
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 2004 1927

Spreading Code Optimization and Adaptation in
CDMA Via Discrete Stochastic Approximation

Vikram Krishnamurthy, Senior Member, IEEE, Xiaodong Wang, Senior Member, IEEE, and George Yin, Fellow, IEEE

Abstract—The aim of this paper is to develop discrete stochastic
approximation algorithms that adaptively optimize the spreading
codes of users in a code-division multiple-access (CDMA) system
employing linear minimum mean-square error (MMSE) receivers.
The proposed algorithms are able to adapt to slowly time-varying
channel conditions. One of the most important properties of the al-
gorithms is their self-learning capability—they spend most of the
computational effort at the global optimizer of the objective func-
tion. Tracking analysis of the adaptive algorithms is presented to-
gether with mean-square convergence. An adaptive-step-size algo-
rithm is also presented for optimally adjusting the step size based
on the observations. Numerical examples, illustrating the perfor-
mance of the algorithms in multipath fading channels, show sub-
stantial improvement over heuristic algorithms.

Index Terms—Discrete stochastic optimization, linear minimum
mean-square error (MMSE) multiuser detector, spreading code
optimization, tracking.

I. INTRODUCTION

CONTINUOUS-valued stochastic approximation algo-
rithms (e.g., adaptive filtering algorithms such as least

mean squares (LMS)) have been studied in the signal processing
and communications literature [4], [24]. In comparison, little
has been done in stochastic optimization when the underlying
parameter set takes discrete values. Yet, in several stochastic
optimization problems such as the spreading code optimization
considered in this paper, the underlying parameter (spreading
code) takes only discrete values. This paper develops discrete
stochastic approximation algorithms inspired by the recently
proposed techniques in [1]–[3] appearing in the operations
research literature. We also develop and analyze a tracking
version of the algorithm for time-varying channels. The adap-
tive discrete stochastic optimization algorithms and tracking
analysis presented in this paper are also of independent interest
with applications in other areas.

Manuscript received October 21, 2002; revised February 1, 2004. The work of
V. Krishnamurthy was supported in part by an NSERC Strategic Research Grant
and by the British Columbia Advanced Systems Institute (BCASI). The work
of X. Wang was supported in part by the National Science Foundation under
Grant DMS-0225692 and in part by the Office of Naval Research under Grant
N00014-03-1-0039. The work of G. Yin was supported in part by the National
Science Foundation under Grant DMS-0304928 and in part by the Wayne State
University Research Enhancement Program.

V. Krishnamurthy is with the Department of Electrical Engineering, Univer-
sity of British Columbia, Vancouver, BC V6T 1Z4, Canada (e-mail: vikramk
@ece.ubc.ca).

X. Wang is with the Department of Electrical Engineering, Columbia Univer-
sity, New York, NY 10027 USA (e-mail: wangx@ee.columbia.edu).

G. Yin is with the Department of Mathematics, Wayne State University, De-
troit, MI 48202 USA (e-mail: gyin@math.wayne.edu).

Communicated by G. Caire, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2004.833338

For a code-division multiple-access (CDMA) system to
efficiently serve heterogeneous traffic (e.g., data, video) in
a dynamic environment, it is often necessary that the design
should involve adaptive optimization at the receiver and
transmitter. A significant amount of literature exists on adap-
tive multiuser detection for CDMA. These works consider
optimization at the receiver and assume that the transmitter pa-
rameters (rate, power, spreading codes, error-correction codes,
spreading gain) are fixed [43]. Several recent papers investigate
transmission optimization in the context of rate control, power
control, and beamforming, e.g., [20], [33], [40]. The aim of this
paper is to consider adaptive spreading code optimization at the
transmitter using discrete stochastic optimization algorithms
assuming that linear minimum mean-square error (MMSE)
multiuser detectors are employed at the receiver.

In [41], [42], optimal real-valued spreading sequences
for synchronous CDMA over additive white Gaussian noise
(AWGN) channels are analyzed. In [27], good spreading
sequences are identified with conventional matched-filter
receivers and equal received power for all users. In [36], the
problem of code sequence design is addressed in an informa-
tion-theoretic setting for which the sum of the rates of all users
is maximized. Spreading code design based on the total squared
correlation criterion has been addressed in [18], [19], [17]. In
[35], the spreading code optimization is formulated as a sophis-
ticated continuous optimization problem from the viewpoint
of interference avoidance and a greedy algorithm is used. That
work is generalized to vector channels in [31]. Note that in
realistic multipath fading channels, spreading codes that have
been a priori designed to have good correlation properties can
lead to composite signature waveform sets (due to convolution
of the channel with the spreading code) that have poor cor-
relation properties. Good composite signature waveform sets
can only be constructed with information about the channel. In
[9], [32], [34], the problem of adapting the spreading codes for
CDMA in multipath environments is addressed. However, the
formulations there are still continuous optimization problems.
In this paper, we formulate the spreading code optimization
in fading multipath channels with linear MMSE multiuser
detector as a discrete stochastic optimization problem, and
develop novel discrete stochastic approximation algorithms.

The contributions and organization of the rest of this paper are
summarized as follows. Section II describes the CDMA system
under consideration and formulates the spreading code opti-
mization problem as a discrete stochastic optimization problem.
In Section III, two decreasing step-size discrete stochastic ap-
proximation algorithms for spreading code optimization are pre-
sented together with a brief survey of discrete stochastic opti-

0018-9448/04$20.00 © 2004 IEEE



1928 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 2004

mization algorithms and justifications of using such algorithms.
The algorithms are motivated by the random search algorithms
proposed in [2] and [11].

We show that the spreading code optimization problem satis-
fies the conditions given in [2] for convergence of the algorithm
to a globally optimal spreading code. Section IV presents adap-
tive discrete stochastic approximation algorithms for spreading
code optimization in time-varying environments. Here we as-
sume an ideal error-free feedback channel. Two adaptive algo-
rithms are presented. The first comprises of the discrete sto-
chastic optimization algorithm in tandem with a fixed step-size
adaptive filtering algorithm to track the occupation probabili-
ties of the spreading codes. A mean-square analysis of the al-
gorithm is presented together with an upper bound on the error
probability of the algorithm choosing the wrong spreading code.
In addition, a computationally efficient asynchronous version of
this algorithm is given. The second scheme consists of a discrete
stochastic approximation algorithm in tandem with an adap-
tive-step-size filtering algorithm. The adaptive-step-size algo-
rithm itself consists of two cross-coupled adaptive filtering al-
gorithms—one for updating the occupation probabilities of the
spreading codes, the other to optimize the step size. A weak con-
vergence analysis of the algorithm is given which shows that
the step size converges weakly to the optimal step size. Sec-
tion V shows that the techniques developed in this paper can
be extended straightforwardly to fading multipath channels and
systems employing multiple antennas. Numerical examples are
given in Section VI. These examples illustrate the performance
of the discrete stochastic approximations algorithm in multipath
fading channels. The performance of a computationally efficient
modification of the adaptive algorithm is also illustrated. This
modification consists of replacing the adaptive filtering algo-
rithm with a sign error algorithm that operates in tandem with
the discrete stochastic approximation algorithm. Also, the per-
formance of the discrete stochastic approximation algorithms
are compared with an algorithm proposed in [34] that solves a
continuous optimization problem and then quantizes the solu-
tion to the nearest discrete solution. Section VI concludes the
paper. Some mathematical proofs are given in two appendices.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

A. Notation

Throughout the paper, we use the following notation.

• denotes discrete time (at the bit-time scale
resolution).

• denotes frame time on a coarser (slower)
time scale than . Frame time denotes bit time interval

where the positive integer
denotes the frame size.

• denotes user number.
• is the collection of unit vectors,

where denotes the -dimensional unit vector with
in the th component and zeros elsewhere.

• are generic integer valued indices.

Consider the following basic real-valued discrete-time syn-
chronous CDMA channel model:

(1)

where , , and are the received am-
plitude, data bit, and unit-energy spreading code of the th user,
respectively; and is finite variance AWGN.
(In this paper, we denote the identity matrix by .) In
a direct-sequence spread-spectrum system with spreading gain

, the spreading code of the th user is of the form

(2)

Denote

(3)

The linear MMSE detector for a given user, say User 1, is given
by [26]

(4)

The signal-to-interference-plus-noise ratio (SINR) at the output
of is given by [26]

SINR

(5)
We consider the single-user spreading code optimization

problem. (The multiuser case is addressed in Section III-E.)
Suppose that the spreading codes for all users except that of
User 1, , are fixed. Assume that the transmitted bits
are assembled into frames each comprising of bits. (For
example, in wideband CDMA (WCDMA), the frame length

can range from 150 to 9600 bits; and in CDMA 2000,
the available frame sizes range from 192 to 768 bits.) Let

denote frame time—where frame time represents
the time interval . User 1
observes a sequence of independent and identically distributed
(i.i.d.) random variables , such that at each frame
time , is an unbiased estimator of the cost
when the spreading code chosen is . Denote the set of all
possible spreading codes as

(6)

Our discrete stochastic optimization problem is as follows.
Compute

(7)

Let be the set of global maximizers and use to
denote any of the elements of .

Example—Maximizing SINR of User 1: If we choose
, then we maximize the output SINR for

User 1. In this case, represents a noisy estimate of
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User 1’s SINR. There are a number of ways of obtaining such
an estimate.

i) Observation-based estimate: Obtain a sample estimate
of based on the th frame comprising

observations, i.e.,

(8)

Compute the SINR estimate as

(9)

Note that is an asymptotically unbiased estimate
of . (cf. Proposition 1.)

ii) Bit-error based estimate: Another way of obtaining
is based on the measurement of bit-error rate.

Since for linear MMSE receivers, the bit-error rate is
well approximated by the formula SINR
[30]. We can measure the bit-error rate based on a
segment of received signals at frame time , and then
let . In general,
cannot be evaluated analytically since its distribution is
difficult to compute, which motivates the need to devise
recursive stochastic approximation algorithms.

III. DISCRETE STOCHASTIC APPROXIMATION ALGORITHMS

FOR SPREADING CODE OPTIMIZATION

There are several different classes of methods that can be used
to solve the discrete stochastic optimization problem (7); see
[3], [39] for a recent survey. When the feasible set is small
(usually 2 to 20 elements), ranking and selection methods as
well as multiple comparison methods [14] can be used to locate
the optimal solution. However, for large , the computational
complexity of these methods becomes prohibitive.

Problem (7) can also be viewed as a multiarmed bandit
problem that is a special type of infinite-horizon Markov
decision process with an “indexable” optimal policy [16].
However, as mentioned in [3], multiarmed bandit solutions and
learning automata procedures often tend to be conservative in
exploring the solution space. Moreover, in the tracking case,
where the optimal spreading code slowly evolves with time,
a bandit formulation would require explicit knowledge of the
dynamics of the change of the optimum spreading code which
is virtually unknown.

Recently, a number of discrete stochastic approximation algo-
rithms have been proposed. Several of these algorithms [1]–[3],
[13], [44] including simulated annealing type procedures [12]
and stochastic ruler [44] fall into the category of random search.
In this section, we present two algorithms. i) The first one (see
Section III-B ) is an aggressive random search procedure that is
based on the algorithms in [1], [2]. The basic idea is to generate
a homogeneous Markov chain taking values in which spends
more time at the global optimum than at any other element of .
ii) The second one (see Section III-D) is a conservative random
search motivated by the recent paper [11].

In Section IV, we will show that these algorithms can be mod-
ified for tracking time-varying optima. Finally, it is worthwhile

mentioning that there are other classes of simulation-based dis-
crete stochastic optimization algorithms such as nested partition
methods [37] which combine partitioning, random sampling and
backtracking to create a Markov chain that converges to the
global optimum, which will be examined in our future work.

A. Rationale for Discrete Stochastic Approximation

If were a continuous-valued variable (e.g., being
a compact subset of the real numbers) and were dif-
ferentiable with respect to , (7) would be a continuous-valued
stochastic optimization problem that can be solved via the fol-
lowing stochastic approximation (adaptive filtering) algorithm:

(10)

Here denotes the gradient with respect to . For decreasing
step size , it can be proved that
almost surely (a.s.) under suitable conditions. If the statistics
of the system slowly vary with time, then a constant step size

in the above algorithm can be used to track the time-
varying optimal .

However, for the optimization problem (7), is a finite dis-
crete set and the objective function in (7) is only defined on
the discrete set . Thus, the notion of gradient cannot be used
and approximation using the gradient information to identify a
“good” direction is impossible. Since cannot be
evaluated analytically, a brute-force method [28, Ch. 5.3] of
solving the discrete stochastic optimization problem involves an
exhaustive enumeration and proceeds as follows. For each pos-
sible and for large , compute the empirical average

via simulation. Then pick .
Since for any fixed , is an i.i.d. sequence

of random variables, by virtue of the strong law of large num-
bers, a.s. as . This and the
finiteness of imply that as

a.s. (11)

The above brute-force simulation method can, in principle,
solve the discrete stochastic optimization problem (7) for large

and the estimate is consistent, i.e., (11) holds. However,
the method is highly inefficient since needs to be
evaluated for all spreading codes in .

The idea of discrete stochastic approximation is to design
an algorithm that is both consistent and attracted to the max-
imum. That is, the algorithm should spend more time obtaining
observations in areas of the spreading code space
near the maximizer , and less in other areas. Thus, in discrete
stochastic approximation the aim is to devise an efficient [28,
Ch. 5.3] adaptive search (sampling) plan that allows one to find
the maximizer with as few samples as possible by not making
unnecessary observations at nonpromising values of .



1930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 2004

B. Aggressive Discrete Stochastic Approximation Algorithm

The following discrete stochastic approximation algorithm
implemented at the receiver resembles an adaptive filtering
(LMS) algorithm—it generates a sequence of spreading code
estimates where each spreading code estimate is obtained
from the old one by moving in a good direction in the sense
that it converges to an optimizer of the objective function.
The algorithm aggressively searches through at each time
instant looking for better spreading codes. As will be shown in
Section III-E, the algorithm is consistent and attracted to the
global maximum .

Notation: In Algorithm 1, the following notation is used:
is a random signature sequence generated by the

algorithm that can be thought as the state of the algorithm at
frame time . It is convenient to map the state sequence
to the sequence of unit vectors where is defined
at the beginning of Section II

(12)

That is,

where is an indicator function.

denotes the -dimensional empirical state occupation proba-
bility measure up to time of the state or, equivalently,

, i.e.,

(13)

where for each is a counter that measures the
number of times the state sequence has
visited the spreading code .

Finally, is the estimate generated by the algorithm at
frame time of the optimal signature sequence . It
is the main output of the algorithm and is fed back from the re-
ceiver to the transmitter on a frame time scale.

Algorithm 1 (Single-user spreading code adaptation—
Aggressive Search)

Step 0—Initialization: At frame time , select initial state
. Set , for all , .

Set .

Step 1—Sampling and evaluation: Given the state , com-
pute based on observations in the th frame
(see example below). Generate a candidate state from

according to a uniformly distributed random variable.
Compute using the remaining observation in
the th frame.

Step 2—Acceptance: If , then set
; otherwise set .

Step 3—Adaptive filter for updating state occupation proba-
bilities: Update state occupation probabilities

(14)

with the decreasing step size , where is defined
in (12).

Steo 4—Update estimate of optimal spreading code: If

then set ; otherwise, set and send
this new signature sequence to transmitter. Set and
go to Step 1.

Example—Maximizing SINR of User 1: If the objective func-
tion is (SINR of User 1), and SINR estimates
of the form (see (9)) are used, then the
sampling in Step 1 can be implemented as follows: For frame ,
using the first observation samples

compute the sample covariance via (8). Compute
using (9). Using the next observation samples

in frame , compute the sample covariance via (8).
Sample uniformly from . Compute

Obviously, from the preceding algorithm, and
are independent samples.

Note that the state (or equivalently, ) of Algo-
rithm 1 does not converge at all. Instead, it aggressively explores
the spreading code space . The main idea behind Algorithm
1 is that the state of the algorithm is a homogeneous
Markov chain that is designed to spend more time at the global
maximizer than any other state.

The maximization in Step 4 yields

Hence, the estimate of the optimal spreading code is merely
the particular state in at which the Markov chain has
spent most time. We will show that a.s., meaning
that the algorithm is both attracted to the maximum (i.e., spends
more time in compared to any other ) and is consistent.

C. Implementation Aspects and Variations of Algorithm 1

Algorithm 1 is depicted in Fig. 1. Steps 1 to 4 are computed
locally at the receiver. The output of Step 4, namely, the estimate
of the optimal signature sequence (or more efficiently its
index) at frame time , is fed back to the transmitter at a much
slower time scale than the bit time scale.

One of the key advantages of using the SINR cost function
above is that the SINR estimate of any candidate
spreading code can be evaluated directly at the receiver,
without requiring the receiver to send this candidate to the
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Fig. 1. Schematic diagram of Algorithm 1 implementation at the receiver.

transmitter. Thus, it is not necessary to send the state of
the algorithm to the transmitter. Since the algorithm is attracted
to the globally optimal signature sequence, the sequence
of estimates sent by the receiver to the transmitter are
consistently closer to the globally optimal signature sequence
than any other signature sequence.

Memory and Computational Complexity: It is clearly not
necessary to store the sequences , , and for all

. They can be overwritten at each time. The main memory
overhead required for the algorithm is storing the local variable

which requires memory.
The total computational cost is the cost per iteration times

the number of iterations. Regarding the number of iterations,
due to the attraction property of the algorithm, it spends more
time at the globally optimal signature sequence than any other
candidate, see discussion following Theorem 1 in Section III-E.
The computational cost per iteration is as follows. Sampling
uniformly from (Step 1) requires minimal cost since
sampling uniformly from is implemented as

where . Regarding Step 3, as
in [2], it can be written in terms of the occupation time
vector as rather than the empirical
occupation probabilities . This update only requires one in-
teger addition per iteration. Note that (14) is merely a recursive
way of computing . Our formulation in terms of
and the interpretation of (14) as an adaptive filtering algorithm
will be used in Section IV to devise and analyze a tracking ver-
sion of the algorithm, see Section IV-A for the complexity of
the tracking algorithm and an asynchronous implementation.

The main computational cost at each iteration involves eval-
uating , which requires compu-
tations (since is Toeplitz). Note that this calculation is
needed for calculating the linear MMSE receiver anyway, hence
it does not require additional computational overhead for the
spreading sequence adaptation.

D. Conservative Discrete Stochastic Approximation Algorithm

Here, motivated by the recent work [11], a conservative
random search algorithm is presented. Unlike Algorithm 1,
where the state of the algorithm jumps around as an irreducible
Markov chain, the state of Algorithm 2 converges a.s. to the
globally optimal spreading code. That is, the evolution of the
state of the algorithm becomes more and more conservative
as time evolves. The advantage of Algorithm 2 that follows is
that its convergence analysis holds for any frame size .
This is unlike Algorithm 1, where we require large frame size

. However, in adaptive tracking, it is not as attractive as the
tracking version of Algorithm 1, see Section IV.

Algorithm 2 (Single-user spreading code adaptation—Conser-
vative Search)

Step 0—Initialization: At frame time , initialize the
-dimensional vectors , to zero and

(vector of ones). Select initial state .

Step 1—Sampling and evaluation: Given the state ,
generate, as in Step 1 of Algorithm 1, , , and

. Update the accumulated cost, occupation times,
and average cost as

(15)

Step 2—Acceptance: If

set ; otherwise set .

Step 3—Update Estimate of Spreading Code: . Set
and go to Step 1.

Instead of using (15), Step 1 of Algorithm 2 can also be re-ex-
pressed as an adaptive filter as follows. Update the average cost
vector estimate and oc-
cupation time matrix ( diagonal matrix) as

(16)

Here, , if , ,
is defined in (12), is the diagonal matrix with
element (where is the th component of ).

The -dimensional diagonal matrix is initialized
as (or any arbitrary positive element diagonal ma-
trix). It is straightforwardly shown (e.g., standard derivation of
recursive least squares with forgetting factor) that this is equiva-
lent to Step 1 of Algorithm 2. In terms of the schematic setup in
Fig. 1, whereas Algorithm 1 implements an adaptive filter after
the sampling and acceptance, Algorithm 2 (16) implements and
adaptive filter before the sampling and acceptance step. This
makes Algorithm 2 more conservative since the sampling and
acceptance is done based on the averaged behavior of the adap-
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tive filter. The computational complexity and memory over-
heads of Algorithms 1 and 2 are similar.

It is well known in reinforcement learning algorithms [6] that
there is a tradeoff between exploration (seeking new candidate
solutions) and exploitation (staying with the best estimate so
as to minimize cost). The passive algorithm above does more
exploitation and less exploration than the aggressive algorithm.

E. Convergence of Algorithms 1 and 2

In order to prove the consistency and attraction of the dis-
crete stochastic approximation Algorithm 1, we summarize the
following result from [1], [2]. The following conditions are re-
quired for global convergence and attraction of the discrete sto-
chastic approximation Algorithm 1.

For and and independent samples
, ,

(C1)

(17)

(C2)

(18)

Theorem 1: [2, Theorem 2.1] Under Conditions (C1) and
(C2), the sequence generated by Algorithm 1 is a
homogeneous irreducible and aperiodic Markov chain with
state space . Furthermore, for sufficiently large , this Markov
chain spends more time in than any other states,
i.e., for , . Moreover,

is attracted to and converges a.s. to an element in .

The proof of the theorem is given in [2]. The proof of conver-
gence of the local search algorithm in Section III-C to a local
maximum is given in [1]. The following interpretation is useful
in understanding why Theorem 1 works. The sequence
is a homogeneous Markov chain on the state space . This fol-
lows directly from Steps 1 and 2 of Algorithm 1. Let be the
corresponding transition probability matrix. It is well
known that if is aperiodic irreducible, then the strong law
of large numbers for Markov chains states that a.s.,
where is the Perron–Frobenius eigenvector (invariant distribu-
tion) of the Markov chain , i.e., is a probability vector
satisfying

where denotes the th component of . Assumptions (C1)
and (C2) shape the transition probability matrix and hence
invariant distribution as follows: (C1) imposes the condition
that for , , i.e., it is more
probable to jump from a state outside to a state in than
the reverse. Assumption (C2) says that for

, , i.e, it is less probable to jump out of the
global optimum to another state compared to any other state
. Intuitively, one would expect that such a transition probability

matrix would generate a Markov chain that is attracted to the
set (spends more time in than other states), i.e.,

, , . This is what Theorem 1 says and this
is proved in [2] using algebraic arguments.

Verification of (C1) and (C2) for Algorithm 1: Examples of
distributions that satisfy (C1) and (C2) are given in [2]. For ex-
ample, if for fixed , , are i.i.d.
symmetric random variables, then (C1) and (C2) hold, see [2].
However, in our case, the distributions are not identical. We will
verify (C1) and (C2) for large frame size using a
Gaussian approximation by virtue of the central limit theorem.
This is justified from a practical point of view since, as men-
tioned in Section II, in WCDMA and CDMA 2000, typically
the frame size is several hundreds. Actually, our numerical
experiments show that convergence and attraction of Algorithm
1 hold even for moderate batch size .

We start with the following proposition regarding the asymp-
totic normality of .

Proposition 1: For any and large frame size ,

satisfies

(19)

where

(20)

Here, is the linear MMSE detector for User 1, and
the approximation (20) follows from the fact that for

.
Proof: The differential of with respect to is

given by

(21)

where . Hence,

(22)

Now, we make use of the following result proved in [15]:
converges in distribution to a matrix valued Gaussian

random variable with mean and a covariance
matrix whose elements are specified by

(23)

Using this result together with (22), we have for large
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(24)

Writing (24) in a matrix form, we have

(25)

with

(26)

(27)

Substituting (25)–(27) into (22), we obtain the proposition.

Based on the above proposition, in the rest of this paper we
will assume that for some large finite size frame

This is justified from a practical point of view since typically the
frame size is several hundreds (as mentioned in Section II).
Then the discrete stochastic optimization problem (7) can be
reformulated as follows. There are possible spreading codes

. On picking out any one of these spreading codes ,
one observes an independent sample drawn from the
normal distribution . The aim is to devise
an algorithm which computes the maximizer of defined
in (7) with minimum effort.

Let us verify the Conditions (C1) and (C2) for our spreading
code optimization problem. According to Algorithm 1, since

and are statistically independent samples, we
have

Hence Condition (C1) is equivalent to

where denotes the standard Gaussian distribution function.
Since (because is the global maximum) and

is monotonically increasing, the above equation holds.
Consider (C2). Similar to the preceding argument, (C2) is

equivalent to

Then using (20) since is monotonically increasing, this is
equivalent to showing that

is monotonically increasing in for and any fixed
and fixed positive integer . It is an elementary

exercise in calculus to verify this.
Convergence of Algorithm 2: It is readily verified that

for so it is uniformly integrable. This
and the Kolmogorov’s strong law of large numbers imply

Thus, by a similar proof to [11, Theorem 4.1] we have the fol-
lowing.

Theorem 2: There exists a finite integer a.s. such that the
estimates generated by Step 3 of Algorithm 2 for any finite
frame size satisfy for all , where

is the set of global maximizers.

F. Spreading Code Optimization for Multiple Users

In lieu of (7), consider the problem of optimizing the
spreading codes of users . Compute

(28)

where is an unbiased estimator of the cost
when the spreading codes chosen by the

users are , respectively.
Example—Maximizing Sum of SINRs: One possible objec-

tive is to maximize the sum of the SINRs of these users, i.e.,

SINR

where SINR denotes the SINR of user , and

One can then use the estimator

(29)
where denotes the sample correlation of the total interfer-
ence signals, i.e.,

A simple modification of Algorithm 1 or Algorithm 2 can be
used. In Step 1, is sampled uniformly from

. Steps 2 and 3 are similar to Algorithm
1 or Algorithm 2 with straightforward modifications (details
are omitted). Just as for the single-user case, a local search
can be used, see Section III-C. Another alternative is the
coordinate ascent algorithm [5]. Fixing , let

denote the optimum of (29) with respect to . Then
fix and optimize with respect to to

obtain , and so on.
Similar to Proposition 1, it follows that as frame size

SINR

where

SINR (30)
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Then verifications of Conditions (C1) and (C2) are similar to the
single-code optimization. For example, verifying (C2) is equiv-
alent to showing that the function

is monotonically increasing in every component ,
for fixed where . This is easily shown.

Example—Maximizing Sum Capacity:

SINR

with estimator

Then applying -method of asymptotic normality [25, Theorem
1.8.12] to (30) yields as frame size

SINR
SINR

Conditions (C1) and (C2) are easily verified. For example, (C2)
is equivalent to showing that

is monotone increasing in every component , ,
for fixed where .

IV. ADAPTIVE DISCRETE STOCHASTIC APPROXIMATION

ALGORITHMS

Algorithms 1 and 2 deal with the case when the optimal
spreading code is time invariant. Here, we consider the case
where due to slow fading or user arrivals or departures, the
optimal spreading code is time varying. Denote the
time-varying optimal spreading code by . Such nonsta-
tionary environments are at the very heart for applications
of adaptive stochastic approximation algorithms to track
time-varying parameters.

A. Constant Step-Size Discrete Stochastic Approximation
Algorithm

We propose the following constant step-size discrete sto-
chastic approximation algorithm for tracking the time-varying
parameter.

Algorithm 3 (Constant step-size spreading code adaptation)

Steps 1 and 2: Identical to Algorithm 1.

Step 3—constant step-size: Replace (14) in Step 3 of Algo-
rithm 1 with a fixed step-size algorithm, i.e.,

(31)

where the step-size is a small positive constant.

Step 4: Identical to Algorithm 1.

Remark: As long as the step size satisfies ,
is guaranteed to be a probability vector. To see this, note that

implying that
Also rewriting (31) as implies that all
elements of are nonnegative.

The constant step size essentially introduces an exponential
forgetting of the past occupation probabilities and permits us to
track slowly time-varying .

A similar constant step size version of Algorithm 2 can be
formulated. However, note that while the sampling and evalua-
tion steps of Algorithm 1 and its adaptive version Algorithm 3
are identical (since the adaptive filtering is done after the sam-
pling and evaluation steps), this is not so for an adaptive version
of Algorithm 2. Indeed, one would expect the adaptive version
of Algorithm 2 to track time-varying parameters slower since
it does not aggressively explore the state space. Moreover, the
analysis of the adaptive version of Algorithm 2 is much more
difficult and beyond the scope of the current paper. The rest of
this section is devoted to mean-square analysis of Algorithm 3.

Complexity and Asynchronous Implementation: The com-
plexity of (31) is additions and multiplications at
each time instant. In practical implementation, the following
asynchronous version of Algorithm 3 can be used. Replace

in Algorithm 3 with which is updated as (32) at the
bottom of the page. Thus, at each time instant , only one com-
ponent of is updated which requires one addition and
multiplication. Note that the update times of the th component
of occur at the (random) time instants when the Markov
chain visits the state —thus, the algorithm can be
viewed as an asynchronous implementation of Algorithm 3; see
[23], [24], and the references therein. Note that the components
of are nonnegative but do not sum to one. Let be the
normalized version of , i.e., the elements of add to
one. Then obviously the estimate of the optimal spreading code

.
Tracking Analysis: In adaptive filtering (e.g., LMS), a typ-

ical method for analyzing the tracking performance of an adap-
tive algorithm is to postulate a hypermodel for the variation in
the true parameter. Since the optimal spreading code be-
longs to a finite set and its evolution can be correlated in time
(e.g., due to the correlation of fading), we choose to describe

as a slow Markov chain on for our mean square
convergence analysis. The Markov chain hypermodel below is
one of the most general models available for a finite-state model.
Note that the hypermodel assumption is only used for our sub-
sequent analysis, it does not enter the actual algorithm imple-

(32)
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mentation. Let be such that if .
We make the following assumptions.

(M1) Hypermodel: Assume that (or, equivalently, the op-
timal spreading code ) is a “slow” Markov chain on with
transition probability matrix given by

(33)

where is a small parameter, denotes the
identity matrix, and is a matrix with

for and for each . Assume
for simplicity that the initial distribution
is independent of for each , where and

. Denote

The small parameter specifies how slowly the hypermodel
evolves with time. It belongs to nearly completely decompos-
able matrix models. Such a notion has been applied in queueing
networks for organizing resources in a hierarchical fashion in
computer systems for aggregating memory levels, and in eco-
nomics for reduction of complexity of large-scale systems; see
[10] and [38]. Recently, such time-scale separation has gained
renewed interest owing to its ability for reduction of complexity;
see [47] and also the continuous-time counter part in [29],
[46], and the references therein. Note that for sufficiently small

, is a valid transition probability matrix (i.e., each
element is nonnegative and each row sums to ) and, further-
more, the corresponding Markov chain is irreducible. It is clear
from Theorem 1 that for any fixed optimal spreading code,

(or, equivalently, ), Algorithm 1 generates an irreducible
aperiodic Markov chain. This straightforwardly translates to
the following corollary for Algorithm 3.

Corollary 1: Given , the state (or, equivalent-
ly, ) of Algorithm 3 is a Markov chain with irre-
ducible aperiodic transition probability matrix ,
where

Remark: Let denote the invariant distribution of , i.e.,
. The quantity being small implies that

the Markov chain and, thus, the true optimum has
slow dynamics, i.e., it jumps infrequently. Note that is the step
size of the adaptive algorithm for estimating . Typically, for
an adaptive algorithm to successfully track a time-varying op-
timum, the rate of change in the true optimum (i.e., ) should
be smaller than the tracking speed of the tracking algorithm
(i.e., ).

A Markov chain with transition matrix (33) is known to be-
long to the class of singularly perturbed Markov chains. It is
a Markov chain with two time scales. The small parameter
serves the purpose of separating the fast and the slow transition
rates. In view of (33), it is clear that the Markov chain de-
pends on and should be more appropriately written as .
The idea behind this hyper-model is that the chain will spend
most of its time at a constant value. However, due to the pres-
ence of the generator , from time to time, the chain jumps into
some other location, and the parameter is time varying.

To proceed, we consider the probability distribution vector
of . A moment of reflection shows that we can write the

identity matrix in (33) as , which can
be viewed as a transition matrix that consists of -irreducible
transition matrices, each of which is simply the number
It is evident that this matrix is irreducible and aperiodic,
and a result, its stationary distribution is also . Denote the

-dimensional probability vector by

with . By applying Theorems 3.5 and 4.3 in [47], the
following assertion holds.

Lemma 1: For some , .
where is a solution of the initial value problem

(34)

Moreover, consider the -step transition matrices resulting from
(33), denoted by . Then ,
where is a solution of the differential equation

(35)

The following theorem gives a mean-squares bound on the
tracking error of the occupation probability estimate gen-
erated by Algorithm 3, i.e., a discrete stochastic approximation
algorithm in tandem with a fixed step-size adaptive filtering al-
gorithm. The proof of the result is given in the Appendix . A
remark on the mean-square error analysis of the asynchronous
implementation (32) is also in the Appendix after the proof.

Theorem 3: Under the Conditions (C1), (C2), and (M1) for
sufficiently large , the mean-square error of the estimate
generated by the tracking Algorithm 3 satisfies

for sufficiently large

(36)

Note that is the invariant distribution corresponding to
. The proof of the above theorem is given in Ap-

pendix A. Looking at the order of magnitude estimate
, to balance the two terms and , we need to choose

. That is, the rate of change of the true parameter
should be slower than the adaptation of the tracking algorithm
for the algorithm to successfully track the time-varying param-
eter. To some extent, this is a tractability condition.

Due to the discrete nature of our problem, it makes sense to
give bounds on the probability of error of the estimates
rather than the mean-square error. Our main result (Corollary 2)
shows that for large , the probability of error in choosing the
optimal spreading code is where pro-
viding . The proof appears in Appendix A.

Corollary 2: Under the conditions of Theorem 3, if
, then for sufficiently large , the error probability of the

estimate generated by the discrete stochastic approxima-
tion tracking algorithm satisfies

(37)

where is a positive constant independent of and .
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The main use of the above corollary is as a consistency check.
As and , the probability of error of the tracking al-
gorithm goes to zero. An identical result holds for the asyn-
chronous algorithm (32).

Remark: We also refer the reader to our recent work [45]
where a more sophisticated ordinary differential equation
(ODE) weak convergence analysis of Algorithm 3 is given
for the case . Somewhat remarkably this leads
to a switched Markov ODE. Also explicit error probability
estimates are obtained in [45] from the diffusion limit.

B. Adaptive Step-Size Discrete Stochastic Approximation
Algorithm

Section IV-A presented a discrete stochastic approximation
algorithm in tandem with a constant step-size adaptive filtering
algorithm for tracking the occupation probabilities . Here
we propose a discrete stochastic approximation algorithm where
the occupation probabilities are tracked by an adaptive step-size
algorithm.

The choice of step size is of critical importance in the
tracking algorithm. Ideally, one would want to be large when
the current estimate is far away from the optimal spreading
code and to be small when the current estimate is close to
the optimal sequence. However, selecting a priori the best step
size is not straightforward since it depends on the dynamics
of the tracking algorithm and the time-varying nature of the
optimal spreading code which is essentially unknown.
One enticing alternative is to replace the fixed in (31) by a
time-varying step-size sequence , and adaptively adjust

as the dynamics evolve. The origin of the adaptive step-size
approach can be traced back to [4]. Such ideas were further ex-
ploited in [8] with examples from sonar signal processing and
in [21] where such algorithms were used for adaptive blind mul-
tiuser detection. The proof of the results and technical develop-
ments can be found in [22] (see also [24]).

In what follows, we set up the framework and present the
asymptotic results. Define . Note that

depends on since should really have been written
as . Denote the mean-square derivative of by .
By mean-square derivative, we mean

Formally differentiating (31) with respect to yields

Following the ideas suggested in [4], [8], [22], we propose an
adaptive step-size discrete stochastic approximation algorithm
as follows.

Algorithm 4 (Adaptive step-sizes spreading code adaptation)

Steps 1 and 2: Identical to Algorithm 1.

Step 3—adaptive step-size: Replace (14) in Step 3 of Algo-
rithm 1 with

(38)

Step 4: Identical to Algorithm 1.

In the preceding algorithm, denotes the “learning
rate.” denotes the projection of onto the interval

. That is, if (respectively, ), its value
will be reset to (respectively, ). The third equation in
(38) can be written as

where is known as a reflection term. That is,

is the term with minimal absolute value needed to bring
back to the constraint interval

if it is not in .
Note that the above algorithm comprises of three parts. A

randomized search algorithm which feeds its candidate solu-
tion to an adaptive step-size-LMS algorithm. The adaptive
step-size-LMS algorithm itself comprises of two cross-coupled
LMS algorithms—one LMS algorithm estimates the occupancy
probabilities , the other adapts the step size . If the
learning rate , then the adaptive-step-size algorithm re-
duces to the constant step-size algorithm. Finally, if the optimal
spreading code was time invariant, then as ex-
pected. As one would expect, numerical studies in [22] (see also
[21]) have shown that the sensitivity of the adaptive step-size al-
gorithm to the choice of learning rate is much smaller than the
sensitivity of a fixed step-size stochastic approximation algo-
rithm to the choice of step size .

Remark: Note that our framework is blind in that it does not
explicitly assume a model for the time variations of the true
spreading code (and hence ) as they are essentially
unknown. Instead, we bury the time variations in , see [22],
[21] for further motivation.

To study the convergence of the adaptive step size , we
use the ODE approach and weak convergence methods detailed
in [24]. Define continuous-time interpolations

for
for

and
for

for .

The following theorem shows that the estimated step size
of the adaptive step-size algorithm will spend nearly all of the
time in an arbitrarily small neighborhood of the local minima
of the cost function . Recall that weak conver-
gence is a generalization of convergence in distribution [24].
Suppose that and are vector-valued random variables.
We say that converges weakly to iff for any bounded and
continuous function , . is said
to be tight iff for each , there is a compact set such
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that for all —roughly speaking, tight-
ness is equivalent to boundedness in probability. These defini-
tions have extensions for random variables living in a more gen-
eral metric space. In weak convergence analysis of stochastic
approximation algorithms, the most convenient function space
to consider is , which is the space of functions that
are right continuous with left limits (“cadlag” functions). In the
theorem to follow, refers to the function space

.

Theorem 4: Assume that Conditions (C1), (C2), and (M1)
are satisfied. Then is tight in , and
any weakly convergent subsequence has the limit
which is a solution of

where

Proof: Due to the boundedness of and , it
is easily proved that is tight in . By
Prohorov’s theorem, we can extract convergent subsequences.
Do so and still index the subsequence by for simplicity. Denote
the limit process by . We proceed to characterize the
limit process.

By Corollary 1, is irreducible and aperiodic, thus, by
[7, pp. 167–168], it is -mixing with exponential mixing rate.
Then this mixing property implies that for each

where denotes the conditional expectation on the past data
up to time . In addition, the process is ergodic. The
stationarity then implies that for any , as

in probability

for each . Now all the conditions in The-
orem 5.1 of [22] are verified. By virtue of that theorem, the de-
sired result follows.

The above theorem deals with large but still bounded . A
related result concerns the case when , , and

; see [24].

Theorem 5: Assume the conditions in Theorem 4. Let
denote a sequence of integers such that as and

. Suppose that there is a unique local minimum
of such that . Then
converges weakly to .

C. Extension to Multiantenna Multipath Fading Channels

In the preceding sections, we have designed and analyzed
discrete stochastic approximation algorithms for single-user
and multiuser spreading code optimization for the simple
synchronous CDMA system (1). In fact, the more complicated
fading multipath CDMA channels with single or multiple
receive antennas can be described by a model in the same form
as (1) [43], that is, we have the following general signal model:

(39)

where is a matrix comprising of the effective signature se-
quences (i.e., original signatures convolved with the channels).
Furthermore, a linear MMSE decision on the th symbol of User
1 is made based on the output of the linear MMSE detector

, where has the form

(40)

where, as before

with

Moreover, the composite signature waveform of the desired
user is determined by the original signature waveform of this
user , and its channel response and antenna array response.

The discrete stochastic approximation Algorithms 1–4 can be
used to optimize the spreading sequence in this case as well.
The only modification that needs to be made is that after getting
a candidate spreading code , we then compute the composite
signature waveform by convolving with its channel response.
The composite signature waveform is then used in computing

, in Algorithm 1.
The convergence of the discrete stochastic approximation

algorithms in fading multipath and multiantenna channels can
be analyzed in the same way as that for the simple synchronous
channel case, thanks to the following central limit theorem,
which is the counterpart of Proposition 1 for complex-valued
signals. The proof is given in Appendix B.

Proposition 2: Let and

with

Then for large , we have

(41)

V. SIMULATION EXAMPLES

In this section, we provide several simulation examples to
demonstrate the performance of various discrete stochastic ap-
proximation algorithms developed in this paper. Both single-
user and multiuser spreading code adaptations are considered.

A. Single-User Spreading Code Adaptation

Example 1: Static Synchronous CDMA Channel: We first
consider a real-valued synchronous CDMA system in AWGN.
The processing gain is . The total number of users in the
system is . The spreading code of User 1 is to be opti-
mized. The other users’ spreading codes are randomly generated
and kept fixed. The signal-to-noise ratio for each user is 10 dB.
The window size for forming the sample covariance matrices

and (see Algorithm 1) is chosen to be . The per-
formance of Algorithm 1 is illustrated in Fig. 2. In Fig. 2(a), the
SINR of the chosen code as a function of iteration number in
one simulation run is plotted. In the same graph, we also plot the
maximum, median, and minimum SINR among all possible
spreading sequence for User 1. Moreover, the performance of a
code optimization method proposed in [34], which quantizes the
minimum eigenvector of the estimated covariance matrix of the
received signal is also shown in the same figure. (Note that here
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Fig. 2. Single-user code adaptation in synchronous CDMA system: SINR of the chosen code versus iteration number n. (a) One simulation run. (b) Average
performance over 100 simulation runs.
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Fig. 3. Single-user code adaptation in synchronous CDMA system: the effect of the window sizeM .

the estimated covariance matrix is obtained accumulatively as
the algorithm iterates, that is, at iteration , the covariance ma-
trix is based on the past signal samples; whereas for the sto-

chastic approximation algorithm, the matrix is based on only
received signal samples.) In Fig. 2(b), the average SINR per-

formance of both schemes over 100 simulation runs is plotted.
Also shown in the same figure is the performance of Algorithm
2. It is seen that the discrete stochastic approximation algorithm
locks on the optimal code very quickly; it significantly outper-
forms the solution obtained by quantizing the continuous maxi-
mizer. Moreover, compared with the aggressive algorithm (i.e.,
Algorithm 1), the conservative algorithm (i.e., Algorithm 2) has
a slower convergence rate and slightly inferior steady-state per-
formance. In Fig. 3, we show the average SINR performance
under different window sizes . Although the
performance improves monotonically with the window size ,
beyond certain value, e.g., , the performance gain from
increasing is diminishing.

Example 2: Static Multipath CDMA Channel: Next, we il-
lustrate the performance of Algorithm 1 in a static multipath en-
vironment. The simulated system is the same as that in the pre-
vious example, except now each user’s signal is subject to mul-
tipath distortion. The multipath channel of each user has three
taps, each delayed by integer number of chip intervals. The com-
plex path gain of each path is randomly generated and kept fixed
throughout the simulation. The path gains of each user are nor-
malized such that the received composite signature waveform
has unit energy. The signal-to-noise ratio for each user is still
10 dB. The code adaptation performance is shown in Fig. 4 for

both a single simulation run and the average of 100 runs. It is
seen that similar to the synchronous case, the algorithm locks
on the optimal code very quickly.

Example 3: Constant Step-Size Algorithm in Fading Mul-
tipath CDMA Channel: We demonstrate the tracking perfor-
mance of the adaptive discrete stochastic approximation Algo-
rithm 3 and its asynchronous version (32) in multipath fading
channels. The simulated system is the same as that in the pre-
vious example, except now the channels are subject to multipath
fading. We assume each channel tap remains the same over a
period of symbol intervals, and follows a first-order
autoregressive model on a time scale of

(42)

where , and and are related through
. In the simulations, we set , ,

and the constant step size . The tracking perfor-
mance of Algorithm 3 is illustrated in Fig. 5. We also ran the
asynchronous version of Algorithm 3 given by (32)—the per-
formance was virtually identical. The maximum, median, and
minimum SINR as a function of time are also shown. Note that
since the channels are time-varying now, these quantities need to
computed for each channel realizations. It is seen that our code
adaptation algorithm can closely track the optimal code under
the time-varying channel conditions.

We next illustrate the performance of a variant of Algo-
rithm 3, where (31) in Step 3 is replaced by a sign error LMS
algorithm

(43)
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Fig. 4. Single-user code adaptation in static multipath CDMA system: SINR of the chosen code versus iteration number n. (a) One simulation run. (b) Average
performance over 100 simulation runs.
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Fig. 5. Single-user code adaptation in multipath fading CDMA system with constant step size: SINR of the chosen code versus iteration number n.

Fig. 6. Single-user code adaptation in multipath fading CDMA system with constant step size and the sign algorithm.
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Fig. 7. Single-user code adaptation in multipath fading CDMA system with adaptive step size.

Such a sign algorithm can reduce the computational complexity
if is chosen as for some integer since the multiplications

can be computed using bit shifts. The
performance of the sign algorithm in tandem with the discrete
stochastic optimization algorithm is shown in Fig. 6. It is seen
that although there is a slight performance degradation com-
pared with Algorithm 3, the sign algorithm can still efficiently
track the channel variation and produce the optimal spreading
codes.

Example 4: Adaptive Step-Size Algorithm in Multipath
CDMA Channel: The performance of the discrete stochastic
approximation Algorithm 4 in the same multipath fading
CDMA system as in the previous example is shown in Fig. 7.
The upper and lower bounds for the step size are set as

and , respectively. It is seen from Fig. 7
that the algorithm with an adaptive step size converges much
faster than the one with a constant step size.

B. Two-User Spreading Code Adaptation

Examples 5, 6, and 7: Two-User Spreading Code Adap-
tation: We consider the performance discrete stochastic
optimization algorithms for multiuser spreading code adapta-
tion. We will primarily focus on adapting two users’ codes,
since it becomes computationally prohibitive to calculate the
optimal codes when adapting more than two users. That is, in
order to optimize users’ codes, we need to calculate
possible SINR values corresponding to all possible combina-
tion of code selections. The simulated systems are the same as
the ones for the single-user adaptation case discussed above.

The processing gain is . There are users in the
channel, and the first two users’ codes are to be optimized.
The performance in static channels is shown in Figs. 8 and 9,
for synchronous case and multipath case. It is seen that like in
the single-user adaptation case, the convergence speed is quite
fast. The tracking performance in fading multipath channels is
shown in Fig. 10. Again the algorithm can effectively track the
dynamic nature of the channels.

VI. CONCLUDING REMARKS

This paper presented discrete stochastic approximation
algorithms for spreading code optimization and adaptation
in CDMA systems. First, aggresive as well as conservative
decreasing-step-size algorithms (Algorithms 1 and 2) were
presented. Then two adaptive discrete stochastic approximation
algorithms (Algorithms 3 and 4) were presented for tracking
the optimal spreading code in a time-varying environment. A
mean-square error tracking analysis of Algorithm 3 is given
along with a weak convergence analysis of Algorithm 4.
Numerical examples show that the algorithm performs well in
multipath fading channels.

The algorithms and analysis presented in this paper are of
independent interest in other applications that involve discrete
stochastic optimization. In future work, we will consider joint
power control and spreading code optimization. In such cases,
the objective function is typically a utility function. We will also
derive a weak convergence tracking analysis for the algorithms
proposed. The advantage of such a weak convergence analysis
is that an asymptotic Gaussian distribution can be obtained for
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Fig. 8. Two-user code adaptation in static synchronous CDMA system: SINR of the chosen code versus iteration number n. (a) One simulation run. (b) Average
performance over 100 simulation runs.
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Fig. 9. Two-user code adaptation in static multipath CDMA system: SINR of the chosen code versus iteration number n. (a) One simulation run. (b) Average
performance over 100 simulation runs.
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Fig. 10. Two-user code adaptation in multipath fading CDMA SINR of the chosen code versus iteration number n.

the tracking error resulting in explicit expressions for the error
probability.

APPENDIX A
PROOF OF THEOREM 3 AND COROLLARY 2

Throughout this appendix, will denote the Euclidean
norm for vectors and the induced -norm for matrices. We will
need the following two lemmas.

Lemma 2: Let be the -algebra generated by

and the conditional expectation with respect to (w.r.t.) .
Under hypermodel condition (M1)

(44)

Proof: The proof mainly uses the Markov property. Note
that . Consequently

Thus, . Similar argument yields
that

So . Exactly the same argument
yields the second inequality in (44).

Lemma 3: Suppose and for are nonnega-
tive real numbers. Then .

Proof: For any fixed ,

which implies

A similar reasoning yields
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Proof of Theorem 3

Since has Markovian dynamics, we follow a similar
approach to [4, pp. 246–247] where mean-square convergence
analysis of general stochastic approximation algorithms is pre-
sented. However, the analysis in [4] does not deal with hyper-
model dynamics, and does not consider the finite-state Markov
chain case. In the finite-state Markov chain case we consider
here, the impenetrable technicalities of verifying bounded mo-
ments and stability which make stochastic approximation proofs
inaccessible to engineers do not arise.

Define the tracking error . From
(31), this evolves according to

(45)

We decompose the term in (45) as follows:

(46)

The simplest proofs of stochastic approximation algorithms
deal with martingale processes (which includes i.i.d. signals as a
special case). However, because in our case has Markovian
dynamics, we will need to express it in terms of martingales. The
so called “Poisson’s equation” approach [4, pp. 216–217] allows
us to give a martingale decomposition of in
terms of the term (see (49)) as will be shown later. Since the
Markov chain parameterized by is geometrically
ergodic (i.e., irreducible and aperiodic since we are dealing with
a finite-state space), there exists a process which is a
solution to the following Poisson’s equation [4]:

(47)

The solution to Poisson’s (47) is explicitly
given by

(48)

Consider now the term in (46). Using
Poisson’s equation yields

(49)

Then from (45) and the (49), the tracking error evolves
according to

(50)

where

(51)

Squaring (50) yields

Let denote the sigma algebra generated by

and define as conditional expectation w.r.t. . Taking con-
ditional expectations , using norms on both sides of the above
inequality, and noting that is -measurable, we have (52)
at the bottom of the page. Since is an -martingale incre-
ment process, . Also by definition (49)

(53)

But from (48), we have

Hence, (53) yields

Finally, using Lemma 2 we have

Similarly, using Lemma 2 we have

In addition

(52)
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The first term on the right-hand side is . As for the second
term, we have

Thus, we have

It is also easily shown using similar arguments that

Thus, from (52) it follows that

Taking expectations on both sides and using the smoothing
property of conditional expectations we have

(54)

However, since and are probability vectors

a.s.

which, in turn, implies that . Thus, we have

(55)

Iterating on this inequality yields

By taking sufficiently large we can make .
Then the above inequality yields that for sufficiently large ,

.

Mean Square Convergence of Asynchronous Implementation
(32): A similar analysis can be carried out to the normalized
version asynchronous algorithm (32). To illustrate, denote
the th components of and by and ,
respectively. Replacing replaced by in (32), the
corresponding scheme can be written in a component form as

To further simplify, let us fix a component and denote
and . Define , ,

and . This is an increasing se-
quence of stopping times. In terms of this sequence, the recur-
sion can be written as

(56)

Note that for any positive integer , there is a such that
. Thus, we can work with (56) and proceed as in the

proof of previous theorem with the use of the stopping times
(strong Markov property). We can show

for each

hence, as desired.

Proof of Corollary 2

The estimate of the maximum generated by the discrete sto-
chastic approximation algorithm at time is

The actual maximum at time is .
Define the error event as (where denotes the indicator
function)

Then clearly the complement event

satisfies the equation at the bottom of the page, where

(57)

is a positive constant.
Then the probability of no error is

for any sufficiently small positive number . Using the pre-
ceding equation and Lemma 3 we have

(58)

Choosing and applying Chebyshev’s inequality
to (36) yields for any

Thus, (58) yields

(59)

It only remains to pick a sufficiently small . Choose
where is arbitrary. It is clear that for sufficiently
small , satisfies (57). Then (59) yields .
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(65)

(66)

APPENDIX B
PROOF OF PROPOSITION 2

The following lemma can be proved following along the same
lines of argument as that of the proof of Lemma 1 in [15].

Lemma 4: Define , where and are
give by

(60)

(61)

Then converges in distribution to a complex matrix
valued Gaussian random variable with mean and
Hermitian covariance matrix whose elements are specified by

(62)

where

(63)

(64)

After straightforward algebra, we then have (65) and (66) at
the top of the page. Proposition 2 then follows from the fact that

.
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