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Abstract: Spreading magnetic anomalies recorded the paleo-geomagnetic field variation that has
great significance in the investigation of the extension process of ocean basins. Interpreting spreading
magnetic anomalies under complex geological environments is challenging, especially for marginal
sea basins. We proposed nested elliptical directional filters to separate the spreading magnetic anoma-
lies of the South China Sea (SCS). The results show that the spreading magnetic anomalies separated
by the nested elliptical directional filters depict the expansion process of the oceanic crust, and
the interference magnetic anomalies are effectively suppressed. The separated spreading magnetic
anomalies indicate that the expansion process of the SCS is affected by the interactions between the
surrounding plates. The spreading magnetic anomalies of the SCS are warped, interrupted, and
not strictly parallel. The pattern of the spreading magnetic anomalies reflects multiple ridge jumps
during the expansion process and the post-spreading magmatic disturbances. The long-wavelength
magnetic anomalies indicate lithospheric fractures and Curie surface variations in the SCS, which are
affected by the post-spreading magmatic rejuvenation. The magnetic anomalies of the SCS resulted
from the superposition of magnetic anomalies in the ocean crust and the uppermost mantle.

Keywords: spreading magnetic anomalies; nested elliptical directional filter; South China Sea;
expansion process; interactions of plates; post-spreading magmatic rejuvenation

1. Introduction

Spreading magnetic anomalies recorded the paleo-geomagnetic field variation through
the seafloor spreading process of ocean basins [1–3]. The symmetrical lineated magnetic
anomalies distributed on both sides of the ocean ridges are evidence of seafloor spread-
ing [1]. An accurate interpretation of spreading magnetic anomalies is the key to decipher-
ing the detailed formation process of ocean basins [2–6]; for example, investigating the
rotation and spreading history of the West Philippine Basin [7], evaluating the magnetic
structure of the ocean crust [8], and determining of the age of the seafloor of the world’s
ocean basins [9,10]. Compared with typical oceanic basins (e.g., the Pacific and Atlantic
oceans), the marginal sea basins have more intricate magnetic anomalies due to the complex
tectonic settings, such as the South China Sea (SCS). The SCS is situated at the junction
of the Philippine Sea, Eurasian, and Indo-Australian plates. The tectonic movements of
the surrounding plates play a crucial role in the expansion of the SCS [11]. The formation
process of the South China Sea included a complete Wilson cycle, the northwest com-
pression of the Pacific plate in the Mesozoic, the rift extension in the early Cenozoic, the
seafloor spreading from Oligocene to middle Miocene, and the arc–continent collision after
the spreading [12]. The expansion mechanism of the SCS has always been a hot topic in
geological oceanography [13].

Seamounts of different ages are widely distributed on the rugged seafloor of the SCS.
The tectonic interaction between the seafloor and continent and the deep thermal structure
of the oceanic lithosphere are potential factors affecting the seafloor spreading process of
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the SCS. The spreading magnetic anomalies result from the thermoremanent magnetization
of the ocean crust. They preserve the strength and direction of the paleo-geomagnetic field
polarity reversals [14]. The spreading magnetic anomalies are an accurate record of the
formation process of the ocean crust [1,15–23]. The interpretation of the spreading magnetic
anomalies can shed light on the detailed expansion process of the SCS. However, the
spreading magnetic anomalies of the SCS are inevitably disturbed by magmatic activities
during or after the seafloor spreading, tectonic movement, and fluctuations in the Curie
surface [4,5]. The SCS has experienced persistent and complex magmatic activities, and
the magmatic evolution spans the extension of the SCS [24–31]. Pre-spreading magmatic
activities mainly focus on the northern continental margin of the SCS and the coastal
areas [32–34]. During expansion, magmatism is concentrated on the seafloor of SCS, and
the oceanic crust is formed [35]. After the seafloor spreading, the magmatism is still
active, forming many seamounts and intrusions [27,36]. The seamounts and intrusions
usually result in short-wavelength disturbances, and the deep magnetic structures, for
example, the fluctuations in the Curie surface, can result in long-wavelength magnetic
anomalies [5,37]. The observed magnetic anomalies of the SCS superimpose the shallow
and deep magnetic disturbances [35]. Previous studies have determined the age of the
lineated magnetic anomalies of the SCS in the range of 33~15 Ma. However, the formation
process of the lineated magnetic anomalies and the detailed evolutionary history of the SCS
is still ambiguous [15–20]. Therefore, it is of great significance to separate the spreading
magnetic anomalies and suppress the interference components to investigate the expansion
process of the SCS.

Wang et al. [5] proposed the elliptical directional filter, which effectively suppresses the
short-wavelength anomalies of magmatic disturbances. In this study, we propose nested
elliptical directional filters to separate the spreading magnetic anomalies and suppress the
short- and long-wavelength disturbances of the SCS. The separated spreading magnetic
anomalies are of great significance when investigating the origin of the lineated magnetic
anomalies and the expansion process of the SCS.

2. Materials and Methods
2.1. Geologic Setting

The SCS is located at the junction of the Philippine Sea, Eurasian, and Indo-Australian
plates. The SCS is a rhomb-shaped marginal sea basin (Figure 1) formed during the
Cenozoic era [38,39]. The continental rifting initiated along the southern margin of South
China since the Eocene [40]; then, seafloor spreading started from the northwestern sub-
basin (NWSB) and eastern sub-basin (ESB) and propagated to the southwestern sub-basin
(SWSB) [30]. The NWSB is the smallest sub-basin of the SCS, and it is the first to ex-
pand. The water depth of the NWSB is 2700~3900 m. The spreading age of the NWSB
is in the range of 33~23 Ma [17]. The ESB is the largest sub-basin of the SCS, and the
water depth of the ESB is 1000~5000 m. The spreading age of the ESB is in the range of
32~15 Ma [18,20]. The SWSB is formed by the expansion of the SCS at the latest stage. The
spreading age of the SWSB is in the range of 24~15 Ma [3,18,40,41]. The water depth of the
SWSB is 3000~4800 m. During seafloor spreading, ridge jumps occurred, resulting in the
asymmetric geometry of the ESB [20,33]. The accretion of the oceanic crust was asymmetric
in the ESB, and the northern flank is larger than the southern one. The sediment thickness
of the South China Sea basin is in the range of 0~2000 m, and igneous intrusions are widely
distributed under the sedimentary layer [42]. Seamounts of different heights and sizes are
prevalently distributed on the seafloor of the SCS. Most of the seamounts were formed
by magmatic activities after the cessation of the seafloor spreading [29]. The widespread
magmatic activities were suggested to be induced by extension due to the cooling and
subsidence of the oceanic lithosphere and plate interactions [29,32].
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Figure 1. The topography of the South China Sea. ESB, eastern sub-basin of the SCS; NWSB,
northwestern sub-basin of the SCS; SWSB, southwestern sub-basin of the SCS; ZZ, Zhangzhong
seamount; ZB, Zhenbei seamount; ZN, Zhongnan seamount; HY, Huangyan seamount. The dashed
white line denotes the fossil spreading ridge. The topographic data are derived from the General
Bathymetric Chart of the Oceans (GEBCO).

2.2. Magnetic Anomalies of the SCS

The magnetic anomalies of the SCS are roughly striped (Figure 2). Although these
magnetic anomalies are believed to be formed by seafloor spreading, they are different
from the spreading magnetic anomalies of the typical ocean basins. The fossil spreading
ridges of the ESB and SWSB are not continuous, and the offset is nearly 100 km [43]. The
fossil spreading ridge of the SWSB is close to a straight line, while, for the ESB, the fossil
spreading ridge is not linear but has a barbed shape. Specifically, the trend of the magnetic
anomaly stripes is not strictly parallel to the fossil spreading ridge, and the magnetic
lineations of the SCS are distorted and discontinuous. The expansion of the NWSB, ESB,
and SWSB has different characteristics [44]. The magnitude of the magnetic anomalies of
the NWSB, ESB, and SWSB is in the range of −150~230 nT (nanotesla), −440~460 nT, and
−190~200 nT, respectively. The magnetic anomalies of the SCS are relatively clear in the
ESB with a high amplitude, while the magnetic anomalies of the NWSB and SWSB have a
weak amplitude, and the age of the magnetic lineations is difficult to identify. Ben-Avraham
and Uyeda [45] were the first to point out that there are EW-lineated magnetic anomalies
in the SCS. Then, Taylor and Hayes [16] interpreted these lineated magnetic anomalies as
a reflection of seafloor spreading. They suggested that the seafloor spreading occurred
in the Middle Oligocene to Early Miocene. According to magnetic surveys and ocean
drillings, the time of seafloor spreading of the SCS is in the range of 33~15 Ma, and the full
spreading rate varies in the range of 40~80 km/Ma [16–18,20]. The trend in the lineated
magnetic anomalies of the SCS can be roughly divided into two groups: northeast in the
SWSB and near east–west in the ESB and NWSB. Specifically, the strike of the magnetic
anomalies of the SWSB is between 50◦and 70◦, and the ESB and NWSB are between 80◦and
100◦. Post-spreading magmatic activities are prevalent, and the magnetic anomalies of
seamounts and intrusions introduce significant interferences to the spreading magnetic
lineations [19,32,36].
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Figure 2. The magnetic anomalies of the South China Sea. The dashed white line denotes the position
of the fossil spreading ridge. The solid yellow line denotes the continent-ocean boundary [35]. The
magnetic anomaly data are from the Coordinating Committee for Geoscience Programs in East and
Southeast Asia (CCOP).

2.3. Nested Elliptical Directional Filters

The observed magnetic anomalies are the superposition of magnetic sources of shallow
and deep magnetic structures. Seamounts and intrusions are shallow magnetic bodies
and mainly result in short-wavelength magnetic disturbances [5]. Magnetic anomalies
induced by deep magnetic structures (e.g., fluctuations in the Curie surface) are mainly long-
wavelength anomalies [35]. Wang et al. [5,46] proved that the spectrum of the spreading
magnetic anomalies is mainly distributed in the direction perpendicular to the lineations
in the frequency domain. Furthermore, the interference anomalies are usually randomly
distributed, with an isotropic spectrum in the frequency domain. Therefore, we aimed to
preserve the main frequency components of the spreading magnetic anomalies and cut
off the high- and low-frequency components to suppress interference anomalies as much
as possible. Thus, we propose using nested elliptical directional filters to separate the
spreading magnetic anomalies. The nested elliptical directional filters are composed of two
elliptical directional filters with different widths in the major and minor axes.

Let fa, fb represent the frequency response of two elliptical directional filters with
different widths in the major axis and the minor axis. In the frequency domain, the f a and
f b filters were denoted as:

fa(u, v) =

{
1
2 [1 + cos α] (α < π)

0 (α ≥ π)
, fb(u, v) =

{
1
2 [1 + cos β] (β < π)

0 (β ≥ π)
(1)

where α =
[

u2

∆u2
a
+ v2

∆v2
a

]1/2
· π, β =

[
u2

∆u2
b
+ v2

∆v2
b

]1/2
· π, ∆ua, ∆ub are the half-widths of the

major axis of the f a and f b, respectively, ∆va, ∆vb are the half-widths of the minor axis of
the f a and f b, respectively, and ∆ua > ∆ub and ∆va > ∆vb, u, v are the wavenumbers in the
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x and y axis directions, respectively. The direction of the major axis of the f a and f b filters
can be changed by the coordinate rotation transformation as follows:{

u′ = u cos α− v sin α
v′ = v cos α + u sin α

(2)

where u′, v′ are the wavenumbers of the transformed coordinates in the x and y axis
direction, respectively; u, v are the wavenumbers of the original coordinates in the x and
y axis direction, respectively; α is the counter-clockwise rotation angle from the original to
the new coordinate.

The filtering process of the nested elliptical directional filters can be divided into
three steps. First, the observed magnetic anomalies are filtered by the f a filter (Figure 3a)
to suppress the short-wavelength disturbances, and the filtered magnetic anomalies are
denoted as FMa. The FMa contains the spreading magnetic anomalies and long-wavelength
disturbances. Then, the f b filter (Figure 3b) is used to filter the observed magnetic anomalies
to derive the long-wavelength disturbances, and the filtered magnetic anomalies are pre-
sented as FMb. Finally, the separated magnetic anomalies are obtained by subtracting FMb
from FMa. Figure 3a,b show the responses of the f a and f b filters, where ∆ua = 1.0 rad/km,
∆va = 0.5 rad/km, ∆ub = 0.2 rad/km, and ∆vb = 0.1 rad/km. Figure 3c,d show the re-
sponse of the f a and f b filters in the direction of the major axis and minor axis, respectively.
This shows that the f a and f b filters are anisotropic low-pass filters with different pass-band
widths in the direction of the major and minor axes.
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Figure 3. The responses of the f a and f b filters. (a) The response of the f a filter. (b) The response of
the f b filter. (c) The response of the f a and f b filters in the direction of the major axis. The solid red
line and the dashed red line denote the response of the f a and f b filters in the direction of the major
axis, respectively. (d) The response of the f a and f b filters in the direction of the minor axis. The solid
blue line and the dashed blue line denote the response of the f a and f b filters in the direction of the
minor axis, respectively.
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3. Results
3.1. The Nested Elliptical Directional Filters of the SCS

The logarithmic power spectrum of the magnetic anomalies of the SCS is shown in
Figure 4. This shows that the spectrum of the SCS is anisotropic, with the major response
approximately perpendicular to the lineated magnetic anomalies. The strikes of the mag-
netic anomalies of the SCS are in the range of 50◦~100◦. Since the frequency response of the
spreading magnetic anomalies is perpendicular to the strike of the lineation [5,46], we set
the major axis of the f a and f b filters in the azimuth of 170◦. The parameters of the nested
elliptical directional filters were obtained after many experiments. The half-width of the
major and minor axes of the f a filter are ∆ua = 1.2 rad/km and ∆va = 0.5 rad/km, respec-
tively, and the half-width of the major and minor axes of the f b filter are ∆ub = 0.3 rad/km
and ∆vb = 0.2 rad/km, respectively (Figure 5a,b). Figure 5c,d shows the response of the
f a and f b filters in the directions of the major and minor axes, respectively. The f a and
f b filters take advantage of the anisotropic frequency response of the spreading magnetic
anomalies. The nested elliptical directional filters suppress the short- and long-wavelength
disturbances with varying pass-band widths in different directions. Two filtering effects
are shown; first, short-wavelength and long-wavelength disturbances are suppressed in
different directions. Second, the pass-band width is anisotropic and broad in the direction
of the major axis and narrow in the direction of the minor axis; thus, it can preserve the
frequency components of the spreading magnetic anomalies as much as possible.

3.2. The Separated Spreading Magnetic Anomalies of the SCS

The separated spreading magnetic anomalies of the SCS are shown in Figure 6.
Figure 6a shows the filtered magnetic anomalies of the SCS using the f a filter. We can
see that the short-wavelength disturbances are significantly suppressed, and the lineation
is clearer than before (Figure 2). However, the filtered magnetic anomalies still contain
long-wavelength disturbances induced by deep magnetic structures. Therefore, we fil-
ter the magnetic anomalies of the SCS using the f b filter to derive the long-wavelength
components. Figure 6b shows the filtered magnetic anomalies of the SCS by the f b filter.
The filtered magnetic anomalies by the f b filter show broad and banded long-wavelength
anomalies in which the positive magnetic anomalies dominate. The banded magnetic
anomalies are broad and continuous in the ESB and SWSB, respectively. The NWSB is dom-
inated by positive anomalies trending nearly east to west. These long-wavelength magnetic
anomalies reflect the oceanic crust’s deep magnetic structures. The separated spreading
magnetic anomalies of the SCS by the nested elliptical directional filters are shown in
Figure 6c. The separated magnetic anomalies are derived from f a filtered magnetic anoma-
lies subtracting f b filtered magnetic anomalies. This shows that the disturbances of short-
and long-wavelength magnetic anomalies are effectively suppressed, and the texture of
the spreading magnetic anomalies is clearer. The fossil spreading ridges of ESB and SWSB
correspond to the negative magnetic anomalies, and they are discontinuous, with an off-
set in the north–south direction. The fossil spreading ridge of the NWSB is difficult to
identify because there are no significant symmetrical magnetic lineations. The spreading
magnetic anomalies of the SCS are complex and different from the typical ocean basins.
The spreading magnetic anomalies are warped, interrupted, and not strictly parallel to
each other. This may reflect the intermittency of magma eruptions and the movement of
the spreading ridge axis during the spreading process. In addition, the post-spreading
magmatic activities are another potential factor.
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Figure 5. The response of the f a and f b filters. (a) The response of the f a filter. (b) The response of the
fb filter. (c) The response of the f a and f b filter in the direction of the major axis. The solid red line
and the dashed red line represent the response of the f a and f b filters in the direction of the major
axis, respectively. The solid black line represents the normalized amplitude spectrum of the magnetic
anomalies of the SCS in the direction of the major axis. (d) The response of the f a and f b filters in the
direction of the minor axis. The solid blue line and the dashed blue line represent the response of
the f a and f b filters in the direction of the minor axis, respectively. The solid black line represents
the normalized amplitude spectrum of the magnetic anomalies of the SCS in the direction of the
minor axis.
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4. Discussion
4.1. The Pattern of the Spreading Magnetic Anomalies of the SCS

The seafloor expansion of the SCS is under complex tectonic environments [47–51].
The SCS is a plate-edge-type rifting basin located at the junction of the Philippine Sea,
Eurasian, and Indo-Australian plates [12]. The SCS underwent continental rifting, seafloor
spreading, and eastward subduction under the Philippine Sea plate [16–18,33,44,49]. The
interactions of the surrounding plates affect the expansion process of the SCS [12]. The
separated spreading magnetic anomalies recorded the expansion details of the SCS. The
fossil spreading ridge of the ESB has a barb shape. However, except for the negative
anomalies at the fossil ridge and the positive anomalies on both flanks, the strike of the
spreading magnetic anomalies of the ESB is not strictly parallel to the fossil spreading
ridge. The barb shape may indicate that the ESB caused a rotation in the final stage of the
seafloor spreading. The irregular magnetic anomalies reflect that the shape and position
of the spreading ridge are changing during seafloor expansion. The spreading rate of
the SCS varied greatly during expansion. The full spreading rate of the SCS is in the
range of 20~80 km/Ma. The spreading rate is relatively high in the early stage of seafloor
spreading, then decreases to an average of 25 km/Ma during 26~29 Ma. After that, the full
spreading rate reaches a 70 km/Ma peak during 23.6~26 Ma, then drops to a low spreading
rate of 50~35 km/Ma until the end of the seafloor spreading [18]. The large variations in
the spreading rate may have affected the stability of the spreading ridge. The magnetic
lineations of the SCS are forked, discontinuous and interlaced (Figure 6c). The pattern
of the spreading magnetic anomalies indicates that the formation process of the SCS is
very complex, and should be affected by surrounding plate motions. Many studies have
been carried out on the spreading dynamics of the SCS, such as active spreading, passive
spreading, mantle convection, subduction and drag, and collision extrusion models have
been proposed [16,17,49–51]. During expansion, ridge reorientation frequently occurs in
the SCS, which adapts to the direction changes in surrounding plate motion [17]. The
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spreading ridge occurred ridge jump many times throughout the spreading process, at
different positions on the ocean basin [20,21]. Notably, volcanic activities near and off the
fossil spreading ridge are prevalent after the seafloor spreading in the SCS [52]. These
magmatic activities mainly occurred between approximately 3 and 11 Ma in the Later
Miocene [27–30,53], for example, the Zhangzhong Seamount, Huangyan Seamount, Zhen-
bei Seamount, and Zhongnan Seamount (Table 1). The expansion of the SCS lasted for a
relatively short time [54]. However, the spreading ridge migrated several times, and the
magmatic activities were prolonged after the cessation of expansion. The movement of
the surrounding plates plays a crucial role in the expansion of the SCS and influences the
pattern of the spreading magnetic anomalies. According to multi-channel seismic data
of the northern ridge flanks of the SCS, at least two southward ridge jumps happened at
around 23.6 Ma and 27 Ma [33], respectively. The spreading magnetic anomalies are forky
and discontinuous, and the lineation is not strictly parallel. The spreading magnetic anoma-
lies of the SCS were significantly affected by the post-spreading magmatic activities and
the ridge jumps during the expansion process. The effects of plate motions and magmatic
activities should be considered in the interpretation of the complex magnetic anomalies of
the SCS.

Table 1. The age of SCS seamounts.

Seamount Zhangzhong Huangyan Zhenbei Zhongnan

Location 116.185◦ E,
15.5683◦ N

117.768◦ E,
15.170◦ N

116.461◦ E,
15.014◦ N

115.410◦ E,
14.009◦ N

Age 4.76-5.78 Ma 7.28~8.26 Ma 8.5~11.3 Ma 2.91~4.07 Ma

References
Yan et al., 2008
[27]; Jiang et al.,

2019 [29]

Wang et al., 2009
[25]

Wang and Wu,
1985 [24]

Yang et al., 2011
[28]; Jiang et al.,

2019 [29]

4.2. Source of the Magnetic Anomalies of the SCS

The observed magnetic anomalies in the SCS were induced by the superposition
of magnetic anomalies in the shallow and deep magnetic structures. The basement of
the SCS is rough, and igneous intrusions and seamounts are well-developed [33]. The
crust of the SCS is the oceanic crust, and the crust thickness of the SCS is 5–8 km [53].
Generally, the oceanic crust can be divided into the basalt, dike, and gabbro layers, from
top to bottom. The basalt layer is regarded as the primary contributor to the spread of
magnetic anomalies because it has a strong remanent magnetization and is located on
the upper part of the oceanic crust. However, the dike and gabbro layers have moderate
magnetization in the deep oceanic crust; sometimes, even the uppermost mantle is an
also essential source of magnetic anomalies [8,55,56]. The deep magnetic structure can
significantly influence the shape of the observed magnetic anomalies; for example, the
fluctuations in the Curie surface can cause long-wavelength anomalies. The separated
spreading magnetic anomalies caused by the nested elliptical directional filters mainly result
from the oceanic crust, showing the expansion process of the SCS (Figure 6c). The broad
and banded long-wavelength magnetic anomalies (Figure 6b) may indicate lithospheric
fractures and Curie surface variations affected by the rejuvenation of magmatic activities.
The prevalent post-spreading magmatism along and off the fossil spreading ridge shows
the expression of the rejuvenation of magmatic activity [33], and is an essential factor
modifying the fluctuations in the Curie surface. Li et al. [56] suggested that the Curie depth
of the central basin of the SCS is beneath the Moho, and nearly 10 km of the uppermost
mantle is magnetized. The long-wavelength magnetic anomalies indicate that the magnetic
anomalies of the SCS resulted from the superposition of magnetic anomalies in the ocean
crust and the uppermost mantle. The magnetic anomalies in the SCS are disturbed by
magmatic activities, tectonic movement, and Curie surface fluctuations. Therefore, the
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distribution of the magnetic lineations is more complicated under the effects of the shallow
and deep magnetic structures.

5. Conclusions

The SCS is situated at the junction of the Philippine sea, Eurasian, and Indo-Australian
plates. The movement of the surrounding plates plays a crucial role in the expansion of the
SCS and influences the pattern of the spreading magnetic anomalies. The nested elliptical
directional filters effectively suppress the short- and long-wavelength interference magnetic
anomalies. The spreading magnetic anomalies separated by the nested elliptical directional
filters depict the expansion process of the SCS. The spreading magnetic anomalies of the SCS
are warped, interrupted, and not strictly parallel to each other. The pattern of the spreading
magnetic anomalies reflects the post-spreading magmatic interferences and multiple ridge
jumps during the expansion process. The long-wavelength magnetic anomalies indicate
lithospheric fractures and Curie surface variationa in the SCS, which are affected by the
post-spreading magmatic rejuvenation. The magnetic anomalies of the SCS resulted from
the superposition of magnetic anomalies in the ocean crust and the uppermost mantle.
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