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The spreading kinetics of Herschel-Bulkley fluids on horizontal solid substrates were
theoretically studied. The equations of film thickness were derived in both gravitational and
capillary regimes. The dynamic contact angle for the capillary regime was also derived.
Finally, a limiting result for the case of τ0 � 0 was obtained, which was compared with the
known solution for validation. The results show that the yield behavior of the fluids had a
significant impact on the spreading kinetics in both cases. Only when stress was larger
than the yield stress, would substantial flow occur. The spreading zone was divided into
two parts by the yield surface: sheared zone and yield zone, which was completely different
from common Newtonian fluids or power-law fluids. The thickness of the yield zone mainly
depended on yield stress and pressure gradient along the z-direction. According to the
final evolution, both the film thickness and dynamic contact angle were affected not only by
the power-law index but also by the yield behavior.
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INTRODUCTION

Many studies have addressed the spreading of Newtonian and power-law fluids over solid surfaces
by experiments, simulations, and theories [1–7]. For Newtonian fluids, Tanner law is considered to
be the classic theory [3]. For power-law fluids, Starov built a hydrodynamic model for the
spreading of a complete wetting case [4]. Wang experimentally investigated both complete wetting
and partial wetting cases of spreading, which agreed with the theory proposed by Starov [5-6].
Carré and Eustach proposed a simplified theoretical analysis and experimentally observed the drop
shape [7].

Besides power-law fluids, Bingham and Herschel-Bulkley fluids also belong to the common non-
Newtonian type, which present yielding behavior. For Bingham fluids, the spreading dynamics both
in impact and spin-coating cases have been analyzed in detail. In the impact case, the results
indicated that the film shape mainly depends on initial yield stress, power-law index, and the impact
force [8–13]. In the spin-coating case, the analysis showed that film thickness is not homogeneous,
the yield behavior, power-law index, and the centrifugal force are the key factors on spreading
dynamics [14–17].

Because of the complex rheological model of Herschel-Bulkley fluids, a minority of theories of
complete wetting have been proposed. In this paper, we will theoretically analyze the spreading of
Heschel–Bulkley fluids in a complete wetting case based on some proper assumptions. We begins
with the simple spreading schematic of Newtonian fluids and the Navier–Stokes equation. According
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to the analytical approach of the spreading of power-law fluids,
the film thickness equations are derived in both gravitational and
capillary regimes and the dynamic contact angle is also discussed.

ASSUMPTIONS

To simplify the problem, the following assumptions are made
[18, 19]. 1) The spreading process belongs to the complete wetting
case. 2) The fluids are incompressible, which will ensure the
Navier-Stokes equation is workable. 3) The gas viscosity is
ignored. 4) The film is much thinner than the horizontal
length, so the flow can be converted into 2D. 5) The Reynolds
number is small enough to ignore inertial influence. And 6)
complete wetting is applied here to ensure a small contact angle.

THEORY

The Constitutive Model of Herschel-Bulkley
Fluids
The constitutive model of Herschel-Bulkley fluids is similar to
Bingham fluids or power-law fluids. The specific constitutive
equation is given as follows:

{ τ � τ0 + k _cn, |τ|> τ0
_c � 0 , |τ|≤ τ0 (1)

where τ is shear stress, k is viscosity coefficient, _cis the shear rate,
n is the power-law index, and τ0 is the initial yield stress.

Thin Film Equation
The spreading schematic of the advancing system of Newtonian
or power-law fluids is shown in Figure 1. The derivation of the
Herschel-Bulkley case was also started in Figure 1. In Figure 1, u

is the horizontal velocity of the fluid, which is affected by time t
and position x, z. U is the framing moving velocity of the contact
line, θ(U) is the dynamic contact angle, and h is the height of film
thickness of any position x.

With the proposed assumption (3), the pressure along the
z-direction will meet the following equation.

zp
zz

� −ρg (2)

Applying the Young-Laplace equation to the free surface (z �
h), there is

p � pG + σ( 1
R1

+ 1
R2
) ≈ pG − σ

z2h
zx2

(3)

where pG represents the atmospheric pressure and σ is surface
tension.

Integrating Eq. (2) with respect to the boundary condition
listed in Eq. (3), the pressure can be further calculated as

p � ρg(h − z) + pG − σ
z2h
zx2

(4)

When z � 0, the stress on the horizontal substrate can be
obtained from Eq. (4) as

τs � p|z�0 � ρgh + pG − σ
z2h
zx2

(5)

Consequently, when the initial yield stress τ0 is larger than τs,
substantial flow will not occur. Thus the approximate condition
for substantial flow is

|τ0|< ρgh + pG − σ
z2h
zx2

(6)

Substantial flow will be discussed below. Owing to the initial
yield stress, there must be a yield surface at z � h0. Thus the
spreading zone will be divided into two zones, the significant

FIGURE 1 | Spreading flow schematic figure of Newtonian fluids and
power-law fluids.

FIGURE 2 | The actual spreading flow schematic figure of Herschel-
Bulkley fluids.
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shear exists only below the yield surface. The shear rate is zero at
or above the yield surface. The viewpoint is consistent with the
spreading of Bingham fluids proposed by Liu [20]. Therefore, the
actual flow schematic of the advancing systems of Herschel-
Bulkley fluids is shown in Figure 2. The dashed line separates
the zone into sheared and yield zones respectively. The schematic
figure is completely different from the Newtonian or power-
law case.

For the Navier–Stokes equation, it can be written as

zp
zx

� z

zz
(μ zu

zz
) (7)

where p is the pressure and x is the distance of one point from the
z-axis. According to Eq. (1), when the stress is larger than the
yield initial stress, the viscosity can be expressed as

μ � τ0
|zu/zz| + k

∣∣∣∣∣∣∣zuzz
∣∣∣∣∣∣∣
n− 1

(8)

Substituting Eq. (8) into Eq. (7), there is

zp
zx

� z

zz
[( τ0

|zu/zz| + k
∣∣∣∣∣∣∣zuzz

∣∣∣∣∣∣∣
n− 1) zu

zz
] (9)

Based on the boundary condition of no shear at the yield
surface (h(x) � h0, zu/zz � 0), integrating Eq. (9) with respect to z
and the following equation can be acquired.

zu
zz

� sign(−zp
zx
)[∣∣∣∣∣∣∣ − 1

k
zp
zx

∣∣∣∣∣∣∣(h0 − z)]
1
n

(10)

With the boundary condition of no-slip at the solid surface (z � 0,
u � 0), the expression of u can be obtained by integrating Eq. (10).

u � n
n + 1

(1
k
)1

n

sign(−zp
zx
) ·

∣∣∣∣∣∣∣−zpzx
∣∣∣∣∣∣∣
1
n[h0n+1n − (h0 − z)n+1n ] (11)

Equation (11) shows that the maximum velocity up occurs at
the yield surface z � h0 that can be obtained as

up � n
n + 1

sign(σ z3h
zx3

− ρg
zh
zx
) · (1

k
)1

n(σ z3h
zx3

− ρg
zh
zx
)

1
n

h0
n+1
n

(12)

When z > h0, the velocity is still equal to the maximum velocity
up. According to mass conservation, there is

zh
zt

+ zq
zx

� 0 (13)

where q is the flow of fluids.
For Herschel-Bulkley fluids, q is made up of two parts as

q � ∫h0

0
udz + up(h − h0) (14)

The first term of the right side represents the shear zone below
the yield surface and its detailed expression is

∫h0

0
udz � n

2n + 1
sign(σ z3h

zx3
− ρg

zh
zx
)(1

k
)1

n(σ z3h
zx3

− ρg
zh
zx
)

1
n

h0
2n+1
n

(15)

Then the flow q will be acquired as follows:

q � n
2n + 1

sign(σ z3h
zx3

− ρg
zh
zx
)(1

k
)1

n(σ z3h
zx3

− ρg
zh
zx
)

1
n

h0
2n+1
n

+ n
n + 1

sign(σ z3h
zx3

− ρg
zh
zx
)(1

k
)1

n(σ z3h
zx3

− ρg
zh
zx
)

1
n

h0
n+1
n (h − h0)

(16)

In Fig. 2, the velocity along the x-direction is parabolic, which
can also be explained by Eqs. (11)–(12). When it refers to the
velocity, the case here is similar to classical Poiseuille flow. Both of
them are driven by the pressure gradient, and they have the same
initial and boundary conditions, thus the relationship between h
and h0 can be obtained based on our previous work [21–22] as

h0 � h − τ0∣∣∣∣zp/zz∣∣∣∣ � h − τ0
ρg

(17)

Substituting Eq. (17) into Eq. (16), a new formula of flow q is
generated as

q � n
2n + 1

sign(σ z3h
zx3

− ρg
zh
zx
)(1

k
)1

n(σ z3h
zx3

− ρg
zh
zx
)

1
n

h0
2n+1
n

+ n
n + 1

sign(σ z3h
zx3

− ρg
zh
zx
)(1

k
)1

n(σ z3h
zx3

− ρg
zh
zx
)

1
n

h0
n+1
n
τ0
ρg

(18)

Finally, substituting Eq. (18) into Eq. (13), the following
equation is obtained as

zh
zt

+ n
2n + 1

sign(σ z3h
zx3

− ρg
zh
zx
)(1

k
)1

n z

zx
[∣∣∣∣∣∣∣∣σ z

3h
zx3

− ρg
zh
zx

∣∣∣∣∣∣∣∣
1
n

h0
2n+1
n ]

+ n
n + 1

sign(σ z3h
zx3

− ρg
zh
zx
)(1

k
)1

n z

zx
[∣∣∣∣∣∣∣∣σ z

3h
zx3

− ρg
zh
zx

∣∣∣∣∣∣∣∣
1
n

h0
n+1
n
τ0
ρg
] � 0

(19)

According to Eq. (16), the pressure mainly depends on the
gravity and capillary forces. In the following part, two limiting
regimes will be considered further. One is only the gravitational
regime taken into consideration by ignoring the capillary force,
ρgR2>>σ. The other is only the capillary force regime considered,
ignoring the gravity, σ>>ρgR2.

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 6099263

Zhang et al. Spreading Kinetics of Herschel-Bulkley Fluids

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Gravitational Spreading Regime
The capillary force is ignored here, so Eq. (19) can be simplified
into the following equation.

zh
zt

+ sign( − ρg
zh
zx
)(ρg

k
)1

n z

zx
[∣∣∣∣∣∣∣− zhzx

∣∣∣∣∣∣∣
1
n

h0
n+1
n ( n

2n + 1
h0 + n

n + 1
τ0
ρg
)] � 0

(20)

When the contact line moves at velocity U, the above equation
can be converted into the following form by introducing a new
variable ξ � x − Ut.

−U dh0
dξ

+ (ρg
k
)1

n d
dξ

⎡⎢⎣(dh0
dξ

)
1
n

h0
n+1
n ( n

2n + 1
h0 + n

n + 1
τ0
ρg
)⎤⎥⎦ � 0

(21)

Integrating the above equation with respect to ξ, there is

Un � ( n
2n + 1

)nρg
k

dh0
dξ

h0(h0 + 2n + 1
n + 1

τ0
ρg
)n

(22)

With the boundary condition: ξ � 0, h � 0, Eq. (22) can be solved
as

1
n + 2

[(h + n
n + 1

τ0
ρg
)n+2

− ( n
n + 1

τ0
ρg
)n+2] − 2n + 1

(n + 1)2

· τ0
ρg

[(h + n
n + 1

τ0
ρg
)n+1

− ( n
n + 1

τ0
ρg
)n+1]

� (U 2n + 1
n

)n k
ρg

ξ (23)

Equation (23) addresses the fact that film thickness in
capillary spreading is determined by initial yield stress τ0 and
power index n.

Capillary Spreading Regime
In the condition, the gravitational action is ignored, then Eq. (19)
can be simplified as follows

zh
zt

+ sign(σ z3h
zx3

)(1
k
)1

n z

zx

⎧⎨⎩(σ z3h
zx3

)
1
n

h0
n+1
n [ n

2n + 1
h0 + n

n + 1
τ0
ρg
]⎫⎬⎭ � 0

(24)

Introducing the above variable ξ and h0 into Eq. (24),

− U
dh0
dξ

+ sign(σ d3h0
dξ3

)(1
k
)1

n

d
dξ

⎧⎨⎩(σ z3h0
zξ3

)
1
n

h0
n+1
n [ n

2n + 1
h0 + n

n + 1
τ0
ρg
]⎫⎬⎭ � 0

(25)

Integrating the above equation with respect to ξ,

−U + n
2n + 1

(1
k
)1

n(σ d3h0
dξ3

)
1
n

h0
1
n[h0 + 2n + 1

n + 1
τ0
ρg
] � 0 (26)

Then it is supposed that τ0ρg � λh0, so Eq. (26) can be translated
into

Un � [ n
2n + 1

· (2λ + 1)n + (λ + 1)
n + 1

]n
σ

k
d3h0
dξ3

h0
n+1 (27)

With the boundary condition: ξ � 0, h � 0, Eq. (27) can be solved
as

h0
n+2 � k

σ
[U (2n + 1)(n + 1)

n(n(2λ + 1) + (λ + 1))]
n[ (n + 2)3
3(2n + 1)|n − 1|]ξ3 (n≠ 1)

(28)

Further, the film thickness equation can be obtained by
replacing h0,

(h − τ0
ρg
)n+2

� k
σ
[U (2n + 1)(n + 1)

n(n(2λ + 1) + (λ + 1))]
n[ (n + 2)3
3(2n + 1)|n − 1|]ξ3 (n≠ 1)

(29)

Based on Eq. (17), the variable λ can be calculated as

λ � τ0/ρg
h − τ0/ρg (30)

In this way, the equation of film thickness h can be obtained,
which depends on the power index n and initial yield stress τ0.

Dynamic Contact Angle
The inclination angle at x � ξ can be calculated by differentiating
film thickness h as shown in Eq. (29) for the capillary spreading
regime.

FIGURE 3 | The rheological model of Herschel-Bulkley fluids.
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tan θ � dh
dξ

�
k
σU

n[ (n+2)3
(2n+1)|n−1|]

(h − τ0/ρg)[n(n+1)h+n2τ0/ρg(2n+1)(n+1) ]n−1{(n + 2)[n(n+1)h+n2τ0/ρg(2n+1)(n+1) ] − n2τ0 /ρg
n+1 }ξ

2 (n≠ 1)

(31)

In previous studies, many researchers found that the local
microscopic contact angle can not be measured directly for
boundary conditions. Thus dynamic contact angle θ is taken
as the replacement, which is equal to the inclination angle at
x � xm. Furthermore, the dynamic contact angle can be
obtained as

θ ≈ tan θ �
k
σU

n[ (n+2)3
(2n+1)|n−1|]

(h − τ0/ρg)[n(n+1)h+n2τ0/ρg(2n+1)(n+1) ]n−1{(n + 2)[n(n+1)h+n2τ0/ρg(2n+1)(n+1) ] − n2τ0/ρg
n+1 }xm

2 (n≠ 1)

(32)

To obtain Eq. (32), it is considered that when the angle θ is
small enough, it is approximately equal to sin θ or tan θ.

EXAMPLE

In a previous study [21, 22], the typical Herschel-Bulkley model
was obtained as follows

{ τ � 3.899 + 1.103 _c0.633, τ0 ≥ 3.899
_c � 0 , τ0 < 3.899

(33)

The rheological figure is shown in Figure 3. The model was
taken as an example to explain the spreading results.

Figure 4 gives the film thickness in the gravitational regime.
The area below the dashed line is the sheared zone. In Figure 5,
the figure of the contact angle vs. the moving velocity at different
film thicknesses is presented. It can be found that a thinner film
will lead to a smaller contact angle.

DISCUSSION AND CONCLUSION

The spreading of Herschel-Bulkley fluids over solid substrates for a
complete wetting case was theoretically studied here. The film
thicknesses in both the gravitational and capillary regimes were
derived and the dynamic contact angles were also explored. There
was an obvious difference between other kinds of fluids

FIGURE 4 | The figure of film thickness in gravitational regime (The
detailed physical quantities are set as follows: ρ � 1950 kg/m3, n � 0.633, k �
1.103 Pa s0.633, τ0 � 3.899 Pa, g � 10 m/s2. In Figure 4, U � 2*10−5 m/s, t �
0.3 s).

FIGURE 5 | The contact angles at different film thicknesses.
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(Newtonian fluids and power-law fluids). The flow was
dramatically affected by the yield behavior of Herschel-Bulkley
fluids. According to the analysis, only when the stress on the
substrate was larger than the initial yield stress τ0, would the flow
be appreciable. Even if appreciable flow occurred, the spreading
zone was also divided into two zones: one was the shear zone and
the other was the yield zone. The dividing surface was named yield
surface at z � h0, which does not exist in common fluids such as
Newtonian fluids or power-law fluids. In “Example” section, the
detailed numerical examples are given to explain the results further.

It is noteworthy that when initial yield stress τ0 � 0, the fluids
become power-law fluids. The film thicknesses of the gravitational
regime and the capillary regime will be obtained as follows

hn+2 � (n + 2) k
ρg
(U 2n + 1

n
)n

ξ (34)

hn+2 � k
σ
[U 2n + 1

n
]n[ (n + 2)3

3(2n + 1)|n − 1|]ξ3 (n≠ 1) (35)

Equations (34) and (35) represent the gravitational case and
the capillary case, respectively. Also, the dynamic contact angle θ
of the capillary regime will be

θ ≈ tan θ �
k
σU

n[ (n+2)2
(2n+1)1−2n |n−1|]

(n + 2)nnhn+1
ξ2 (n≠ 1) (36)

Substituting Eq. (35) into Eq. (36), then the specific equation
of the dynamic contact angle can be obtained as

θn+2 � (k
σ
Un)[ 3n+1(n + 2)1−n

(2n + 1)1−n|n − 1|nn
]xm1−m (n≠ 1) (37)

It can be found that all of them are in agreement with the
results obtained by Wang [5]. Another noticeable feature of the

analysis is that some of the equations have a collective limitation
n≠ 1, which means the theoretical results are not applicable for
Bingham fluids, although the fluid corresponds to it when n � 1.
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GLOSSARY

Nomenclature Symbols
g Gravitational acceleration

h The height of film thickness at position x

h0 The film thickness of yield surface

k Viscosity coefficient

n The power-law index

p Pressure

pG Atmospheric pressure

q Flow of fluids

t Time

u Velocity along the x-direction

up Maximum velocity of u

U Frame moving velocity

x/z Values at two directions in the Cartesian coordinate system

_c Shear rate

θ Dynamic contact angle

λ Variable

ξ Variable, ξ � x-Ut

ρ Density

σ Surface tension

τ Stress

τ0 Initial yield stress

τs Stress on the substrate
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