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Summary 

Recent models of earthquake faults involve heterogeneous slip regions Mong the faults. 
Some of this work suggests the following problem: two solids of different material properties 
are pressed together and sheared. Then, slip propagates asymmetrically from a region of 
low friction. 

1. Introduction 

Current thinking on earthquake faults maintains that  the behavior of slip 
along fault pldnes is heterogeneous [1]. Thus, regions of higher resistance to slip 
(asperity model) are postulated, or, alternatively, regions on whi6h slip cannot 
occur at all are presumed (barrier model). The analytical work associated with 
these geophysical models has been largely confined to the application of solutions 
already available in the literature for col]inear cracks. These solutions have the 
major  drawback tha t  they involve singular shear tractions at  the transitions from 
slip to no slip (stick) regions, and are of limited use. In  this paper we consider 
specifically the problem of slip in the presence of a non-uniform frictional law, but  
otherwise we opt for simplicity. We thus take the fault  plane at  the interface of 
two unbounded solids of different material properties. The solids are compressed 
and sheared at infinity with the uniform tractions pO~ and q~, as shown in Fig. 1. 
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Fig. 1. Geometry of the problem 
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We assume that Coulomb's law of friction applies but that the coefficient of fric- 
tion [ varies along the fault plane, or ] ----- ](x). We are interested in studying the 
effect of sudden drop in friction, and we take  ](x) to  be a cons tan t  ] + A / e v e r y -  
where except  in the  region Ix I < e where it drops parabol ical ly  to a m i n i m u m  
value ] a t  x = 0, :Fig. 2. Thus the  m a x i m u m  drop is A]. To avoid ca tas t rophic  slip 
we consider a combina t ion  of appl ied t rac t ions  such t ha t  

/pOO < q= < ( / +  N) pc+. (1) 

Slip mus t  then  occur in a region sur rounding  the origin. The ex ten t  of the slip 
zone is, however,  unknown.  
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Fig. 2. Coefficient of friction )r 

2 .  F o r m u l a t i o n  

We model  the slip b y  a dis t r ibut ion of glide dislocations with densi ty  B,:(x). 
I f  the ex ten t  of slip is de te rmined  b y  the  as ye t  unknown  pa ramete r s  b and c, 
Fig. 1, then  the normal  and  shear t rac t ions  t r ansmi t t ed  b y  the interface can be 
ob ta ined  as in [2]. They  are 

N(x)  = _pO~ + flBx(x), (2) 

where 

c 

s ( x ) = q ~  o fBx(~)d~ 
--b 

(3) 

C = 2t+1(~ + ~) (4)  
(~1 + l) (l --/3~)' 

(X ~ [~2(~1 ~-  l )  - -  ~1(~r 2 "J[- 1) ( 5 )  
~(xl  + 1) ,_a ~l(z2 + 1)' 

fl __ #~(xl -- i) -- #i(x~ -- i) 

#dxl + i) + #i(x~ E i) 
(6) 

This formulation ensures continuity of tractions at the interface as well as con- 
tinuity of normal displacements. The only boundary condition to be satisfied is 

then 

S(x) = - / ( x )  N(x)  --b < x < c, (7) 
where 
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is the variable coefficient of friction, :Fig. 2, as described in the Introduction, and 
H( ) denotes the Heaviside step function. Moreover, since separation is neither 
anticipated nor allowed in the present formulation, we assume that  

N(x) __< 0 --oo < x < ~ ,  (9) 
and 

IS(x)l < fix) I•(x)l x > c, x < --b (10) 

outside the slip zone. These inequalities must be verified a posteriori. 
Using (2) and (3), (7) becomes 

c 

--~/(x) B~(x) + 1 f B~(~) d~ = " ~ J ~ - - x  - ~ [ q ~ - - p ~ ] / ( x ) ,  - - b < x < c  (11) 

--b 

where Bx(x) must be bounded for bounded shear tractions. In addition we must 
require 

r 

f B x ( ~ )  d~ = 0 (12) 
--b 

for single-valued displacements. Equation (11) is a Cauchy singular integral 
equation of the second kind with variable coefficients. Its general solution is given 
by Tricomi [3]. A bounded solution is possible provided that  a certain consistency 
condition [4] involving the characteristic funicton and the right side of (11) 
is satisfied. In such case, the solution can be written down explicitly in terms 
of Cauchy integrals of known (including the characteristic) functions, if b and c 
are assumed given. The numerical evaluation of these integrals is harder than 
the direct numerical integration of (11). This is because the characteristic function 
that  must be used in the exact solution is itself a Cauchy integral. On the other 
hand, the direct numerical integration of (11) provides a way of avoiding the 
cumbersome consistency condition as well as the exact characteristic function 
as it will be explained in the sequel. 

3. Numerical Computation 

We first normalize the interval (--c, b) by the change of variables 

where 

E q . ( l l )  becomes 

where 

~/e = &o § (r, x/e = ~s + (13) 

(3 c + b  c - - b  = , ~ - (14) 
2e 2e 

] 1 q~ 1 -  /F(s) IsF < 1 (15) 
1 

- M F ( ~ )  Bx(s) + ! f Bx(~,) doe 
~ d ~ o - - s  

- - 1  

F(s) = 1 + ~ {1 --  [1 - -  ((3s + ~)2] n [ 1  - -  (~s § ~)~]/. (16) 

5* 
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To simplify the numericM computations we will consider B~(s) bounded at 1 
and singular at - -  1 and then require that  the intensity of the singularity vanishes 
a t  --1.  We may  set 

q~ 
B~(s) ~ ~ w(s) O(s), (17) 

where ~b(s) is a regular function in the interval (--1, 1) and w(s) reflects the 
nature of the solution at  the endpoints [4]: 

where 

w(s) ~- (1 @ s) ~ (1 - -  s) A 

A = _ 1  t a n _  ~ [ 1 ~ f i l l ( i ) ]  ' 
g~ 

B = - • t an -~  [ 1 / ~ I ~ ' ( -  1)] .  
7~ 

(18) 

(19) 

The requirement for bounded B~(s) becomes 

~ ( -  1) =- 0 .  (20) 

Using (i7), Eqs. (11) and (12) become 

1 

1 w(2!~-(2), do~ = q ~ / F ( s ) ,  lsi < I (21) -f i lF(s)  w(s) ~(s) + -7 ~ _ 
--1 

1 

f w(~o) ~(o~) do~ = 0 .  (22) 
- -1  

The only numerical quadratures tailored for Cauchy singular integral equations 
with variable coefficients are, to our knowledge, those developed by  Theocaris 
[5] and Theocaris and Tsamasphyros [6]. In  particular, we choose the quadrature 
which permits the preassignment of the value of the unknown function ~(s) 
at  the end point --1.  Then, according to [5], [6], (21) can be discretized as 

l__ As r  _ .  1 - I F ( s 3 ,  
k = l  1 -4- t k t k -  s i 

i m 1, ..., n ~- 1 (23) 

where (20) has been taken into consideration. The integration points 4 are the 
roots of the Jacobi  polynomial 

P(~A, l+z) (4)  ~-= o ,  k - 1 . . . . .  (2a) 

and Ak the coefficients of the associated quadrature. The collocation points s~ 
are determined as the roots of some function G(s). This function involves, in 
general, the computation of Jacobi functions of the second kind, and finding its 
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zeros accurately is eomputationally difficult. If, however 

A + B = O ,  (25) 

then g(s)  reduces to 

G(s) = [-- f l]F(s)  + t3/F(1)] (1 - -  s) A (1 + s) -A (1 + s), PInA'I--A)(8) 

sin ~A (1 -4- s) P(n A,1-A~ 

(26) 

for the present problem, and the points 8i are determined from 

G(s~) =- O, i = 1 . . . . .  n + 1. (27) 

Moreover, the roots of G(s) alternate with the points tk. Fortunately,  condition 
(25) is met  if the slip zone extends beyond the interval (--s,  s). This is the ease 
of part icular  interest, since it is important  to know whether a small drop in 
the coefficient of friction can produce comparat ively extensive slip. With this 
assumption (19) becomes 

Using the same quadrature,  the discretized form of (22) is 

Ak 
k=l ~ ,~(tk)= 0. (29) 

Note that  (23) and (29) provide n + 2 equations for the n + 2 unknowns ~(t#), 
b and c. To keep the numerical iterations a t  a m i n i m u m  we replace the role 
ofp~176 ~~ and one of the parameters  b or c. For instance, we assume b given, make 
a guess for c and use one equation from the system (26) to solve f o r p ~ 1 7 6  which 
is then eliminated from the remaining equations of the system. We then solve 
the new system for the values ~b(tk) and cheek to see whether (29) is approximately 
satisfied. If  not, we change c and proceed by  iteration. Here, we choose n even 
and use the middle equation of the system (26) to solve for pOO/qOO. 

p ~ l q : O  _ IF(a) -~" ~=~ 1 + tz~ tk a ' 
(30) 

Using (30), (26) becomes 

= -~ + 1. (3~) 

F(s0 
- - ~ k = i ~  t~-8~ tk aF(~)] F(a)' 

i ~  ] , 2 ,  . . . 7  n n T , - s  ~ . . . .  n + l  

(32) 
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Fig. 3. Normal and shear tractions for ](x) given in Fig. 2 

and (29) remains unaltered.  Once the values @(tk) are computed,  the normal  
and shear t ract ions are obta ined f rom (2) and (3). The diseretized forms are 

S(x)lq ~176 = 1 --  I 2 Ak r 
Is I > 1 (33) 

N(x)/q ~176 _,~o + flw(s) @(s), [st < 1 (34) qOO 

where x = 6 s +  ~. The shear t rac t ion  S(x) in the slip zone is obta ined f rom 
(7). The results are shown in Fig. 3 for a representat ive case corresponding to 

fl = 0:5, / = 0.8, A / =  0.08, b :~ 1.9, c ~- 3,14, 

pOO 
- -  ~ 1 . 1 5 5 .  q~O 

(35) 

I t  is noted  tha t  slip spreads asymmetr ica l ly  f rom the origin and tha t  the t ran-  
sitions f rom slip to stick zones are marked b y  discontinuous derivatives. The in- 
equalities (9) and (10) are verified. I t  is ,also seen tha t  the dis turbance produced 
in the stresses is very  localized. 

4. Identical Materials 

As a comparison we also consider the case of identical materials. Then fi ~ 0, 
b = c and  (11) simplifies to 

c 

[q= - p W ( x ) ] .  (86) 
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The  solut ion of (36) with Bx(x) bounded  is 

C 

f B~(~) - -  (~ + 1) ]/c~ _ - V : - ~  q - p /( ) 

- - C  

prov ided  t h a t  

d~ (37) 

dx = 0. (38) 
qOO p~/(x) 

(~ - ~ 
- - C  

The auxi l ia ry  condi t ion (12) is au tomat i ca l ly  satisfied because of s y m m e t r y .  
Condit ion (38) can be in tegra ted  to yield a re la t ion be tween pOO/qO~ and c. This 
re la t ion is 

[ ~ -  ( C2/s in- l - -s]  [qO~_pOO(/jrA/)]~z~_p~A/ ~ - -  1 + 2 - -  ~ /  c J  ~ - 0 '  for c > e  

(39) 
and  

q ~ p o ~ ( / ~ _ A / ~ e ~ ) = 0 ,  for  c ~ s .  (40) 

I n  the  l imit ing case c ---- e bo th  (39) and  (40) coincid e yielding 

i A/ .  (41) 

The numerical  computa t ions  presented  in the  previous  section were checked 
aga ins t  this result .  
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