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I study the spreading of infectious diseases in heterogeneous populations. The population structure is de-
scribed by a contact graph where vertices represent agents and edges represent disease transmission channels
among them. The population heterogeneity is taken into account by the agent’s subdivision in types and the
mixing matrix among them. I introduce a type-network representation for the mixing matrix, allowing an
intuitive understanding of the mixing patterns and the calculations. Using an iterative approach I obtain
recursive equations for the probability distribution of the outbreak size as a function of time. I demonstrate that
the expected outbreak size and its progression in time are determined by the largest eigenvalue of the repro-
ductive number matrix and the characteristic distance between agents on the contact graph. Finally, I discuss
the impact of intervention strategies to halt epidemic outbreaks. This work provides both a qualitative under-
standing and tools to obtain quantitative predictions for the spreading dynamics of heterogeneous populations.
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I. INTRODUCTION

The globalization of human interactions has created a fer-
tile ground for the fast and broad spread of infectious dis-
eases, potentially leading to worldwide epidemics. We are
thus forced to understand the spreading of infectious diseases
within a global scenario. Yet the study of worldwide epidem-
ics is challenging given the heterogeneity of the populations
involved �1–5�. The first sign of heterogeneity is given by the
variability of the reproductive number within or across popu-
lations �6–8�. The reproductive number is defined as the
number of secondary cases generated by a primary infected
case within a population of susceptible individuals. In the
case of sexually transmitted diseases the reproductive num-
ber is proportional to the rate of sexual partner acquisition
�1,9� and exhibits wide changes across individuals
�1,6,10–12�. In network-based approaches the reproductive
number is proportional to the node’s degree �13–15� and ex-
hibits wide variations as well �16�. In the absence of biases
among the connections between agents this heterogeneity is
completely taken into account by the reproductive number
distribution �14,15�.

There are other properties beyond the reproductive num-
ber requiring the subdivision of a population in different
classes or types. This includes but is not limited to age, geo-
graphical location, social status, and sexual behavior. In gen-
eral these heterogeneities cannot be characterized by a single
probability distribution. They require a multitype approach
with probability distributions characterizing each type and a
mixing matrix describing the patterns of transmission among
them. Multitype models are difficult to deal with and are
generally tackled using multiagent simulations �2,4,5,17–19�.
The advantage of multiagent simulations is that we can con-
sider several details and study their impact on the spreading
dynamics. On the other hand, given the large number of vari-
ables and model parameters it is difficult to understand
which are the key parameters driving the system’s dynamics.
Therefore, exact or approximate calculations are required to
funnel the multiagent simulations into specific regions of the
parameter space.

The theory of multitype branching processes provides a
framework to characterize the spreading dynamics in hetero-
geneous populations �20,21�. In multitype branching pro-
cesses the concept of reproductive number is generalized to
the reproductive number matrix, with elements giving the
expected number of secondary cases of a given type gener-
ated by a primary case of a given type. In turn, the long-time
behavior is determined by the largest eigenvalue � of this
matrix �20,21�. The number of infected individuals decays
exponentially when ��1 and growth exponentially other-
wise. Although rarely mentioned, these results are valid pro-
vided the spreading process goes on for a large number of
generations. In recent studies of the single-type case �22–24�
I have shown that this approximation does not hold for most
real networks underlying the spreading of infectious diseases
among humans and computer malwares.

In this work I study the spreading of infectious diseases in
multitype networks. I take as a starting point the static prob-
lem formulation developed by Newman �25� and the theory
of continuous-time multitype branching processes �20�. I re-
examine these mathematical approaches to accommodate
distinctive properties of real networks that have not been
previously considered. In Sec. II, I introduce the basic frame-
work. Focusing on the population structure I consider the
contact graph characterizing the detailed interactions among
agents and the type network characterizing the interactions
among agent’s types. Through some simple examples I illus-
trate the properties of the mixing matrix and its type-network
representation. This section ends defining a branching pro-
cess which models a spanning tree from an index agent to all
other agents in the contact graph. In Sec. III, I characterize
the local spreading dynamics from an agent to its contacts,
taking the susceptible-infected-removed �SIR� model as a
case study. Bringing together the underlying network struc-
ture and the local transmission dynamics in Sec. III, I define
a branching process that models the disease spreading dy-
namics. In Sec. IV, I extend the iterative approach for a
single type �22–24� to accommodate the particularities of the
multitype case. Focusing on the expected behavior I obtain
general equations determining the progression of the ex-
pected number of cumulative and new infections. Starting
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from these equations I analyze some limiting cases. First, I
derive the final expected outbreak size and, second, I analyze
the time progression of the expected outbreak size for the
homogeneous transmission case. In Sec. IV C, I discuss the
impact of the population heterogeneity on intervention strat-
egies. I emphasize the role of the characteristic distance be-
tween agents to quantify the impact of intervention strategies
on small-world populations. I also illustrate interventions tar-
geting specific agent’s types using a bipartite population as a
case study. Finally, in Sec. V, I provide an overview of the
main results and discuss future directions.

II. POPULATION STRUCTURE

Consider a population of N agents that are susceptible to
an infectious disease. By agent I mean any entity that could
host and transmit the disease. For instance, if we are inter-
ested in the transmission of infectious diseases among hu-
mans, an agent is a human in the first place. For vector-borne
diseases such as malaria we could have in addition agents
representing the intermediary host while for airborne dis-
eases an agent could also represent a public place. Another
application is the spreading of computer malwares, and in
this case agents represent computer users. The agents are
assumed to be heterogeneous, meaning that there are differ-
ent agent classes or types according to their pattern of con-
nectivity to other agents and/or to the speed at which they
could potentially transmit an infectious disease. For instance,
humans can be divided according to their age, social status,
and geographical location. Furthermore, in the case of
vector- and air-borne diseases there is an additional type
given by the nonhuman intermediary.

Let us assume that the agent population is divided into M
types and there are Na agents of type a=1, . . . ,M satisfying
the normalization condition

�
a=1

M

Na = N . �1�

Note that within this work I use the indices a ,b , . . . for the
agent’s type. In the following I introduce two representations
of the population structure at the agent and type levels, re-
spectively.

A. Contact graph

The contact graph takes precisely into account who could
potentially transmit the disease to whom �1,26–29�, more
precisely given by the following definition.

Definition II.1. The contact graph is a colored graph
where vertices represent agents, edges represent the potential
disease transmission channels among them, and vertices are
colored according to the agent’s type.

The contact graph represents the population mixing at the
agent’s level. Since there is a one-to-one relation between
vertices and the corresponding agents I use these two terms
interchangeably. All the information necessary to character-
ize a given graph is provided by its adjacency matrix. Yet
given the large size of real populations and their change in
time, the only way to achieve such a detailed description

relies on agent-based simulations. My scope is to bypass this
detailed description and focus on statistical properties that do
not depend on the population structure details or their change
in time.

First, we need to specify the time scale on which the
statistical properties are measured. An agent may go over
different stages associated with the disease, including latent,
infectious, and recovered, but only during the infectious
stage he/she transmits the disease. Thus, the time scale that
matters for the spreading process is the infectious period.
The duration of the infectious period is determined by sev-
eral factors. Intrinsic factors are those resulting from the
host-disease interaction while extrinsic factors are those as-
sociated with intervention strategies such as patient isolation.
At this point I intentionally exclude the extrinsic factors.
Their influence is taken into account when defining the
disease-spreading dynamics �see Sec. III�. It is also worth
mentioning that the infectious period is a random variable.
Therefore, the statistical properties introduced below are the
expectation after averaging over the infectious period distri-
bution �see example below�.

Once the time scale is specified, the contact graph repre-
sents the interactions among agents within that time scale.
More precisely, each edge in the contact graph represents the
occurrence of the relevant contact among the corresponding
agents during the specified time window. The degree of a
node is the total number of edges emanating from it regard-
less the node type at the other end. Let pk

�a� be probability
distribution that a type a node has degree k and denote by

�k�a = �
k=1

�

pk
�a�k �2�

its mean. Note that by allowing k to take values larger than 1
we are already taking into account the existence of concur-
rency �30–32�—i.e., the fact that one agent may contact
more than one other agent. To characterize the spreading
process it is also relevant to determine the same distribution
but for a vertex found and the end of an edge selected at
random. This sampling introduces a bias towards nodes with
a higher degree, resulting in the probability distribution

qk
�a� =

kpk
�a�

�
s=1

�

sps
�a�

, �3�

with average excess degree

�k�a
�excess� = �

k

qk
�a��k − 1� , �4�

where the −1 subtracts the edge from where the node was
reached. Associated with these two probability distributions
we introduce the generating functions

Ua�x� = �
k=0

�

pk
�a�xk, �5�
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Va�x� = �
k=1

�

qk
�a�xk−1. �6�

From the derivatives of Ua�x� and Va�x� we obtain the mo-
ments of pk

�a� and qk
�a�, respectively: for instance,

U̇a�1� = �k�a, �7�

V̇a�1� = �k�a
�excess�. �8�

Since the agent population is finite, there is a typical dis-
tance D between every two agents in the contact graph. So-
cial experiments such as the Kevin Bacon and Erdős num-
bers �33� or the Milgram experiment �34� reveal that social
actors are separated by a small number of acquaintances,
often known as the small-world property �35�. Computer net-
works are characterized by the small-world property as well
�36–39�. These observations are supported furthermore by
theoretical approaches demonstrating that D grows at most
as log N in random graphs �40–43�. More recently it has
been shown that for several real networks D actually de-
creases or remains constant as the networks evolve and in-
creases its size �44�. Thus, I explicitly take into account that
D is finite.

Example II.2 (Poisson contact process). Let us assume
that type-a agents establish connections with other agents at
a constant rate �a and that the infectious period is constant
and equal to T. In this case we obtain a Poisson distribution
for the agent’s degree:

pk
�a��T� =

��aT�ke−�aT

k!
. �9�

Now let us relax the assumption that the infectious period is
a constant and consider the case where it follows the expo-
nential distribution F�T�=1−e�T, where �−1 is the average
infectious period. Taking the average of Eq. �9� over F�T� we
obtain

pk
�a� =

1

�a
� �a

�a + �
	k+1

. �10�

This example shows that the contact graph is determined by
both the interaction among individuals and the infectious pe-
riod. The former is intrinsic to the agent population while the
last one is disease dependent.

B. Type network

At the type level the population structure is determined by
the mixing patterns among types. Given a type-a agent and
one of its edges I define the mixing matrix elements eab as
the probability that the agent at the other end is of type b.
From the mixing matrix we can construct the type network.

Definition II.3. Type network: In the type network a node
represents a type, an arc is drawn from type a to b if eab
�0, and the arc’s weights are given by eab.

Figure 1 shows some simple type networks. The single-
type case is represented by a node with a loop �Fig. 1�a��. A
bipartite population is represented by two nodes with an in-

coming and an outgoing arc �Fig. 1�b��. This example mod-
els a heterosexual population with no other distinction than
gender or a metapopulation given by people and public
places �19�. A fully mixed population is represented by a
complete network �Fig. 1�c��. A less intuitive example is the
type network shown in Fig. 1�d�, representing a population
divided into two cities and the commuters between them.

C. Annealed spanning tree

Given a contact graph, let us consider an epidemic out-
break starting from a single agent, the index case. In the
worst case scenario the disease propagates to all the agents
that could be reached from the index case using the network
connections. In this case the outbreak is represented by a
spanning or causal tree from the index case to all reachable
agents. The generation of an agent in this tree corresponds
with the topological or hopping distance from the index case.
This picture motivates the introduction of the following
branching process.

Definition II.4. Multitype annealed spanning tree.
Consider a colored contact graph characterized by


Na , pk
�a�� and the type network 
eab�. The multitype annealed

spanning tree �AST� is the branching process satisfying the
following properties.

�i� The process starts from an index case of type a
� 
1, . . . ,M� at generation d=0. The index case generates k
sons with probability distribution pk

�a�. Each son is of type b
with probability eab.

�ii� Each son at generation 1�d�D generates k−1 sons
with probability distribution qk

�a�. Each son is of type b with
probability eab.

�iii� A son at generation d=D does not generate new sons.
The term annealed means that we are not analyzing the

true �quenched� spanning tree on the graph but a branching
process with similar statistical properties. This approxima-
tion is particularly good if the contact graph is continuously
changing in time in spite of the constancy of its statistical
properties. The sharp cutoff at d=D is an approximation. In
reality there is a gradual decay of the number of nodes found
after reaching the average distance between nodes. Neverthe-
less, the study of the single-type case indicates that the sharp

FIG. 1. Type-network representation of simple mixing matrices.
�a� Single-type population. �b� Bipartite population. �c� Fully mixed
population with three types. �d� Two cities �open circles� and the
commuters among them �solid circle�. The solid �dashed� lines rep-
resent intracity �intercity� connections.
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cutoff is a very good approximation, resulting in good agree-
ment with the numerical simulations �22�.

III. LOCAL SPREADING DYNAMICS

To proceed further I now specify how the disease is trans-
mitted from an agent to its neighbors in the contact graph.
Let rab be the probability that an infected agent of type a
infects a susceptible neighbor of type b. I assume that if
eab�0, then rab�0, while the absence of transmission be-
tween two types is taken into account setting eab=0. Given
an agent i of type a �primary case� and one of its neighbors
j of type b �secondary case�, we define the generation time
Xij

�a,b� as the time elapsed from the infection of the primary
case to the infection of the secondary case provided it hap-
pens. I assume that the generation times are independent ran-
dom variables with distribution function

Gab��� = Prob�Xij
�a,b� � �� , �11�

parametrized by the type of the primary and secondary cases.
Example III.1 (SIR model). In the SIR model agents can

be in the three exclusive states of susceptible, infected, and
removed. A susceptible agent is one that has not become
infected but is susceptible to acquire the infection. An in-
fected agent is one that has already acquired the disease and
can potentially transmit the disease. A removed agent is one
that has been previously infected but is already excluded
from the spreading process. I make a distinction between
removal because of death or natural recovery and removal
because of intervention strategies resulting in the isolation or
cure of infected individuals. The death or natural recovery of
infected agents was the basics to define the characteristic
time scale in which the contact graph is defined �Sec. II A�.
The impact of intervention strategies is analyzed below. I
introduce this distinction to facilitate the analysis of inter-
vention strategies without modifying the structure of the con-
tact graph.

Consider an agent i of type a and one of its neighbors j of
type b. Let Yi,j

�a,b� be the infection time of agent j by i in the
absence of intervention strategies and let GI

�a,b����
=Prob�Yi,j

�a,b���� be its distribution function. Furthermore,
let Zi

�a� be the removal time of agent i in the presence of
intervention strategies and let GR

�a����=Prob�Zi
�a���� be its

distribution function. The probability that agent j is infected
by agent i by time t is given by

bab�t� = �
0

t

dGI
�a,b�����1 − GR

�a����� . �12�

From this magnitude we obtain the probability that agent j
gets infected by agent i no matter when

rab = lim
t→�

bab�t� �13�

and the distribution of generation times

Gab��� =
1

rab
bab��� . �14�

The SIR model could be further generalized taking immu-
nization into account. In this case noninfected agents are
divided into susceptible and immune. If sa is the probability
that a type-a agent is immune, then the probability that agent
j is infected by agent i by time t reads

bab�t� = �1 − sb��
0

t

dGI����1 − GR���� . �15�

Furthermore, the transmission probability rab and the genera-
tion time distribution Gab��� are obtained by substituting this
equation into Eqs. �13� and �14�, respectively.

These examples illustrate how to calculate the transmis-
sion probability rab and the generation time distribution
Gab��� from standard models characterizing the spreading of
infectious diseases. More importantly, by encapsulating the
model details into rab and Gab��� we obtain general results
that are model independent.

Continuous-time multitype AST

At this point the local spreading dynamics has been com-
pletely specified and we can superimpose it on the multitype
AST.

Definition III.2. Continuous-time multi-type AST.
A continuous time multitype AST is composed of two

elements: a multitype AST II.4 and a local spreading dynam-
ics defined by 
rab ,Gab����. The global dynamics is then
specified by the following rules.

�i� The process starts with an infected agent of type a
� 
1, . . . ,M� while all other agents are susceptible.

�ii� An infected agent of type a infects each of its neigh-
bors of type b with probability rab and generation time dis-
tribution Gab���.

From the mathematical point of view the continuous-time
multitype AST belongs to a more general class of multitype
branching processes �20�. The novelty of the present work
resides in the application of this framework to accommodate
crucial properties of real networks that were not considered
before.

IV. EXPECTED BEHAVIOR

Given an infected agent of type a the expected number of
secondary infections of type b it generates is given by

Rab = �k�aeabrab �16�

if it is the index case and by

R̃ab = �k�a
�excess�eabrab �17�

otherwise. The matrices R and R̃ are extensions of the basic
reproductive number to the multitype case. In the following

it becomes clear that R̃ is more relevant and therefore I refer
to it as the reproductive number matrix.

Lemma IV.1. Consider an ensemble of continuous-time
multitype AST III.2 with index case of type a. Let Nab�t� be
the mean total number of infected type-b agents at time t and
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let Iab�t�dt be the mean number of type-b agents that are
infected between time t and t+dt. Then

Nab�t� = �
d=1

D

�H�H̃��d−1��ab�t� , �18�

Iab�t� = �
d=1

D
d

dt
�H�H̃��d−1��ab�t� , �19�

where

Hab�t� = RabGab�t� , �20�

H̃ab�t� = R̃abGab�t� , �21�

and the multiplication symbolized by � involves a matrix
multiplication and a convolution in time—i.e.,

�H�H̃�ab�t� = �
c=1

M �
0

t

dHac���H̃cb�t − �� , �22�

�H̃�2�ab�t� = �H̃�H̃�ab�t� . �23�

The proof of this result is given in Appendix A. This lemma
provides explicit equations for the expected progression of
an epidemic outbreak. In some particular cases these equa-
tions may be further expressed in terms of elementary func-
tions, allowing a straightforward interpretation. More gener-
ally these equations can be evaluated numerically in cases in
which further reduction is not possible. In addition, theorem
IV.1 is a starting point for calculations addressing some lim-
iting cases, which are the subject of the following subsec-
tions.

A. Final outbreak size

The final outbreak size is obtained taking the limit t→�
in Eq. �18�, resulting in

Nab��� = �
d=1

D

�RR̃d−1�ab. �24�

When R̃ can be diagonalized we can write R̃= P	P−1, where

P is the matrix composed of the eigenvectors of R̃, 	 is the
diagonal matrix constructed from the corresponding eigen-
values ��a, a=1, . . . ,M�, and P−1 is the inverse of P. Thus
Eq. �24� is reduced to

Nab��� = �RPÑP−1�ab, �25�

where Ñ is a diagonal matrix with diagonal entries

Ñaa = 
�a
D − 1

�a − 1
, for �a � 1,

D , for �a = 1.
� �26�

The eigenvalues of the reproductive number matrix appear to
the power of D. Therefore we expect that the term containing
the largest eigenvalue gives the major contribution. The fol-

lowing theorem shows that this is indeed the case.
Theorem IV.2 (complete type network). Consider a com-

plete type network and let � be the largest eigenvalue of R̃,
Eq. �17�. Then

Nab��� = uab
�D − 1

� − 1
, �27�

where uab is independent of D.
Proof. The mixing matrix of a complete type network is

positive definite and, therefore, R, Eq. �16�, and R̃, Eq. �17�,
are positive definite as well. From the Perron-Frobenius

theorem �45� it follows that the largest eigenvalue of R̃ is
simple and all the entries of its corresponding left eigenvec-
tor v� are different from zero and have the same sign. In
particular we choose all the components of v� to be positive.
Since vc�0 for all c, we can write

�RR̃d−1�ab = �
c=1

M

Rac�R̃d−1�cb = �
c=1

M
Rac

vc
vc�R̃d−1�cb. �28�

Taking into account that �cvcR̃cb=�vb and vc�0 we obtain
the inequalities

uab
�min��d−1 � �RR̃d−1�ab � uab

�max��d−1, �29�

where

uab
�min� = min

c
Rac

vb

vc
, �30�

uab
�max� = max

c
Rac

vb

vc
. �31�

From Eqs. �27� and �24� we obtain

1 + uab
�min��

D − 1

� − 1
� Nab��� � 1 + uab

�max��
D − 1

� − 1
. �32�

Finally, from this equation we obtain Eq. �27� with

0 � uab
�min� � uab � uab

�max� � � , �33�

where the inequality uab�0 follows from Eq. �30�. �
The overall outbreak size is thus determined by the largest

eigenvalue of the reproductive number matrix � and the av-
erage distance between nodes, D. The connection with pre-
vious works �20� is obtained taking the limit D
1. In this
limit the outbreak size is negligible with respect to the popu-
lation size when ��1 and when ��1 it represents a finite
fraction of the population. Figure 2 illustrates that these ex-
treme behaviors gradually disappear with decreasing D.
When D is small the expected outbreak size changes
smoothly with increasing �, including the region around �
=1.

The prefactor uab in Eq. �27� quantifies the contribution of
each type to the overall outbreak size. uab is determined by
the reproductive number matrix of patient zero and the ei-
genvector associated with the largest eigenvalue, Eqs. �30�
and �31�. From the analysis of these quantities we can deter-
mine which population types are at more risk depending on
the type of patient zero.
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Theorem IV.2 is generalized in Appendix B to strongly
connected type networks—i.e., type networks where there is
a path from every type a to every type b. Apart for some
technicalities, similar conclusions are obtained.

B. Spreading dynamics with constant transmission rate

A general study considering both the topological and dy-
namical heterogeneities is hard to approach. As a starting
point I consider the particular case when the local spreading
dynamics is type independent—i.e., Gab���=G���. From Eq.
�19� we obtain the incidence

Iab�t� = �
d=1

D

�RR̃d−1�abG�d�t� . �34�

Regarding the matrix elements this expression has the same

structure as Eq. �24�. When R̃ can be diagonalized we rewrite
Eq. �34� as

Iab�t� = „RPĨ�t�P−1
…ab, �35�

where Ĩ�t� is a time-dependent diagonal matrix with diagonal
entries

Ĩaa�t� = �
d=1

D

�a
d−1 d

dt
G�d�t� . �36�

For each a, Ĩaa�t� has the same form as for the single-type
case �22�. In other words each eigenvalue contribution is
interpreted as a single type and the overall behavior is ob-
tained after the superposition of these modes �34�. As for the
final outbreak size, some asymptotic properties are deter-
mined by the contribution given by the largest eigenvalue,
resulting in the following theorem.

Theorem IV.3. Consider a complete type network and an
agent-independent exponential distribution of generation
times Gab���=1−e−��, where � is the transmission rate. Let �

be the largest eigenvalue of R̃, Eq. �17�, and let

� =
D − 1

�
. �37�

�
1: If ��1 and 1��t��, then

Iab�t� � e��−1��t. �38�

��1: If �t
�, then

Iab�t�
Nab���

=
���t�D−1e−�t

�D − 1�! �1 + O� t0

t
	� , �39�

where

t0 =
�

�
�40�

and the symbol O�t0 / t� indicates that this is an asymptotic
result when t
 t0 with correction terms of the order of t0 / t.

The case �
1 provides the connection between this work
and continuous-time multitype branching processes with an
infinite number of generations. Indeed, Mode has already
demonstrated the exponential growth regime for the case D
=� �see �20�, Chap. 3�. Theorem IV.3 shows that in the other
limit ��1 the spreading dynamics is instead characterized
by a 
 distribution. The demonstration of this result for the
more general case of a strongly connected type network is
given in Appendix C.

C. Impact of intervention strategies

The expected outbreak size is a monotonic increasing
function of �, playing the role of the basic reproductive num-
ber in homogeneous populations �1,46�. Therefore, the aim
of intervention strategies is to reduce the characteristic repro-
ductive number �. On the other hand, intervention strategies
imply an economical cost including but not limited to the
development of new vaccines and their deployment through
vaccination campaigns. Our task is to design optimal inter-
vention strategies that minimize the expected outbreak size
with a feasible economical cost.

To be more precise let us consider a scenario where the
disease is transmitted at constant rate � from infected to
susceptible agents, infected agents are isolated at a rate �,
and a fraction s of the population is immune to the disease.
In this case the infection and removal times follow the ex-
ponential distribution functions GI���=1−e−�� and GR���
=1−e−��, respectively. Thus, from Eq. �13� we obtain rab
=1−� where

� = 1 −
�

� + �
�1 − s� �41�

is the blocking fraction—i.e., the fraction of potential disease
transmissions that are blocked either because of immuniza-
tion or patient isolation. Since rab=1−� is independent of
the primary and secondary case types, we can write the re-
productive number matrices �16� and �17� as Rab= �1−��K
and R̃= �1−��K̃, respectively, where

Kab = �k�aeab, K̃ab = �k�a
�excess�eab. �42�

In turn, the largest eigenvalue of R̃ is given by

� = �1 − ��� , �43�

where � is the largest eigenvalue of K̃. � represents the free
spread reproductive number in the absence of intervention

FIG. 2. Expected outbreak size as a function of the largest ei-
genvalue of the reproductive number matrix for different values of
D. The region ��1 is indicated by the shadowed region.
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strategies. In turn, �, Eq. �43�, is the effective reproductive
number considering the impact of intervention strategies.

From the analysis made in Sec. IV A it follows that there
are two different scenarios. When D
1 the target of inter-
vention strategies is �=1. The blocking fraction to achieve
this is obtained from Eq. �43�, resulting in

�c = 1 −
1

�
. �44�

This result has been already reported, at least for the case of
two types �1�. Most real networks are characterized, how-
ever, by small D values. In this case the expected outbreak
size is a smooth function of � �see Fig. 2� and the concept of
epidemic threshold makes no particular sense. In this context
the target of intervention strategies should be a predefined
expected outbreak size.

So far we have considered homogeneous intervention
strategies. Now let us assume that the rate of patient isolation
and the immunized fraction are different for each agent’s
type and given by �a and sa, respectively. In this case the
blocking fraction is given by

�ab = 1 −
�

� + �a
�1 − sb� �45�

and rab=1−�ab, which depends on the type of both the pri-
mary and secondary case. From the Perron-Frobenius theo-
rem it follows that � is a continuous increasing function of

all the entries of the R̃ �47�. Since R̃ab= �1−�ab�K̃ab, then � is
a continuous decreasing function of �ab for all �a ,b�. The
goal is to determine which strategy leads to the largest re-
duction of �.

Example IV.4. Consider the spread of HIV in a hetero-
sexual population with no further distinction beyond gender.
In this case the type network is bipartite �see Fig. 1�b��. Let
k1 and k2 be the average excess degree for the connections
from women to men and vice versa. Let us also assume that
the rate of patient isolation is zero and that we could immu-
nize a fraction s of the overall population, distributed be-
tween a fraction xs and �1−x�s of immunized women and
men, respectively. The question is to determine the value of x
representing the best intervention strategy. In this case the
reproductive number matrix is given by

R̃ = � 0 �1 − �1 − x�s�k2

�1 − xs�k1 0
� �46�

and it has the largest eigenvalue

� = ��1 − s + x�1 − x�s2�k1k2. �47�

It results that � is minimum for x=0 or x=1; i.e., the best
intervention strategy is to direct all the immunization re-
sources to only one subpopulation.

V. DISCUSSION

These calculations are an application of the theory of mul-
titype branching processes to model the spread of infectious
diseases on heterogeneous populations. Using this modeling

approach I bypass the detailed structure of the contact graph
underlying the disease spread and focus on its statistical
properties. At the type’s level, the network representation of
the mixing matrix provides a very intuitive interpretation of
the mixing patterns. This representation allows us to make
use of the Fobrenious-Perrón theorem �45� to obtain the lead-
ing behavior. In this way the impact of the model parameters
becomes relevant through the largest eigenvalue of the repro-
ductive number matrix � and the average distance between
nodes, D.

The relevance of � is a well-known fact since the work of
Mode �20�. The novelty resides in the modulation of the �
dependence by D. This result is not merely a theoretical ob-
servation. Given the small-world character of social and
electronic communication networks it is of practical impor-
tance as well. The good news is that in spite of this modula-
tion by D the target of intervention strategies is still the
characteristic reproductive number. More precisely, reducing
the characteristic reproductive number we reduce the final
outbreak size. This observation may explain why interven-
tion strategies have been successful although assuming D

1. The bad news is that to quantify the impact of the in-
tervention strategies we need to estimate D. Therefore, to
achieve a realistic epidemic outbreak forecast and efficient
intervention strategies we most take into account the small-
world property of real networks.

There are different paths to estimate D. First, we can use
a direct approach such as Milgram’s experiments �34�. Sec-
ond, we can measure other network properties such as the
degree distribution and then try to estimate D using network
models �40–44,48�. Finally, I have shown that the progres-
sion of the expected number of new infections is modulated
by D �see �22–24� and Sec. III�. More precisely, in small-
world populations the incidence is expected to grow as a
power law and we can estimate D from the power-law expo-
nent.

Further work is required to test the validity of the type-
network approach. This can be done by running agent-based
simulations having a strict control of the different statistical
properties characterizing the population structure. These sta-
tistical properties can be then plugged into the multitype net-
work approach to obtain quantitative predictions that can be
compared with the simulation results.

In conclusion, this work opens new avenues to future re-
search on the spreading of infectious diseases on heteroge-
neous populations. It allows for a qualitative understanding
through the analysis of the type-network representation of
the mixing matrix. More important, it leads to general results
that can be tackled case by case using exact or approximate
calculations and numerical computations.
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APPENDIX A: ITERATIVE APPROACH

Consider a branch of the AST rooted in a type-a agent, at
generation d, which was infected at time zero. Let Pn

�d,a,b�
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��t� be the probability distribution to find n infected type-b
agents at time t in that branch. In particular Pn

�0,a,b��t� is the
probability distribution of the total number of infected type-
b agents at time t on the whole AST, given that the index
case was of type a. Based on the tree structure we can de-
velop an iterative approach to compute Pn

�d,a,b��t� recursively.
Lemma A.1. Consider a type-a infected agent at genera-

tion d of a continuous-time multitype AST. This agent has
degree k with probability pk

�a� for d=0 and excess degree k
−1 with probability qk

�a� for 0�d�D. Let us index by � its
neighbors in the next generation d+1, where �� 
1, . . . ,k�
for d=0, �� 
1, . . . ,k−1� for 0�d�D, and �� 
�� for d
=D. Then

Pn
�0,a,b��t� = p0

�a���ab�n1 + �1 − �ab��n0�

+ �
k=1

�

pk
�a� �

n1=0

�

¯ �
nk=0

�

��
�=1
k n�+�ab,n�

�=1

k

�
c=1

M

eac

� �rac�
0

t

dGac���Pn�

�1,c,b��t − ��

+ �n�,0�1 − racGac�t��� , �A1�

Pn
�d,a,b��t� = q1

�a���ab�n1 + �1 − �ab��n0�

+ �
k=2

�

qk
�a� �

n1=0

�

¯ �
nk−1=0

�

��
�=1
k−1 n�+�ab,n�

�=1

k−1

�
c=1

M

eac

� �rac�
0

t

dGac���Pn�

�d+1,c,b��t − ��

+ �n�,0�1 − racGac�t��� , �A2�

Pn
�D,a,b��t� = �ab�n1 + �1 − �ab��n0, �A3�

where �ij =1 for i= j and zero otherwise.
Proof. Let n be the number of infected type-b agents in a

branch rooted at type-a agent, and let n� be the infected type-
b agents on the branches rooted at each of its neighbors �.
Then

n = �ab + �
�

n�, �A4�

where �ab takes into account if the root agent is or it is not of
type b. The probability distribution of n is given by the sum
of all possible combinations of the random variables n� that
satisfy Eq. �A4�. Now, the root agent and its neighbors lie on
a tree and therefore n� are independent random variables.
Furthermore, all agents at generation d+1 have the same
statistical properties; i.e., n� are identically distributed ran-
dom variables. Therefore, the probability of each combina-
tion is decomposed into the product of the probability distri-
bution of the number of infected agents of type b on the
subbranches rooted at each neighbor. Thus, taking into ac-
count that each neighbor is of type c with probability eac we
obtain

Pn
�0,a,b��t� = p0

�a���ab�n1 + �1 − �ab��n0�

+ �
k=1

�

pk
�a� �

n1=0

�

¯ �
nk=0

�

��
�=1
k n�+�ab,n

��
�=1

k

�
c=1

M

eacQn�

�1,a,c,b��t� , �A5�

Pn
�d,a,b��t� = q1

�a���ab�n1 + �1 − �ab��n0�

+ �
k=2

�

qk
�a� �

n1=0

�

¯ �
nk−1=0

�

��
�=1
k−1 n�+�ab,n

��
�=1

k−1

�
c=1

M

eacQn�

�d+1,a,c,b��t� , �A6�

where Qn�

�d+1,a,c,b��t� is the probability distribution of n� which
we proceed to calculate.

Let us focus on one neighbor and assume that it is of type
c. With probability 1−rac this agent is not infected at any
time and with probability rac�1−Gac�t�� it is not yet infected
at time t given it will be infected at some later time, resulting
in

Q0
�d+1,a,c,b��t� = 1 − racGac�t� . �A7�

On the other hand, with probability rac the neighbor is in-
fected at some time �, with distribution function Gac���, and
the spreading dynamics continues to subsequent generations.
Once the neighbor is infected, the number of infected agents
of type b on that subbranch is a random variable with prob-
ability distribution Pn

�d+1,c,b��t−��. Therefore, for n�0,

Qn
�d+1,a,c,b��t� = rac�

0

t

dGac���Pn
�d+1,c,b��t − �� . �A8�

Finally, substituting Eqs. �A7� and �A8� into Eqs. �A5� and
�A6� we obtain Eqs. �A1� and �A2�. The demonstration of
Eq. �A3� is straightforward. For d=D the process stops and
therefore there is only one infected agent, the root itself,
which is or it is not of type b, resulting in Eq. �A3�. �

Associated with the probability distribution Pn
�d,a,b��t� we

introduce the generating function

F�d,a,b��x,t� = �
n=0

�

Pn
�d,a,b��t�xn. �A9�

Using the recursive relations for the probability distribution,
Eqs. �A1�–�A3�, we obtain the following recursive relations
for the generating function:

F�0,a,b��x,t� = x�abUa��
c=1

M

eac�1 − racGac�t�

+ rac�
0

t

dGac���F�1,c,b��x,t − ���	 ,

�A10�
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F�d,a,b��x,t� = x�abVa��
c=1

M

eac�1 − racGac�t�

+ rac�
0

t

dGac���F�d,c,b��x,t − ���	 ,

�A11�

F�D,a,b��x,t� = x�ab. �A12�

Using these recursive equations we can proof lemma IV.1.

Proof of lemma IV.1

Proof. Let

N�d,a,b��t� =
�F�d,a,b��1,t�

�x
�A13�

be the mean number of infected type-b agents on the branch
rooted at a type-a agent at generation d. In particular,
Nab�t�=N�0,a,b��t�. Making use of the recursive relations
�A10�–�A12� we obtain

N�0,a,b��t� = �ab + U̇a�1��
c=1

M

rac�
0

t

dGac���N�1,c,b��t − �� ,

�A14�

N�d,a,b��t� = �ab + V̇a�1��
c=1

M

rac�
0

t

dGac���N�d+1,c,b��t − �� ,

�A15�

N�D,a,b��t� = �ab. �A16�

Iterating these recursive relations from d=D to d=0 we ob-
tain Eq. �18�. Then differentiating with respect to time we
finally obtain Eq. �19�. In this step we also make use of the

relation between U̇a�1� and V̇a�1� and the average degrees,
Eqs. �7� and �8�. �

APPENDIX B: FINAL OUTBREAK SIZE, STRONGLY
CONNECTED TYPE NETWORKS

Theorem IV.2 can be generalized to type networks that
may not be complete but are still strongly connected; i.e.,
there is a path from every type a to every type b. In this case

some entries of Rac and �R̃d−1�cb in Eq. �28� may be zero.
Intuitively this means that some types c may not be a neigh-
bor of a and, if they are, there may not be a path from c to b
�see Fig. 3�. More precisely, given a type a let Out�a� be its
set of out-neighbors—i.e., Out�a�= 
c �eac�0�—and given a
type b let Ind�b� be the set of types from where b is reached
after d hops on the type network—i.e., Ind�b�= 
c � �ed�cb

�0�. Furthermore, let

Sd
�a,b� = Out�a� � Ind−1�b� �B1�

denote the set of types that are out-neighbors of the index
case type a and belong to at least one path of length d from

a to b on the type network. For instance, in the example in
Fig. 3, S1

�a,b�=�, S2
�a,b�= 
c��, S3

�a,b�= 
c��, and Sd
�a,b�=� for all

d�3.
Theorem B.1 (strongly connected type network). Consider

a strongly connected type network. Let � be the largest ei-

genvalue of R̃, Eq. �17�, dab the distance on the type network
from type a to b, n= �D /dab� and Dab=ndab. Then

Nab��� = uab �
1�d�D�Sd

�a,b���

�d−1, �B2�

where uab is independent of D.
Proof. The conditions of the Perron-Frobenius theorem

�45� are valid beyond positively defined matrices and hold
for the mixing matrix representing a strongly connected net-

work. Thus, the largest eigenvalue of R̃ is simple and all the
entries of its corresponding eigenvector v� are different from
zero and have the same sign. In particular we choose all the
components of v� to be positive. Based on this fact we can
write Eq. �28�. There may be, however, some entries of e and

thus of R, Eq. �16�, and R̃d−1 that are zero. Indeed we can
rewrite Eq. �28� as

�RR̃d−1�ab = �
1�c�M�c�Sd

�a,b�

Rac

vc
vc�R̃d−1�cb. �B3�

Thus �RR̃d−1�ab=0 whenever Sd
�a,b�=�. Otherwise, we obtain

the inequalities

uab
�min��d−1 � �RR̃d−1�ab � uab

�max��d−1, �B4�

where

uab
�min� = min

c�Out�a�

vb

vc
Rac, �B5�

uab
�max� = max

c�Out�a�

vb

vc
Rac. �B6�

From Eqs. �27� and �24� we obtain

FIG. 3. Strongly connected type network with six types. The
dashed lines indicate the possible paths from type a to b. Note that
only types c, c�, and c� are neighbors of type a and type b can be
only reached from the last two.
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1 + uab
�min� �

1�d�D�Sd
�a,b���

�d−1

� Nab��� � 1 + uab
�max� �

1�d�D�Sd
�a,b���

�d−1. �B7�

From this equation we obtain Eq. �B2� with

0 � uab
�min� � uab � uab

�max� � � , �B8�

where the inequality uab
�min��0 follows from Eq. �B5�. �

APPENDIX C: PROOF OF THEOREM IV.3

The following theorem is a generalization of theorem IV.3
to the more general case of strongly connected type net-
works.

Theorem C.1. Consider a strongly connected type network
and a homogeneous and exponential distribution of genera-
tion times Gab���=1−e−��, where � is the transmission rate.

Let � be the largest eigenvalue of R̃, Eq. �17�, and let

� =
D − 1

�
. �C1�

�
1: If ��1 and 1��t��, then

Iab�t� � e��−1��t. �C2�

��1: If �t
�, then

Iab�t�
Nab���

=
���t�Dab−1e−�t

�Dab − 1�! �1 + O� �

�t
	� , �C3�

where Dab is the same as in theorem B.1.
Proof. �
1. Following the same guidelines of the theo-

rem B.1 proof we arrive to the inequality

uab
�min�fab�t� � Iab�t� � uab

�max�fab�t� , �C4�

where

fab�t� = �
1�d�D�Sd

�a,b���

����t�d−1e−�t

�d − 1�!
. �C5�

The Laplace transform of fab�t� is given by

f̂ ab��� = �
0

�

dtfab�t�e−�t =
a

�
�

1�d�D�Sd
�a,b���

� ��

� + �
	d

.

�C6�

When D→� this series converges only for �� ��−1��.
Therefore, fab�t��e��−1��t when �t→�.

��1: The demonstration of this case is straightforward.

From theorem B.1 it follows that �RR̃d−1�ab is of order �d−1

for Sd
�a,b���. Therefore, for �
D the sum in Eq. �34� is

dominated by the d=Dab term. Corrections are given by the
ratio between the d=Dab and the preceding term satisfying
Sd

�a,b���, which is at most d=Dab−1. �
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