive. Bits of the covert message

are recovered at detection time as the sign of partial correla-

tions sign . The likelihood of a bit misdetec-

tion once a WM is detected equals

erfc (12)

Finally, in order to improve the robustness of each bit of the

encoded covert message, we perform a secret permutation

of the message bits for each MCLT subband . Thus, a per-

muted bit is combined with chip blocks along a certain

subband , (each block has chips) and then

embedded in the original content as .

This procedure aims at i) spreading each bit of the encoded

covert message throughout the entire WM for security reasons

(an attacker cannot focus only on a short part of the clip hoping

to remove the message bit) and ii) increasing the robustness of

the detection algorithm because of spreading localized variances

of noise over the entire length of a WM. The process of per-

muting bits of the message is illustrated in Fig. 8.

G. Summarizing Discussion

We have deployed the techniques described in the previous

subsections to create an audio watermarking system with strong

robustness with respect to common audio editing procedures. A

block diagram that illustrates how the developed technologies
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Fig. 9. Block diagram of the WM (left) embedding and (right) detection procedures.

are linked into a cohesive system for audio marking is presented

in Fig. 9.

A reference implementation of our data hiding technology on

an x86 platform requires 32 Kbytes of memory for code and

100 Kbytes for the data buffer. The data buffer stores averaged

MCLT blocks of 12.1 s of audio (for a WM length of 11 s).

WMs are searched with , which requires 40

tests per search point. Real-time WM detection under these cir-

cumstances requires about 15 MIPS, which is a small require-

ment for today’s DSP processors. WM encoding is an order of

magnitude faster, with smaller memory footprints. The achieved

covert channel bit rate varies in the range of 0.5–1 b/s for

and a pool of 16 different WMs.

We have tested our proposed watermarking technology using

a composition of common sound editing tools and malicious at-

tacks, including all tests defined by the Secure Digital Music

Initiative (SDMI) industry committee [17]. Such tests included

double D/A-A/D conversion, noise addition at the 36 dB level,

bandpass filtering, MP3 encoding at 64 and 32 kbps, time-scale

changing of up to 4 , wow and flutter at 0.5%, and echo in-

sertion of up to 100 ms. We used a data set of 80 15-s audio clips,

which included jazz, classical, voice, pop, instrument solos (ac-

cordion, piano, guitar, sax, etc.) and rock. In that data set, there

were no errors and from measured noise levels in the correla-

tion metric, we estimated the error probability to be well below

10 . Error probabilities decrease exponentially fast with the

increase of WM length; therefore, it is relatively easy to design

a system for error probabilities below 10 , for example. Anal-

ysis of the security of embedded WMs is presented in the next

section.

Fig. 10 shows the performance improvements, with the

modifications described above, on our benchmark set (con-

catenated into a single sound clip on these diagrams): (a) and

(b) versus (c) and (d) demonstrates strong gain in

variance due to cepstrum filtering, and (e) and (f) versus (g)

and (h) showcases slightly reduced detection reliability due

to the permuted covert communication (PCC) channel. Peaks

in the correlation test clearly indicate detection and location

of each WM. Note that the peak values for both detectors are

virtually the same; however, the negative detection for the PCC

decoder yields slightly higher variance (in our experiments, we

recorded differences up to 5%).

Finally, in order to quantify the robustness of the wa-

termarking technology with respect to a publicly available

benchmark, we show the watermark detection results against

the attacks in Stirmark Audio [18]. For that experiment, we

have selected an audio clip rich in music events (a rhythmic

latin jazz clip with trombone, piano, and alto-sax solos),

watermarked it, and then detected watermarks in the original,

the marked copy, and all 46 clips created by the Stirmark Audio

suite of attacks. The detection results are presented in Table I.

For watermarked clips, we report the minimal correlation

achieved for each of the ten watermarks embedded in the audio

clip. For the original clip, we report the maximal correlation

value throughout the search for any of the ten watermarks.

The corresponding correlation value is marked as in

Table I. The detection threshold is set to , which

results in an estimated probability of a false positive smaller

than 10 for a variety of audio clips. From Table I, we observe

that all but one attack had only minimal effect on the correlation

value. The only attack that reduced significantly the correlation

value (copysample) had a strong impact on the fidelity of the

recording so that the attacked clip almost did not resemble the

original. The parameters of the Stirmark Audio attack were the
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Fig. 10. Detection comparison for four different detection systems (a), (b) without and (c), (d) with cepstrum filtering and (e), (f) without and (g), (h) with
a permuted covert communication channel. For each diagram, the x-axis depicts the timeline in MCLT blocks, whereas the y-axis quantifies the normalized
correlation.

same as the ones included in the version of the tool available

on the Web [18].

IV. SECURITY ANALYSIS

We now evaluate the security of our watermarking mech-

anisms with respect to the watermark estimation attack.

As discussed in the previous section, we introduced block

repetition codes and multiple correlation tests to enforce

synchronization for attacks with limited variable scaling.

Therefore, in improving robustness against signal deformation

attacks, we introduced a certain amount of redundancy in

the watermarking pattern. That improves the chances that an

attacker can estimate the WM chips from the marked signal

[19]. Thus, we need to quantify the efficiency of such attacks

and devise new mechanisms to protect against them.

In order to simplify the formal description of block repetition

codes in our audio WM codec, we now modify slightly our no-

tation. The marked signal is created by adding the WM with

certain magnitude to the original

(13)

Vectors and have samples, whereas has

chips, each of them replicated successively times. The WM

detector correlates the averages of the central elements of

each region marked with the same chip, where commonly,

, and . Such a detector can tolerate fluctuation in

content scaling up to signal coefficients.
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TABLE I
WATERMARK DETECTION RESULTS ON AUDIO CLIPS ATTACKED WITH THE STIRMARK AUDIO BENCHMARK. PARAMETERS OF THE

ATTACKS ARE INHERITED FROM THE VERSION OF THE TOOL AVAILABLE ONLINE

The involved block repetition code improves the detection,

but it also improves the efficacy of the estimation attack. If all

details of the embedder are known (except ), the adversary

can compute the WM estimate, amplify it with a factor ,

and then subtract the amplified attack vector from the marked

content [2].

Theorem 1: Given a set of samples of marked with the

same chip such that

(14)

the optimal estimate of the hidden WM chip is given by

sign (15)

See [2, Lemma 1] for proof. Note that .

Theorem 2: The optimal WM estimation, as presented in

Theorem 1, yields the following probability of estimation error

per WM chip:

erfc (16)

See [2, Coroll. 1] for proof.

The estimation attack is performed by subtracting an ampli-

fied WM estimate from the marked content :

(17)

The maximum value of the amplification factor depends

solely on the desired level of audibility for the attack. In

practice, can be much greater than because the content

marking entity is subject to much more stringent content

fidelity constraints than an attacker.

Corollary 1: The variance of the attacked

signal depends on as presented:

erf (18)

Proof (sketch): By replacing ( ) in (18) with (

sign ), we obtain

(19)

which proves (18) to be correct.

Corollary 2: After the attack, the expected correlation value

computed by the WM detector equals

erf (20)

with .

Fig. 11 demonstrates how and change as in-

creases under fixed , with varying from 2.5 to

6.5.

From (20), we compute that in order to draw the expected

correlation value to , the attacker has to induce

equal to

erf
(21)

If or , the estimation attack adds noise to the

marked signal. Part of this noise is an accurate estimate of the

WM, and it actually reverses the effect of the watermarking

process. The remainder of the attack vector is applied in addi-

tion to the existing marked data.
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Fig. 11. Diagram of the dependency ofE[z �w] and V ar[z] as� increases
from 0 to 10 for fixed � = 1:5 and variable (� =

p
m) 2 f2:5 . . . 6:5g.

Corollary 3: The estimation attack on a marked content de-

scribed in (17) induces the following additive noise with respect

to the original signal

(22)

whereas the added noise with respect to the marked copy equals

(23)

A realistic attack/detect watermarking model would assume

the following criteria.

Criterion 1: The amplitude of the attack is limited by the

induced noise as .

Criterion 2: An attack with fixed draws the expected

value of the correlation to a value . For a fixed

WM length and detection decision threshold that

achieves symmetric probability of false alarm and misde-

tection , the detection error probability

is upper bounded by at most

erfc (24)

It is important to stress that the efficiency of SS watermarking

and detection depends by and large on the parameters that are

content dependent.

Problem 1: For a given , what is the optimal value of

such that under the optimal estimation attack described in (17)

and quantified using , maximal is induced while Crite-

rion 2 is satisfied?

The posed problem can be solved in two steps.

1) From Criterion 2, we can compute the minimal expected

value for the normalized correlation after

the attack:

erf
(25)

Fig. 12. Diagram of the dependency of N=O (26) with respect to � for given
(� =

p
m) 2 f2 . . . 6:5g and � = 0:3.

Fig. 13. Dependency diagram for P (24) with respect to n for given
(� =

p
m ) 2 f2 . . . 6:5g and � = 0:3.

2) From (16), (21), and (22), we can compute the depen-

dency of the induced on the WM magnitude :

erf
erf (26)

from which we can numerically find the desired that

maximizes the induced .

Fig. 12 depicts the dependency of with respect to for

. Optimal values , which result in

maximal , are depicted using the symbol. Fig. 13 illus-

trates the probability of a detection error (for ) with

respect to a given WM length of chips and for

and .
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Fig. 14. Illustration of the undo of the estimation attack.

A. Undoing the Estimation Attack

In this subsection, we demonstrate a remedy for the estima-

tion attack described in (17) (see Fig. 14). The main idea is to

optimally reverse the attack, i.e., estimate the signal coefficient

from the attacked signal . We also demonstrate that a slight

modification to the attack in (17) succeeds in removing the WM

(or disabling the detector to identify the WM) by adding addi-

tional noise to the attacked signal.

Definition 1: The undo operator , where , ,

is defined as follows:

sign

sign
(27)

Theorem 3: Given a signal coefficient created using the

estimation attack as sign , where is a weighted

sum of a Gaussian zero-mean i.i.d. variable

and a SS sequence chip and , optimal estimation of

the signal such that is minimal is given using the

undo operator .

Proof (sketch): When doing the estimation attack, the ad-

versary shifts the positive and negative pdf of the marked signal

for against the sign of . The undo operation described in

(27) retrieves all values of the original signal ,

. Now, let us define a subset s.t.

iff . Since for a zero-mean Gaussian distribu-

tion of and , , then is the

optimal estimation of based on a given s.t. .

Similarly, since , is an optimal es-

timation of based on s.t. .

Corollary 4: The expected value for the correlation of the

recovered and is given by

erfc erfc erfc erfc (28)

where , ,

, and .

Proof (sketch): The undo of the estimation attack cannot

recover the magnitudes of that got

Fig. 15. Effect of the undo test on the correlation test. As � increases, the
figure shows how E[z � w] and E[u � w] change for fixed � = 4 and variable
� 2 [0:5 . . . 3].

mixed with during the attack. We com-

pensate the final correlation as follows:

with

(29)

where is a function of the Gaussian distribution cen-

tered at with variance , which results in (28).

Fig. 15 illustrates the effect of the undo operation on WM

detection. Whereas the correlation value of a traditional SS

WM detector inevitably converges to zero, the corre-

lation after the undo operation yields .

Thus, according to (24), for a sufficiently long SS sequence

( elements of are integrated), a detection threshold at

would yield desired detection results,

regardless of the strength of the estimation attack. In the region

of interest, i.e., s.t. , the correlation variance
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satisfies , where is computed in Corollary

1.

The detector cannot possibly know the attack amplification

value while performing the detection. However, note that for

any , [with

], where is a signal which does not have embedded.

Thus, the detector can perform tests for real-

istic values of that can potentially break

the system (e.g., ).

The power of the undo operation is based on the inequivalent

distribution of magnitudes marked with positive and negative

chips. Therefore, the attacker must impose additional noise to

the attacked signal such that the latter distributions are equal-

ized. While the ”smart noise” draws to zero, the

additional noise enables that no undo operation is able to re-

trieve even a small part of the original distributions of the signal

marked with positive and negative chips.

A modified undo operation

sign

sign

with may strengthen the detection procedure; however,

its effectiveness is very limited. Because of the undo operation,

the estimation attack needs to be modified as follows:

(30)

where is a noise pattern aiming to equalize the distributions

of magnitudes marked with positive and negative chips. For ex-

ample, white noise of amplitude commonly creates

a difficult task for the designer of an undo operation.

V. FINAL REMARKS

We now consider three key aspects of SS-based audio water-

marking.

A. Justifying the Gaussian Assumption

The linear marking (13) and detection (Corollary 4) process is

performed on the audible, averaged, and cepstrum-filtered coef-

ficients of a 2048-long MCLT analysis window [15] in the loga-

rithmic (dB) domain. We have observed that on a great variety of

audio clips, even the individual filtered coefficients can be accu-

rately modeled using a Gaussian PDF. In addition, the detector

averages the central coefficients in each repetition block,

which significantly improves the modeling accuracy due to the

central limit theorem. Thus, the final working vector extracted

from the audio clip can be highly accurately macro-modeled as

a Gaussian vector. Local correlations and nonstationarity are ef-

fectively cancelled using sufficiently large windows (e.g., 1024

window size at a sampling frequency of 44.1 kHz), cepstrum

filtering, and running-average windowing along the time axis.

B. How Does Redundancy Impact Detector and Estimator

Performance on Real-Life Data?

The reliability of detection as well as the performance of

the WM estimator depend on the variance of the original

working vector . Fig. 16 illustrates the standard deviation

Fig. 16. Standard deviation of a typical music signal computed per transform
coefficient for a 2048-long MCLT block for two different redundancy metrics
3� 5 (seen by the detector) and 5� 9 (seen by the estimator), where the two
parameters represent corresponding redundancy along the frequency and time
axis, respectively.

that the estimator sees, assuming it knows

perfectly the location of the WM and the standard deviation

that the detector sees while computing the cor-

relation test. Block repetition assumed in this case is

coefficients along the frequency and time axis, respectively. The

corresponding region for detection is coefficients.

According to Fig. 16, we locate the WM to the 200 Hz–2 kHz

region for three reasons. First, HAS is much more sensitive

to noise in this sub-band (a noise of only 4 dB can rarely be

tolerated). Second, the variance of the carrier signal is higher

in this region, providing a more robust host for data hiding

with respect to the estimation attack. Third, although the ratio

, in the proposed subband, the actual

retrieved experimentally from over 100 audio clips is only 1.18.

C. What is the Impact of the Results Obtained so far on Audio

Watermarking?

We have presented a generic recipe for using SS to hide se-

crets in multimedia content. For a typical music content, if the

SS WM is located in the 200 Hz–2 kHz sub-band, in order to

draw the correlation of the new undo correlation test to a value

that forces detection failure, the adversary needs to add total

noise in the excess of 6 dB, which may be intolerable to many

users. SS WM length that would enable false alarm accuracy of

would require approximately an 80-s music frame.

A WM of such length is difficult to synchronize at the detector.

Although block repetition codes enable wow-and-flutter toler-

ance required for most low-end turntables (e.g., 0.15% playtime

fluctuation), it is arguable whether a common HAS would dis-

card such content as of no value.

On the other hand, techniques presented in this paper may

provide better results for data hiding in video signals, as we esti-

mate that per frame, significantly more chips can be embedded,

resulting in shorter watermarks, i.e., higher robustness to frame

dropping and limited geometric distortions.
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