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ABSTRACT OF THE DISSERTATION

Spreading Processes on Networks
Theory and Applications

by

Nicholas Charles Valler

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2012

Professor Michalis Faloutsos, Chairperson

The interactions between people, technology and modern communication paradigms

form large and complex human–machine networks. Complex network theory attempts

to address the global and local behavior of such network structures. Of particular

interest within the area of network theory is understanding the dynamic behavior of

spreading processes on complex networks. In this work, we examine a variety of mod-

els covering the intersection of spreading processes and complex network theory, and

although we study a large range of problem formulations, we find that–surprisingly–a

single parameter effectively summarizes the topology.

We begin by examining the effect that topology has on spreading processes in dy-

namic networks. Dynamic networks are becoming more common due to our increased

reliance on and the functionality of mobile devices, smartphones, etc. Specifically,

we ask, given discrete information spread through a proximity-based communication
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channel across dynamic network of mobile end-users, what criteria is required such

that the information will ultimately die-out; that is, can we determine the “tipping

point” between information survival and die-out? We show analytically that yes, such

a threshold exists, yet it is computationally infeasible to calculate. To avoid such com-

putationally intensive methods, we go on to provide two approximation methods for

determining the tipping point.

Next, we analyze the effect of topology on the propagation of competing informa-

tion. Using a novel graph structure we refer to as a composite network, we model

the intertwined propagation of competing information across a variety of underlying

network layers. Through a combination of analytical and empirical methods, we show

how the topology affects the competing information, and ultimately, using topology,

we predict the winner of competition.

Building on the success of the previous analyses, we formulate a model describing

the spread of non-categorical information. Unlike our previous models, the informa-

tion in this system is represented by a continuous value. We determine the phase

transitions of the overall system, relate them to the tipping points in our previous

models, and show both analytically and empirically how the structure of the network

affects those phase transitions.

Ultimately, for each of these models, a single topological parameter, the largest

eigenvalue of the adjacency matrix λA,1, is all that is necessary to characterize the

effect of topology on the spreading process.
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Chapter 1

Introduction

This dissertation explores the spread of information across networks. Spreading

processes on networks are not a new phenomenon. Perhaps even without realizing

it, a variety of spreading processes operate on modern networks everyday, ranging

from the malicious propagation of computer viruses, to the consensus algorithms

used by Bitcoin; even to the heart of the Internet, where the border gateway protocol

propagates network reachability information across autonomous systems. As our use

of networked infrastructure continues to evolve, how we use the network has important

implications on performance, communication overhead and usability in general.

Spreading processes exist beyond the realm on networked computer systems. Ev-

eryday, an individual interacts with hundreds, perhaps thousands, of distinct network

structures. As one commutes to work, they interact with transportation networks.

When one turns on a light to read, they interact with power grids. When one washes

1



one’s hands, they are interacting with public water networks. And, to complicate the

matter further, modern networks need not represent physical infrastructure. Face-

book, MySpace and other social networks have no physical counterpart in the real

works, yet these online communities exist as networked structures and participate in

the spread of information.

Modeling of spreading processes is an old discipline, most commonly associated

with epidemic theory and epidemiology. In fact, borrowing from epidemic theory,

two computer scientists, Kephart and White [28], proposed the first model of com-

puter virus propagation in 1993. Their assumptions mirrored the assumptions of

epidemiologists, namely a concept of homogeneity among agents within the system.

That is, every agent within the population is affected by a spreading virus with the

same probability. The first heterogeneous model applied to technological networks

was introduced by Pastor-Satorras and Vespignani[41]. Their model accounted for

non-homogeneous connections among agents in the system, naturally represented by

a network structure. Introducing a model that accounted for heterogeneous network

connectivity among system agents raised another important area of research, namely,

the effect of topology on the spread of information.

Everyday, more and more applications are developed to rely on networked com-

munication across a variety of hosts and servers, ultimately forming a large, de-

centralized and self-organizing communication paradigm using protocols based on

spreading processes to manage communication between participants. Over the past

2



15 years, complex network theory has attempted to shed light on the interactions of

these large, decentralized network structures. Results from complex network theory

underly a variety of modern day technology. For instance, Google’s PageRank al-

gorithm essentially relies on a back propagation mechanism to accurately determine

node importance in a large, complex network, and has changed the way we query the

World Wide Web. It is even claimed that network theory, when applied to particular

social networks, aided in the capture of Saddam Hussein.

This dissertation builds on the rich history of complex network theory and spread-

ing processes and examines the problem of information spreading processes on com-

plex networks at a theoretical, empirical, and application level. In the following chap-

ters, we will introduce three specific problem areas related to information spreading

processes on networks. Each chapter, while related, is self-encapsulated and contains

their own brief introductions and background information. The main theme of this

work can be summarized as follows:

How does the network structure, or

topology, affect the spread of information?

Each chapter that follows presents a self-contained study of a specific spread-

ing process and network formulation. I begin in Chapter 2 and introduce our first

area of study, namely epidemic spreading processes on dynamic network structures.

We model this spreading process as propagating across short-range, point-to-point

communication channels, akin to Bluetooth-equipped mobile devices. This model is

3



informed by relatively recent attempts of malware to exploit the lax security in many

mobile devices. Furthermore, by exploiting proximity-based propagation schemes,

many malware will circumvent infrastructure-based detection schemes. The funda-

mental contributions of this chapter are: (a) we present a framework for analyzing

epidemic spreading processes on mobile ad hoc networks, (b) in using our frame-

work, we derive the epidemic threshold for any mobility model operating under the

Susceptible–Infected–Susceptible (SIS) compartmental model, and (c) we show that

node velocity of the mobility model does node affect the epidemic threshold. Ulti-

mately, we draw an interesting conclusion: the connectivity matrix eigenvalue (λA)

determines the epidemic threshold, that is, the point below which the information

spreading process is guaranteed to ‘die-out’.

Next, in Chapter 3, we pose a new model for the spread of competing information

across networks.We motivate this model with the following basic example. Consider a

rumor propagating through your social network of friends in Facebook. Assume a false

rumor is propagating through an alternate network, such as Twitter. Furthermore,

assume that the rumors are so diametrically opposed that upon hearing one, a person

will exclude the possibility of the other, i.e., the rumors are mutually exclusive. Given

this scenario, we claim these two pieces of information are competing to capture the

most hearts and minds, but are there any topological factors that will indicate which

will ultimately prevail? Again, we show that topology is strongly connected to the

ultimate winner and the winner tends to be the virus with the “strongest” system

4



matrix eigenvalue (λS), which we show to be closely related to the connectivity matrix.

In Chapter 4 and drawing on both previous results, we propose a discrete-time,

continuous value non-linear dynamical information propagation model that captures

the essence of all previous models, yet allows one to evaluate the propagation of

partial information. This model differs from all previous works, where information

was considered to be discrete, binary, or categorical.

Finally, in Chapter 5, I provide a summary and review of the results presented

herein.
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Chapter 2

Epidemic Spreading Processes on

Dynamic Networks

2.1 Overview

Short-range, point-to-point communications for mobile users enjoy increasing pop-

ularity, particularly with the rise in Bluetooth-equipped mobile devices. Unfortu-

nately, virus writers have begun exploiting lax security in many mobile devices and

subsequently developed malware exploiting proximity-based propagation mechanisms

(e.g. Cabir or CommWarrior). So, if given an ad-hoc network of such mobile users,

will a proximity-spreading virus survive or die out; that is, can one determine the “tip-

ping point” between survival and die out? What effect does the average user velocity

have on such spread? I answer the initial questions and more. The contributions of

6



this Chapter are:

1. I present a framework for analyzing epidemic spreading processes on mobile ad

hoc networks;

2. Using this framework, I derive the epidemic threshold for any mobility model

under the SIS model; and

3. I how that the node velocity in mobility models does not affect the epidemic

threshold.

Additionally, I introduce a “periodic mobility model” and provide evaluation via the

model framework. Finally, I validate the theoretical predictions using a combination

of real, synthetic and simulated mobility data, showing ultimately, the predictions

accurately estimate the epidemic threshold of such systems.

2.2 Introduction

Mobile phones have experienced an increased prevalence and functionality in re-

cent years, yet, due to the hardware and software limitations and constraints, such

devices present a unique opportunity for malicious software (i.e., “malware”). As of

2010, approximately 45.5 million U.S. citizens owned smartphones or comparable mo-

bile devices. So, roughly 15% of the population are walking around, everyday, with

a computer more powerful than that of the original Apollo space mission and filled

7



with a variety of personal and private information. In short, millions of end-users

rely on these devices for essential everyday functions.

To compete in the market, mobile device makers have extended their devices with

the latest in personal communication technology, such as device–to–device (a.k.a.

point–to–point) Bluetooth. Including such point–to–point communication technology

allows end-users to bypass the smartphone’s service provider’s infrastructure and

directly pass information to other nearby end-users. There were an estimated 920

million Bluetooth-equipped devices shipped worldwide in 2008, making Bluetooth

the most common point–to–point communication protocol in today’s smartphones.

To capitalize on the prevalence and personal importance of smartphones, at least two

worms, Cabir and CommWarrior, spread using Bluetooth.

In this chapter, I am motivated by the trends described above and examine the

effect of network structure on the spread on point–to–point, or proximity, spreading

malware.

2.2.1 Problem Statement and Definition

How does the network structure, as described by a system of mobile agents, affect

the propagation of a malicious virus1? A key question is to identify the tipping point,

known as the system’s epidemic threshold, or take-off point, below which a virus is

1The focus of this chapter is on the propagation of information through agents in close proximity.
I note however that smartphones have a diverse suite of communication methods, such as email,
mms, or direct access to the web, yet, as mobility has little affect, if any, on these methods, I elect
to exclude them from the following analysis.
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guaranteed to “die out.” For the epidemic models, I focus on one of the most popular

models, the flu-like one susceptible-infected-susceptible - SIS (see Section 2.6 where I

handle other models). There, agents maintain no immunity, and become susceptible,

immediately after they heal. The key contributions in the chapter are as follows:

1. Framework and Formula: We present a framework for estimating the epidemic

threshold on any, arbitrary mobile ad hoc network model. The idea is to derive

a sequence of adjacency matrices, and then compute the first eigenvalue of the

so-called system matrix (see Theorem 1). There, I show that the epidemic

threshold depends only on this first eigenvalue, and nothing else.

2. Closed Formulas: I show how to use the proposed framework to derive simple,

approximate (but accurate) formulas for several, popular special cases (Random

Walk model, Levy flight model).

3. Insensitivity to Velocity: The results show that the epidemic threshold does not

depend on the node velocity (v > 0). Experiments confirm the accuracy of the

approximations, as well as the ‘insensitivity’ observation.

Jumping ahead, Figure 2.1 showcases the accuracy of the results (Lemma 4) of

the epidemic threshold for the SIS (=flu-like) model on the so-called ‘Levy Flight’

mobility model. See section 2.5 for more details - but the point is that the prediction

for the take-off point (= epidemic threshold, indicated with a black arrow) is exactly

where all curves take off.
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Predicted 

Take-off Point

Figure 2.1: Accuracy of results (Lemma 4), for the ‘Levy-Flight’ model. Take-off
plot, plotting the max number of infections vs. strength of the virus. Notice that the
predicted take-off point (black arrow) agrees with the simulations, for several node
velocities.

I have two additional contributions: through extensive simulation experiments,

I show that similar insensitivity results hold for other popular mobility models like

Levy flight, Random Waypoint etc.; and, moreover, I introduce the periodic mobility

model, which is very popular in biological virus epidemiology [2, 9], and show how to

use the framework to estimate its epidemic threshold.

The rest of this chapter has the typical organization: background (Section 2.3,

proposed framework and theorems (Section 2.4), experiments (Section 2.5), additional

observations (Section 2.6), and finally, related work and conclusions. (Sections 2.7

and 2.8).
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2.3 Preliminaries

In this section, we present a general background on proximity-based epidemic

spreading models and formulate our problem statement.

2.3.1 Epidemic Model: SIS (flu-like)

The SIS epidemic model resembles a flu-like virus, where nodes have no immunity.

Healthy (‘S’ = susceptible) nodes become sick (‘I’ = infected) stochastically from

their infected neighbors with a probability β. Alternatively, a sick node becomes

healthy (and open to re-infection), with a probability δ. These two parameters are

also referred to as the birth rate (β) and death rate (δ) of the virus.

The tipping point τ , or epidemic threshold, of an SIS epidemic model is the condi-

tion under which an infection will die out exponentially quickly irrespective of initial

infection, as opposed to spreading out, causing and epidemic (technically, a pan-

demic). For a survey on SIS and numerous other epidemic models, see Hethcote [24],

or [14, 19].

2.3.2 Problem Formulation

Using the background discussed above, we now formulate our problem statement.

See Table 2.1 for definitions of various symbols. In this paper, we consider an epidemic

on a mobile network, which provides an underlying contact structure for the virus to

11



Table 2.1: Terminology Specific to Mobility and Epidemic Spreading

Symbol Definition and Description

General Terms:
A,B, . . . matrices (bold upper case)
A(i, j) element at the ith row and jth column of A
A(i, :) ith row of matrix A

A(:, j) jth column of matrix A

I standard n× n identity matrix
a,b, . . . column vectors
I,J , . . . sets (calligraphic)
λB first eigenvalue (in absolute value) of a matrix B

Mobility Terms:
M mobility model
Pi,t position of node i at time t
N number of nodes
A simulation area
ρ node density (N/A)
∆T Time step
T number of different alternating behaviors
A1, . . . ,AT T corresponding size (n× n) symmetric

alternating adjacency matrices
Epidemic Terms:
β virus transmission probability in the SIS model
δ virus death probability in the SIS model
τ epidemic threshold
Acronyms and Terms:
USS Uniform Steady-State Approximation
EAAM Eigenvalue of Average Adjacency Matrix Approxima-

tion
Take-off Plot Max number of infected agents vs. Epidemic Thresh-

old τ

use as it propagates. By doing so, at any point in time, the system is non-homogenous,

as nodes may only transmit the virus to its neighbors.

Given:

1. Mobile ad hoc network mobility models, described below.

2. The SIS model parameters, i.e., the virus birth and death probabilities β and

δ.

12



Find:

The epidemic threshold τ or tipping point for the system such that for τ < 1

an infection will die out quickly, irrespective of initial conditions.

Our problem naturally leads to other issues like the effect of node velocity in models

on the threshold, giving approximations in specific cases etc. We elaborate on them

in the upcoming sections.

2.4 Framework

In this section, we detail our framework for analyzing mobility models and then

move on to specific approximations and questions arising out of the framework. We

will present extensive simulations demonstrating the results later in Section 2.5. Also

please see Section 2.5.2 for a description of the mobility models.

Note that node-to-node contacts at a particular time can be represented by an

adjacency matrix A. We next provide a general theorem expressing the epidemic

threshold for mobility models.

2.4.1 Epidemic Thresholds on Mobility Models

Theorem 1 (Mobility model threshold). If a mobility model can be represented as a

sequence of connectivity graphs L = {A1,A2, . . . ,AT}, one adjacency matrix At for
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each time step t ∈ {1..T}, then the epidemic threshold is:

τ = λS (2.1)

where λS is the first eigenvalue of matrix S and S =
∏

i Si and ∀i ∈ {1..T} Si =

(1− δ)I+ βAi (I is the standard N ×N identity matrix).

Proof. If the mobility model can be represented as a sequence of graphs, then the

epidemic threshold depends on the first eigenvalue of the system matrix [46]. Hence,

τ = λ∏
i((1−δ)I+βAi).

We can now give a simpler closed-form approximation for the threshold in Equa-

tion 2.1 in the following lemma:

Lemma 2 (EAAM Approximation for Threshold). Under the same conditions as in

Theorem 1, the following is an approximation for the epidemic threshold:

τ ≈ β

δ
× λAavg

(2.2)

where Aavg =
∑

i Ai/T is the average adjacency matrix.
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Proof. Note that,

S =
∏

i

((1− δ)I+ βAi)

= (1− δ)T I+ β
∑

i

Ai +O(β2) +O(β ∗ δ) +O(δ2)

≈ (1− Tδ)I+ TβAavg (2.3)

where we neglected second or lower order terms involving β and δ. Hence, we find

that B = (1−Tδ)I+TβAavg is a first order approximation for the S =
∏

i Si matrix.

Hence from Theorem 1 we want λB < 1 which implies Equation 2.2.

We will refer to the above approximation as the ‘Eigenvalue of the Average

Adjacency Matrix’ (EAAM) approximation.

2.4.2 Specific Approximations

Lemma 3 (Random-Walk Threshold). In the random-walk mobility model and under

the SIS model, the following is an approximate epidemic threshold:

τ ≈ β/δ × πR2 ×N/A (2.4)

where R is the radius of influence of each node.

Proof. Under the random-walk model, at every point of time, each node is at a random

(x, y) position, uniformly distributed on the field of interest. Each node has a radius
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of possible connections (like the BlueTooth radius) R. Consequently each node has

d = πR2 ×N/A neighbors on average (ignoring boundary effects). The connectivity

graph at each time step is roughly a random graph with average degree d. Hence

it has first eigenvalue λ1 = d on average. Hence this is approximately equivalent

to having a static graph under the SIS model where the epidemic threshold [14] is

τ = β/δ × λ1. We now obtain the lemma after obvious substitutions.

In fact, we can go further and generalize this to any mobility model where the

geographic steady state distribution is uniform.

Lemma 4 (Uniformly-Distributed Steady State (USS) Threshold). For any mobility

model where the geographic distribution of nodes at the steady state is uniform over

the area of interest and under the SIS model, the following is an approximate epidemic

threshold:

τ ≈ β/δ × πR2 ×N/A (2.5)

where R is the radius of influence of each node.

Proof. The proof for Lemma 3 goes through even here precisely because of the geo-

graphically uniformly distributed nature of the steady state. Each node has roughly

the same number of connections and hence the adjacency graph is approximately a

homogenous graph with constant first eigenvalue. The result follows as before.

We will refer to the above approximation as the ‘Uniform Steady-State’ (USS)
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approximation. Mobility models like Levy Flight and Random-Walk are examples of

models with a geographically uniform distribution of the nodes at the steady state.

Lemma 4 allows us to quickly estimate the threshold for these and many other models.

2.4.3 Insensitivity to Node Velocity

As there is no factor depending on the node velocity in Lemma 4, we conclude

the following surprising implication:

Corollary 5 (Node velocity and threshold). The node velocity (v > 0) does not affect

the epidemic threshold in mobility models where the steady state has a geographically

uniform steady state distribution like Random Walk, Levy Flight etc.

We conjecture that the velocity does not affect the threshold even for non-geographically

uniformly distributed steady state mobility models like Random Waypoint. We pro-

vide empirical results supporting this claim later in Section 2.5.

Conjecture 6 (Effect of velocity). The node velocity (v > 0) does not affect the

epidemic threshold in the Random Waypoint mobility model.

Does Velocity have an impact at all? The above discussion raises the point whether

the node velocity has any effect at all on the dynamics of the epidemic spreading. We

expect that the velocity of motion does have an effect, when we are above threshold.

Furthermore, simulations resulted in a non-obvious observation. The velocity had an
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impact on the steady-state number of infected agents in the system. We elaborate

more on these issues in Section 2.6.

2.5 Simulation Methodology and Results

2.5.1 Experimental Setup

To facilitate the simulation, I wrote a custom Python2.6 simulation program using

the NumPy/SciPy python libraries. All simulations were conducted on a 4 core

Intel(R) Xeon(R) CPU operating at 2.53 GHz and 72 GB of memory running CentOS-

5.5 (Linux kernel 2.6). I varied the number of agents (nodes) N between 250 and 1500

within a simulation field of area A = 40, 000m2 (200m by 200m). Thus, node density

ρ, commonly defined a N/A, was between 0.125 and .125 nodes perm2. All nodes had

a transmission range of 5.0 meters. I did not account for signal attenuation, reflection

nor other wireless phenomena. Prior to the beginning of the simulation, nodes were

distributed on the simulation field in a uniform fashion. Simulations were generally

run for a period of 100s with time intervals of ∆T = 0.1 seconds.

I examined three mobility models common to mobile ad hoc networking: Random

Walk, Levy Flight and Random Waypoint. In the following sections, I provide detail

on each model as well as simulation results. The position Pi,t of each node in the

system at time t is a function of mobility model and previous position and time step

∆T , such that Pi,t+1 =M(Pi,t,∆T ), where M is the mobility model.
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The purpose of the simulations was to determine the role of the mobility model

in the spread of malware in a point-to-point contact network loosely describing Blue-

Tooth communication technology.

2.5.2 Mobility Models

Random Walk. The Random Walk (RW) mobility model (also referred to as

Brownian Motion) was originally formulated to describe the seemingly randommotion

of particles. Numerous variations exists, here we describe the implementation.

Each node i in the system is parameterized by speed (Vi) and angle (θi). Both

Vi and θi are drawn uniformly from systemwide predefined ranges, [vmin, vmax] and

[0, 2π), respectively. Clearly, such a system is memoryless. The model employed

varies from the simple RW model by introducing a flight time for each node, Ti.

Flight time is drawn uniformly from a range [τmin, τmax]. The spatial distribution

of the RW mobility model is uniform over the simulation field. According to my

framework, I predict the RW mobility model will follow Lemma 3.

Levy Flight. Levy Flight mobility models have recently attracted attention due

to their statistical similarities with human mobility [47]. At the beginning of each

flight, each node selects an angle uniformly from within (0, 2 ∗ π], a flight time drawn

from some distribution, a flight length and a pause time. Flight length and pause time

are drawn from Levy distributions p(t) ∝ |t|−(1+α) and ψ(t) ∝ t−(1+β), where time

t > 0, respectively. When α = 2 and β = 2 the result is a special case of the Levy
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distribution resulting in a Gaussian distribution. As with the Random Walk, the

spatial distribution of the Levy Flight mobility model is uniform over the simulation

field.

Random Waypoint. The Random Waypoint (RWP) mobility model is often

cited as the de facto mobility model in ad hoc networks. As originally proposed

by Johnson et. al [27], the RWP mobility model each node i is described by three

parameters: current location (Pi), speed (Vi), waypoint (Wi), and pause time (ρ). In

general, the RWP mobility model operates as follows: Initially, a node is stationary.

After a pause time ρ, the node selects a waypoint uniformly from the simulation

field, then, travels along the shortest path to its waypoint P at a velocity Vi drawn

uniformly from (vmin, vmax]. Upon arrival at their waypoint, each node will pause for

a time t = ρ. After the pause period is done, each node will repeat the process. The

spatial distribution of the RWP mobility model is bell-shaped [10].

2.5.3 Summary of Results

Accuracy of Approximations, Random Walk.

Next, I present a series of simulation studies of the Random Walk mobility model

in Figure 2.2. In these studies, birth (β) and death (α) parameters were varied of

the SIS infection model, and the resulting plots are referred to as “take-off plots,”

which show the maximum number of infected agents seen in the simulation against

the approximated epidemic threshold. For each plot, the take-off point is labeled
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Figure 2.2: Accuracy of Framework Approximations, Random Walk Take-off plots
for EAAM and USS. Notice that the predictions (black arrows) are accurate.

according to the specific threshold approximation.

Figure 2.2(A), epidemic threshold was approximated using the first eigenvalue of

the average adjacency matrix, Aavg (the EAAM threshold approximation of Lemma

2). I indicate the predicted threshold value at τ = 1. As expected, no epidemic was

present at values of τ < 1. At values of τ > 1, one observes explosive growth in the

max number of infected agents.

In Figure 2.2(B), I plot the the USS approximation of the epidemic threshold

(Lemma 4), i.e. β/δ × πR2 × N/A. As in the EAAM threshold, USS behaves as

expected (i.e. no epidemic below τ = 1). In fact, in each of these figures, we note

that no infected agents (aside from patient zero) are present for epidemic threshold
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values below 1. Compared to EAAM, this threshold value takes off at values closer

to τ = 1.

Accuracy of Approximations, Levy Flight. As with RW, the spatial distri-

bution of nodes following Levy Flight mobility model is uniformly distributed on the

simulation field. Thus, we expect Levy flight to perform similar to RW. Figure 2.3

presents a take-off plots for Levy Flight simulations. Again, we note that no infected

agents exist below either threshold approximations. Furthermore, we find that USS

performs better than EAAM.

Accuracy of Approximations, Random Waypoint. The next series of sim-

ulations were conducted using the popular Random Waypoint mobility model. We

also selected this model specifically because it does not result in a uniform spatial dis-

tribution of nodes, therefore does not fall under USS. The results of these simulations

are presented in Figure 2.4. Surprisingly, both threshold approximations perform well

against the RWP mobility model. As the earlier mobility models exemplified, USS

performs better than EAAM.

Insensitivity to Velocity. In order to illustrate Corollary 5 and validate Con-

jecture 6, we performed a series of simulation in which we varied the node velocity,

the results of which are illustrated in Figures 2.2, 2.3, 2.4.

As expected, for both the RW and Levy Flight mobility models, the take-off points

were not greatly affected by increasing the nodes velocity. Furthermore, Figure 2.4

shows that the take-off point for the RWP mobility model was not affected by velocity,
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Figure 2.3: Accuracy of Framework Approximations, Levy Flight Take-off plots for
EAAM and USS. Again, predictions (black arrows) prove accurate.

affirming Conjecture 6.

2.6 Discussion

We elaborate here on the effect of node velocity on the dynamics of epidemic

spreading. We also introduce the periodic mobility model and present an analysis of

it via our framework. In addition, we touch upon other epidemic models as well.

2.6.1 More on impact of node velocity

As discussed previously in Section 2.4, node velocity does not seem to effect the

threshold in many models. We now ask whether the velocity affects the epidemic at

all?

For an “above threshold” system, two more parameters are of interest: (a) steady-
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Figure 2.4: Accuracy of Framework Approximations. Random Waypoint Take-off
plots for EAAM and USS.

state maximum, and (b) warm-up period. The steady-state maximum is the maximum

number of infected agents in the system till steady state, whereas the warm-up period

is the time necessary to reach steady state. We expect that the velocity of motion does

have an effect, when we are above threshold. Clearly, speed will effect the speed of

propagation of the virus and thus the warm-up period. Higher velocity means better

mixing of agents, and thus faster convergence to the steady state. This observation

is also demonstrated through simulations.

Figure 2.5 (best viewed in color) shows the number of infected agents per unit time

(in seconds) for both the Random Walk and Random Waypoint mobility models. The

velocity varied between a fixed 1 m/s fixed and an uniform selected 15− 20 m/s, as

indicated in the legends. We performed a longer simulation in order for the systems

to settle in a steady state.
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Figure 2.5: Number of Infected Agents vs. Time on the Random Walk and Random
Waypoint. Node velocities were varied as indicated in the legends. Steady-State
number of infected agents increases with node velocity, while warm-up period shrinks
(best viewed in color).

Less intuitive is that velocity appears to affect the number of infected agents at

steady-state. For example, in Figure 2.5(A), the line corresponding to 1 m/s appears

to reach a steady-state of approximately 65−70% infected agents, whereas, at 15−20

m/s, the steady-state is roughly 90%. The steady-state for velocities between these

two extremes lay in-between. We suspect the degree of mixing, influenced by node

velocity, is the root cause of the above observation.

2.6.2 The Periodic Mobility Model

As we indicated in Section 2.4, our framework predicts the epidemic threshold

of mobility models that can be represented as a series of adjacency matrices. The

Periodic Mobility Model is a special case of such a series, where a set of k adjacency

matrices {A1,A2, · · · ,Ak} are repeated periodically.
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This is a typical model used in biological virus studies [9] to model general move-

ments of a population. As an example, let A1 be an adjacency matrix of people

during the day (say, at the office). Let A2 be an adjacency matrix representing

contacts/interactions during the evening (say, at home). So the series formed by re-

peating {A1,A2} represents the daily, repeated interactions of our population. The

periodic model offers a realistic, yet general model of mobility, capturing general

patterns rather than specific movements of the system.

Lemma 7 (Periodic Model Threshold). Under the periodic mobility model with k

alternating behaviors repeating periodically, the epidemic threshold is given by τ = λS

where S =
∏k

i=1 Si and, as before, Si = (1− δ)I+ βAi.

Proof. Omitted for brevity, similar to Theorem 1.

As an example, Figure 2.6 shows the take-off plot of a periodic mobility models

where N = 500 nodes, k = 2 adjacency matrices. As predicted by Lemma 7, the max

number of infected agents over the simulation period takes off at λS = 1.

2.6.3 Other Epidemic Models

Given recent results on epidemic thresholds on static networks [46], we believe

that our results will carry through for many other epidemic models as well e.g. SIR

(mumps-like), SIRS, SEIR, MSEIR etc [23] which capture differences between the

way various diseases spread.
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Figure 2.6: Take-off Plot for System Matrix Eigenvalue of a Periodic Mobility Model.
A1 and A2 had N = 500 nodes spread uniformly across a 200× 200 simulation field.
Notice the accurate our prediction (black arrow).

Conjecture 8 (Other Epidemic models). Our results for all the mobility models

discussed in this chapter hold for all the epidemic models covered in [46] as well.

2.7 Related Work

Here, I review the related work. I begin by discussing general epidemic models,

followed by epidemic spread on static networks. Next, I review epidemic spread

in dynamic networks. Finally, I comment on works related to the mobility models

described above. It is worth pointing out that while most of existing studies about

epidemic spread on mobile networks focus on (1) some particular types of network

structures, and/or (2) one specific mobility model; my framework is very general and

it applies to arbitrary network structure, and all the three popular mobility model.
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2.7.1 General Epidemiology

Bailey provides the canonical text on epidemic modeling [6]. A more recent survey

is provided by Hethcote in [24].

Kephart and White [30, 31] were among the first to propose epidemiology-based

models to analyze the spread of computer viruses. The model they suggest provides

a good approximation of virus propagation in networks where contact among individ-

uals is essentially homogeneous. Recent discoveries suggest real networks (including

social networks [17], router and AS networks [18], and Gnutella overlay graphs [48])

follow a power-law structure instead, prompting a re-evaluation of the homogeneity

assumption common in the works above.

2.7.2 Static Networks

Observation suggests that real networks are not homogeneous, rather, overwhelm-

ing evidence suggests real networks follow a power law structure instead. By intro-

ducing an underlying structure for a disease to spread, such as a static network,

removes the original homogeneous assumption pioneered by those reference above.

Newman [39] studied the epidemic thresholds for multiple competing viruses on spe-

cial, random graphs. Pastor-Satorras and Vespignani studied viral propagation for

such power-law networks [38, 43, 44]. They developed an analytic model for the

Barabási-Albert (BA) power-law topology [7]. However, their derivation depends
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on some assumptions which does not hold for many real networks [33, 18]. Pastor-

Satorras et al. [44] also proposed an epidemic threshold condition, but this uses the

“mean-field” approach, where all graphs with a given degree distribution are consid-

ered equal. There is no particular reason why all such graphs should behave similarly

in terms of viral propagation. Chakrabarti et. al. [14] observe that epidemic thresh-

old of an arbitrary graph can be captured in a single parameter, the first eigenvalue of

the adjacency matrix λ1,A. Their observation was rigorously confirmed in [15] and in-

dependently by [56]. I again leverage the above observations to formulate my solution

in Section 2.4

2.7.3 Mobile Networks

Prompted by the emergence of mobile devices, such as Bluetooth-equipped smart-

phones, researchers introduced mobility to epidemic spread. Mickens et. al. were

among the first to examine device-to-device spreading of malicious software in mo-

bile ad hoc networks [37][36]. In their work, they present a queue-based technique

for the RWP model to overcome the limitations of the earlier homogeneous models

of Kephart and White. In a similar work, Yan et. al. extend the observations of

Mickens et. al. by examining additional mobility models and their effect on epidemic

spreading of a SIS virus [59]. Their work is unique in that it models virus propaga-

tion, in detail, a Cabir-like bluetooth worm, including the Bluetooth stack and unique

worm properties.
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2.7.4 Mobility Models

The mobility models used in Section 2.5 are fairly common, with significant liter-

ature devoted to the subject. For an overview on mobility models, I refer readers to

the following surveys [13]. The RWP mobility model has been extensively used, de-

spite well know flaws. For a discussion of the merits of RWP, refer to [60]. The Levy

mobility model was first described in [51], yet has been used extensively to model

human and animal movements [47]

2.8 Summary

To conclude, recent malware in the wild, using device-to-device virus propagation

schemes, prompted our study of the epidemic threshold in mobile ad hoc networks.

Our contributions in this chapter are:

1. Framework: We present a framework for the determining the epidemic threshold

(for the SIS model) on any mobility model which can be converted into a series

of adjacency matrices and give a formula for it (Theorem 1).

2. Closed Formulas: We also give a closed-form approximation for the SIS epidemic

threshold on general mobility models (Lemma 2).

3. Insensitivity to Velocity: We analyze the impact of velocity in popular mobility

models like Random walk, Levy Flight, Random waypoint etc. and find that it
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unexpectedly does not affect the threshold (Lemmas 3, 4 and Conjecture 6).

In addition, we introduced the “periodic mobility model,” popular in other fields like

epidemiology [2, 9], to the networking community and solved it using our framework

(Lemma 7). Finally we presented extensive simulations to demonstrate our analysis

and results.

Future work may concentrate on providing theoretical analysis on the effect of

velocities on the steady state behavior of an epidemic on various mobility models.
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Chapter 3

Competing Epidemic Spreading

Processes

In this chapter, I examine the effect that a network’s topology has upon compet-

ing information. For example, consider a misinformation campaign through social

networks. In such a campaign, false rumors and lies will propagate using the social

connectivity between agents within the system. Alternatively, the truth may propa-

gate using an alternate, trusted, social network. Ultimately, the question I address in

this chapter which will win and what factors will determine the winner. To that end,

I model competing information using a spreading processes derived from the popular

compartmental model and provide network structure using a novel composite network

model.

Using this model, I evaluate the intertwined propagation of two distinct pieces
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of information given the following scenarios: (1) who will win?; (2) how one or both

pieces of information be suppressed efficiently?; and (3) what if competing information

was allowed to cross-contaminate alternate composite network layers?. Ultimately, I

find that a single topological parameter, the first eigenvalue of the system matrix λS

greatly affects the outcome of each of these scenarios.

3.1 Introduction

Models of spreading processes on networks, like those described in this chapter,

cross many scientific disciplines, ranging from computer science, to business market-

ing, to statistical physics [34, 29, 21, 22, 52, 54, 49]. The datum spread in these models

range from social information, rumors, computer viruses, fashion trends, market pen-

etration and product adoption. In fact, the most popular use of spreading models is

for disease and epidemic propagation [3, 23], so without loss of generality, I will use

the term virus to describe the information propagating through a system.

Few of the previous studies examined the intertwined spread of two competing

pieces of information. In this chapter, I focus on this problem and consider two

competing datum that propagate over distinct, yet partially connected networks.

Figure 3.1 illustrates the two aspects of the competing information spread model.

The first component is the composite network (Figure 3.1(a)). A composite network

is defined as C = (N,E1, E2), with a single set of nodes N with two distinct edge sets
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Symbol Definition Symbol Definition

V1, V2 Virus #1, #2 A1, A2 Adjacency matrices
δ1, δ2 Meme persistence of V1, V2 β1, β2 Meme strength of V1, M2

S Susceptible state I1, I2 Infected state for V1, M2

S1, S2 System matrix for A1, A2, λ1, λ2 Largest eigenvalue of S1, S2

where S = (1− δ)I+ βA in absolute value.

Table 3.1: Terminology Specific to Viral Competition on Networks

E1 and E2. The second component is the SI1I2S compartmental model, described in

Figure 3.1(b). As with other compartmental models, SI1I2S assumes that an agent

may only exist in one state, i.e., the viruses are mutually exclusive. So, as the two

viruses in our system spread, an agent may only have one virus.

Using this model, I evaluate the intertwined propagation of two distinct pieces

of information given the following scenarios: (1) who will win?; (2) how one or both

pieces of information be suppressed efficiently?; and (3) what if competing information

was allowed to cross-contaminate alternate composite network layers?. Ultimately, I

find that a single topological parameter, the first eigenvalue of the system matrix λS

greatly affects the outcome of each of these scenarios.

The problem described above is relevant to a variety of applications and disci-

plines. For instance, the online social networks provide one domain that competing

information is highly relevant. Additionally, anti-virus software companies have ex-

perimented with propagating anti-virus definitions using peer-to-peer or social net-

works. This produces the obvious competition of virus/anti-virus products across

distinct networks.
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Figure 3.1: (a) Example Composite Network topology: a single set of nodes N with
two distinct edge sets E1 and E2. (b) The SI1I2S State Transition Diagram, where
S represents the susceptible state and I{1,2} indicate the infected state for viruses V1
and V2. The transitions between states are indicated by the directed edges labeled
β{1,2} and δ{1,2}.

Contributions

1. Formulate a rigorous model for competing viruses on composite networks using

a modified susceptible-infected-susceptible (SIS) propagation mechanism.

2. Demonstrate the phase transition behavior of this system, showing that the

first eigenvalue of an appropriately-constructed system matrix for each virus is

a critical metric that determines system behavior.

3. Numerous simulation results, modeling the composite network layers after Erdős-

Rényi, Barabási-Albert and various synthetic graph models, plus a real-world

composite network of 235 mobile phone/text users.
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4. Design and evaluate several viral suppression, focusing on two strategies: (a)

Unilateral Suppression and (b) Concurrent Suppression.

5. Evaluate the effect of cross-contamination between layers of our composite net-

work, where one virus may, with a certain cross-contamination probability, to

“jump” composite network layers and use propagate across both layers simul-

taneously.

3.2 The SI1I2S Propagation Model

Our model is described by two components: (1) a composite network and (2) a

propagation mechanism. We define a composite network as C = (N,E1, E2), a single

set of nodes N with two distinct edge sets E1 and E2. Each layer of the composite

network corresponds to a single adjacency matrix A1,A2.

The propagation mechanism is based on the popular “flu-like” SIS (Susceptible-

Infected-Susceptible) model [23]. We name our model SI1I2S (Susceptible – Infected1

– Infected2 – Susceptible). Each node in the composite network is in one of three

states: Susceptible (healthy), I1 (infected by V1), or I2 (infected by V2). The state

transitions are shown in Fig. 3.1(b). Note that this is one of the several virus prop-

agation models that one could consider, others being SI, SIR, etc. We believe that

our model is a reasonable starting point, and we leave the analysis of other models

as future work.
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Virus persistence: δ. If a node is in state I1 (or I2), it recovers on its own

with probability δ1 (or δ2). This parameter captures the persistence of the virus in an

inverse way: a high δ means low persistence. For example, a very convincing rumor

that sticks to one’s mind will be modeled with a low δ value.

Note that we assume that while a node is infected by one virus, it cannot be

infected by the other. We do not anticipate that allowing a virus to preempt each

other (i.e., infect and subsume an infected node) would change the results from a

qualitative point of view: this would be equivalent to having a node skip the recovery

state and go straight to a new infection. As we will see later on, our metrics and

methods consider the δ values explicitly.

Virus strength: β. A healthy node gets infected by infected neighbors, and the

virus strength is captured by β1 and β2. Specifically, this parameter is the probability

that an infected neighbor would pass the infection to a healthy neighbor in the absence

of any other interaction. We refer to this potential infection-in-isolation as an attack.

In the presence of multiple infected neighbors, we need to decide which infection

succeeds (infects a susceptible node i) as follows. Let C1 be the number of attacks

(each happening with probability β1 independently) by node i’s neighbors which are

in state I1 (infected by V1); similarly, let C2 be the number of neighbors infected by

V2. Then, we have three possible scenarios for a node in the Susceptible state:

• node i remains in the Susceptible state if C1 = 0 and C2 = 0.

37



• node i gets infected with V1 with probability C1

C1+C2

.

• node i gets infected with V2 with probability C2

C1+C2

.

It is easy to see that this is a natural generalization of the SIS model to a

competing-virus scenario. Moreover, note the competition between the viruses: each

virus has to compete with each other for healthy victims.

3.3 The Epidemic Threshold

We want to determine the epidemic threshold (Problem 1) analytically. First, we

approximate the infection process by a discrete-time Non-Linear Dynamical System

(NLDS) whose general form is pt+1 = g(pt). The NLDS gives the evolution of the

system with time, as we explain below.

First, we see the probability that node i is infected by neighbor node j with virus

V1 at time t is β1P
1
j (t− 1). This is what we referred to as attack earlier or infection

by a neighbor in absence of other influences. Then, we have the probability ζ1i (t) that

node i does not receive the infection of V1 from its neighbors (assuming the neighbors

are independent) as:

ζ1i (t) = Πj∈i′s neighbors(1− β1P
1
j (t− 1)) (3.1)

Thus, the probability that node i receives the infection of V1 at time t from its
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neighbors is:

1− ζ1i (t) = 1−Πj∈i′s neighbors(1− β1P
1
j (t− 1)) (3.2)

Using the same reasoning, we can obtain the probability of that node i receives the

infection of V2 from its neighbors at time t is:

1− ζ2i (t) = 1−Πj∈i′s neighbors(1− β2P
2
j (t− 1)) (3.3)

Now, the probability that node i is infected by V1 from its neighbors at time t is the

probability that node i receives the infection of V1 and does not receive infection of V2

from its neighbors at time t. Here we assume that the β and δ values are all extremely

small (or, equivalently, the time between state transitions is extremely small). This

ensures that in any given time step, the probability of having two or more events is

vanishingly small. Thus, we get:

T 1
i (t) = (1− ζ1i (t)) · ζ2i (t) (3.4)

With the same reasoning, the probability that the node is infected by M2 at time t

is:

T 2
i (t) = (1− ζ2i (t)) · ζ1i (t) (3.5)

Hence the probability that node i is in state I1 is:

P 1
i (t) = (1− δ1) · P 1

i (t− 1) + T 1
i (t) · Si(t− 1) (3.6)
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and the probability that it is in state I2 is:

P 2
i (t) = (1− δ2) · P 2

i (t− 1) + T 2
i (t) · Si(t− 1) (3.7)

and the probability that it is in state S (Susceptible) is:

Si(t) = (1− T 1
i (t)− T 2

i (t))Si(t− 1)+

δ1P
1
i (t− 1) + δ2P

2
i (t− 1)

As mentioned before, for V 1 we define the vector ~P 1(t) = (P 1
1 (t), P

1
2 (t), ..., P

1
N(t))

′

where P 1
i (t) is the probability that node i is infected by virus V1 at time t. Similarly,

for V2, we have ~P 2(t) = (P 2
1 (t), P

2
2 (t), ..., P

2
N(t))

′. Let ~V (t) = (~P 1(t), ~P 2(t)) be the

concatenation of two vectors. Using the NLDS formulation, we can now describe the

whole infection process evolution as ~V (t) = f(~V (t− 1)), with:

fi(~V (t− 1)) =























































(1− δ1)P
1
i (t− 1)+

T 1
i (t)Si(t− 1) if i ≤ N

(1− δ2)P
2
i (t− 1)+

T 2
i (t)Si(t− 1) if i > N

(3.8)

Substituting T 1
i (t) , T

1
i (t) and Si(t− 1) into equation 3.8, we find that fi(~V (t− 1))
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is equal to the following:

=























































(1− δ1)P
1
i (t− 1) + (1− ζ1i (t))ζ

2
i (t)

(1− P 1
i (t− 1)− P 2

i (t− 1)) if i ≤ N

(1− δ2)P
2
i (t− 1) + (1− ζ2i (t))ζ

1
i (t)

(1− P 1
i (t− 1)− P 2

i (t− 1)) if i > N

We make use of the following theorem about the asymptotic stability of an NLDS

at a fixed point:

Theorem 9 (Hirsch and Smale, 1974 [26]). The system given by pt+1 = g(pt) is

asymptotically stable at an equilibrium point p∗, if the eigenvalues of the Jacobian

J = ▽g(p∗) are less than 1 in absolute value, where

Jk,l = [▽g(p∗)]k,l =
∂pk,t+1

∂pl,t
|pt=p∗

The fixed point we are interested in for analyzing the threshold is the point where

no node is infected (all nodes are healthy), i.e., ~V ∗ = ~0. Using this, we have:

Theorem 10. The system is asymptotically stable at ~V ∗ = ~0 if the first eigenvalue

of the system matrices for both viruses as defined in Table 3.1, are less than 1, i.e.,

λ1 < 1 and λ2 < 1, where λ1 is the largest eigenvalue of matrix S1 = (1− δ1)I +β1A1
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(and similarly for λ2).

Proof. Recall that we are interested in the stability of the fixed point ~V ∗ = ~0. Let

the Jacobian at this point be ∇(f) (a 2N x 2N matrix). Then

[∇(f)]ij =
∂fi(~V (t− 1))

∂~Vj(t− 1)

We can write it into a block matrix composed of the system matrices:

∇(f) =









S1 S3

S4 S2









In order to find the first eigenvalue of ∇(f)| ~Vf
, we define ~X as 2N elements vector:

~X =









~X1

~X2









where ~X1 and ~X2 have N elements respectively. We then have:

▽(f)| ~vf ~X =









S1 S3

S4 S2









·









~X1

~X2









= λ▽(f)| ~vf









~X1

~X2









Doing the matrix multiplications, we get:

S1
~X1 + S3

~X2 = λ▽(f)| ~vf ~X1
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S4
~X1 + S2

~X2 = λ▽(f)| ~vf ~X2

with S1 = (1 − δ1)I + β1A1, S2 = (1 − δ2)I + β2A2 and S3 = S4 = 0 (where I is

the N x N identity matrix), as we show in Table 3.1 and as discussed below.

Hence, the Jacobian ∇(f) is a block diagonal matrix and its eigenvalues are the

same as the eigenvalues of S1 and S2. So the largest eigenvalue of ∇(f) can be either

λ1 or λ2.

Discussion: adjacency versus system matrix. We can understand how the

eigenvalue of the system matrix is the key parameter, if we consider the definition

of the system matrix. At the same time, it is useful to stress the difference between

the adjacency matrix, A, and the system matrix, S. One such matrix exists for each

virus but here we drop the virus subscript.

The key point that we make is the following: the system matrix for a virus and

thus the related eigenvalue are a function of the topology and the properties of the

virus. The eigenvalues of the adjacency matrix λA are related to the eigenvalues of

the system matrix λS. Recall that the system matrix is defined as S = (1− δ)I+βA,

where A is the adjacency matrix. Therefore, if we consider an eigenvector for A, that

would also be an eigenvector for S and the following will hold for the eigenvalues:

λS = 1− δ + β λA (3.9)
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In conclusion, the system eigenvalue λS increases with the virus strength, β and

the adjacency eigenvalue. Naturally, λS decreases as the virus persistence δ increases.

3.4 Simulation Study

We use a discrete-time simulation of our system that simulates the stochastic be-

havior of competing virus on several different synthetic and real composite networks.

3.4.1 Small-scale data sets (N < 1, 000)

Real-world enterprise composite network (ENT). We have obtained a com-

posite network dataset that represents the phone call and SMS text message commu-

nications within an urban branch of a large Chinese corporation [57]. Each node is

an employee (|N | = 235), the edges in E1 correspond to SMS messages exchanged

between employees, and edges in E2 correspond to phone calls made between employ-

ees. The data was captured over the course of six months. Among all communicating

pairs of users, 31% communicate via calls alone, 28% via SMS alone, and 41% via

both calls and SMS.

Synthetic composite networks. We have created two synthetic graphs with

1,000 nodes: the first one is an Erdős-Rényi graph, whereas the second one is a scale-

free graph; we use the Barabási-Albert model [8]. We have experimented with several
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Figure 3.2: Simulation Results: Infection plot over time (log-log) in Figure(a)-
(e). 3.2(a): Synthetic Composite Networks: λ1 = 0.97, λ2 = 0.96; 3.2(b): Real
Composite Networks: λ1 = 0.9, λ2 = 0.94; 3.2(c): Synthetic Composite Networks:
λ1 = 0.91, λ2 = 1.63; 3.2(d): Real Composite Networks: λ1 = 0.99, λ2 = 1.4; 3.2(e):
λ1 = 4.5, λ2 = 1.7; 3.2(f): The outcomes for different combinations of system eigen-
values: 1 < λ1 < 10 and 1 < λ2 < 10; black dotted lines represent three lines λ1=1,
λ2=1, and λ1=λ2. When the eigenvalues are roughly equal there is no clear winner.

different combinations of topologies. Here, we focus on these two, because: (a) we

would like to have significantly different topologies, in order to show that our methods

are not tailored to a particular family of graphs, and (b) scale-free graphs are known
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to emerge in complex human and communication networks [8].

3.4.2 Large-scale data Sets (1, 000 < N < 50, 000)

To further stress-test the accuracy of our model, we conducted experiments on

synthetic social networks with 1, 000 < N < 50, 000 nodes using the forestFire,

randomWalk, and nearestNeighbor graph generation models provided by Sala et

al. [50]. These synthetic models are informed by real world measurements of social

networks(e.g, Facebook) and provide graph structures that resemble such networks.

3.4.3 Simulation experiments

All experiments on real and synthetic composite networks were conducted using

a combination of Matlab and Python. All values are averaged over 100 simulation

runs. In each experiment, each virus infects a unique set of nodes Ini1 and Ini2, each

with the same size, selected uniformly at random from N , subject to the constraint

Ini1 ∩ Ini2 = ∅ (i.e., mutually exclusive). We run each simulation until it reaches a

relatively stable state as we discussed in Section 3.2, at which point, we determine

the average number of nodes infected by M1 and M2 and report the outcome, which

then gets averaged across 100 runs.
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3.4.4 Analysis of results

From Section 3.3, we know that if the system matrix’s first eigenvalue of one

virus is less than 1, the corresponding virus will die-out eventually. Therefore, in

this scenario, we can predict which virus prevails eventually using the following three

rules:

(i) if λ1 < 1 and λ2 > 1, then M2 tends to prevail eventually in the composite

networks;

(ii) if λ1 > 1 and λ2 < 1, then M1 tends to prevail eventually in the composite

networks;

(iii) if λ1 < 1 and λ2 < 1, then both viruses will die out and none of them can be

said to prevail.

Figures 3.2(a)-(e) demonstrate the proposed rules on both synthetic and real

composite networks. The infection starts by infecting 30 nodes for each virus in

Figure 3.2(a), Figure 3.2(b) and Figure 3.2(c), and 10 nodes for each virus in both

Figure 3.2(d) and Figure 3.2(e). The outcomes of below- and above-threshold from

these rules can be distinctly seen in these figures. These results show that, though

simple, our proposed rules are very effective for predicting which virus tends to prevail

eventually in the composite networks.

This is the more interesting case in terms of competition: each virus in isolation

would not die-out, so it is a “fight for dominance.” As shown in Figure 3.2(f), we
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find again that the system eigenvalues play a critical role: the virus whose first

eigenvalue is larger tends to prevail eventually in the composite networks. In addition,

Figures 3.2(g)-(i) show experimental results of large scale epidemic simulations using a

ForestFire and Nearest Neighbor synthetic graph models. Results are for N = 40, 000

nodes, but are consistent for results of 10, 000 to 50, 000 node experiments. Unlike

smaller-scale experiments, these results show that the weaker virus may retain some

endemic population, yet the virus with the larger eigenvalue clearly dominates the

simulation.

3.5 Suppression and Control

In this section, we design and evaluate suppression methods based on two distinct

strategies.

1. Unilateral Suppression. The goal of this strategy is to suppress one meme,

while leaving the other unscathed, thus free to spread unimpeded. Using the

five techniques described below, we intend to suppress V1 by removing ability

to spread the memes from a subset of carefully selected nodes. The intention of

unilateral suppression is to reduce λ1 to below λ2 (i.e., λ1 < λ2), thus affecting

the outcome.

2. Concurrent Suppression. The goal of this strategy is to suppress the spread

of both viruses by removing a set of nodes from both graphs in the composite
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Method Name Unilateral Concurrent Intuition
Random rand(nodeG1

) rand(nodeG1|G2
) Randomly select a node and re-

move it from G1 (G1|G2)
Acquaintance rand(neighbor)

of rand(node)
rand(neighbor)
of rand(node) of
rand(G1|G2)

Acquaintance immunization, re-
move a random neighbor of a
randomly selected node in G1

(G1|G2).
Max Degree max(deg(G1)) max(deg(G1|G2)) Remove node with the maximum

degree in G1 (G1|G2).
Social

Hierarchy

max(rank(node)) max(rank(node)) Remove node with the highest
rank.

Greedy max(λ1) max(λ1|λ2) Remove the node that causes the
largest eigenvalue drop in either
λ1 or λ2

Table 3.2: Suppression Methods

network. Ultimately, we want to reduce λ1 and λ2 to below 1 (i.e., λ1, λ2 < 1),

thus stopping the spread of both viruses.

Given these two main strategies, we propose 5 methods, described in Table 3.2,

partially motivated by the methods used in single virus/disease propagation on a

single network [16, 55]. We evaluate each method’s effect on the system matrix eigen-

values for each subgraph in the composite network (λ1,λ2). The proposed methods

are: (a) Random, (b) Acquaintance, (c) Max Degree, (d) Social Hierarchy and (e)

Greedy.

3.5.1 Unilateral Suppression

As mentioned above, the objective of unilateral suppression is to reduce λ1 to

less than λ2, thus reversing the prediction of our EigenPredictor. That is, we seek

to answer: What set of nodes should we suppress in order to reduce the spread of
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Figure 3.3: Example of Unilateral Suppression on the enterprise data set. The meth-
ods Greedy, Max Degree and Social Hierarchy drop the system matrix eigenvalue
λ1 below λ2 (thus reversing the prediction of the EigenPredictor); (b) shows the origi-
nal competition results without removing nodes; note that V1 wins, while V2 dies out;
(c) shows the competition results after removing k = 20 nodes using the Max Degree

method; the result is reversed, with V2 winning and V1 dying out.

one virus, ultimately resulting in the dominance of the other, unsuppressed, virus?

We present the results of using Unilateral Suppression on the enterprise data set in

Figure 3.3. Note that V1 will eventually prevail in the composite network prior to
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applying any unilateral suppression strategies. Then, observe that the value of λ1

decreases as nodes are removed from the system. At k = 10, λ1 is reduced to below

λ2 (thus reversing the prediction of the EigenPredictor).

As expected, the two methods that rely on randomness (i.e., Random and Acquaintance)

have the worst performance compared to the other methods. In contrast, Greedy per-

forms better than the others, yet is the most expensive computationally. Max Degree

performs surprisingly well, within 1% of Greedy at much lower computational cost.

Interestingly, when we remove nodes based on their social status (e.g., remove

“bosses” before “managers,” and so on), the method Social Hierarchy performs

better than the random methods, yet not as well as the topologically-informed models,

and eventually (at k = 20) crosses the value of λ2. Though not as effective, in

situations where we lack topological information, we could potentially rely on easily

observable social hierarchy information to inform our suppression process.

3.5.2 Concurrent Suppression

Under the concurrent suppression scheme, the goal is to reduce the effective

spreading power of two viruses spreading through different modes of communica-

tion (i.e., edge sets E1, E2 in a composite network). Simply put, we ask: What set

of shared nodes should we inoculate in order to reduce the spread of both viruses the

most?

We present the results of our suppression methods in Figure 3.4. As before, we
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(c) Max Degree
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(d) Acquaintance
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Figure 3.4: Example of Concurrent Suppression on the enterprise data set, using each
method. The epidemic threshold is marked in each plot at 1. Again, both the Greedy
and Max Degree methods drop λ1 and λ2 below the epidemic threshold. Subplot
3.4(f) shows suppression results after removing k = 20 nodes selected using the Max

Degree method—both viruses die out.

observe that Max Degree and Greedy reduce both λ1 and λ2 to below the epidemic

threshold (indicate by the horizontal line at 1) at approximately k = 19.

Social Hierarchy provides mixed results. As indicated by the lower plotted

line (representing the SMS portion of the enterprise network), Social Hierarchy is

nearly as effective as Max Degree and Greedy. Yet, on the upper line (call graph of

the enterprise network), the Social Hierarchy method is not as effective and does

not reduce the spreading power to below the epidemic threshold.
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3.5.3 Summary

In summary, we have designed and evaluated several techniques for unilateral and

concurrent suppressions, which are based on randomness, topological information

and social hierarchy. The results from both suppressions show that the topologi-

cal properties-based method (i.e., Max Degree) is very effective in controlling virus

propagation compared to other methods. Put another way, removing the highest-

connected node is a very effective suppression strategy. In situations where we lack

topological information, we could potentially rely on the explicit information of social

hierarchy to design our suppression scheme (e.g., Social Hierarchy), though not as

effective as the topological properties-based method.

3.6 Cross-Contamination

3.6.1 Cross-Contamination Experiments

Until this point, I have considered viruses spreading on a composite network to

be mutually exclusive, i.e., a virus will spread using only the edges associated with

their own network. In this section, I evaluate the effect of cross-contamination across

various synthetic graphs. Here, I change the model slightly to allow the virus from

one network to eventually “transform” into a virus that can propagate on the edges

of the other network. For example, consider a rumor propagating in Facebook being
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(c) N = 500, Erdős-Rényi vs. Barabási-
Albert

Virus #1 on Graph A

Virus #2 on Graph A

Virus #1 on Graph B

Virus #2 on Graph B

N
u
m

b
e
r 

o
f 
In

fe
c
te

d
 N

o
d
e
s

0

200

400

600

800

1000

Time Step

0 50 100 150 200 250 300 350 400 450 500
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Figure 3.5: Simulation Results of Cross Contaminations.

transformed into a rumor spread on twitter by an individual user. The user creates

a new meme and releases it on twitter, which spreads the same information, but

now this meme is spreading across twitter edges. Our simulation model emulates

this exact scenario, by carefully following the propagation of these “cross-over” virus.

To account for the new ability of a virus to jump composite network layers, each

virus is assigned a cross-contamination parameter, denoted 0 < XA→B, XB→A ≤ 1.0.

Specifically, XA→B describes the ability of a virus propagating on composite network

layer A to cross to layer B. XA→B is similarly defined.

In the shown scenarios, if simulated in isolation, each of the viruses would prop-

agate and capture the graph. While in competition, in each of these simulations,
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Figure 3.6: Cross-Contamination Simulation Examples

ultimately one virus dominates. I have established that the virus propagating with

the largest eigenvalue will eventually dominate the graph in the absence of cross-over.

However, the crossing over allows the virus with higher such likelihood to spill over

and propagate on the other topology, thus giving an advantage to the virus with

higher such likelihood.

In Figure 3.5(a), I demonstrate the results of cross contamination on a compos-

ite network of 500 nodes. In this example, λS,1 = 26.43, and λS,2 = 13.24 with

cross-contamination probabilities of XA→B = .15 and XB→A = 0.05. Observing that

λS,1 > λS2
, I see that virus #1 ultimately captures the greatest number of nodes.

Interestingly, virus #2 does not completely die out, possible due to the ability of

virus #2 to cross over to both layers of the composite network.

In Figure 3.5(b), I show the average steady-state percentage of infected nodes

versus the propagations strength of virus #2 (β2). All other parameters are constant,

in particular β1 = 0.25, XA→B = 0.10, and XB→A = 0.10. I observe, that as β2
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increase, eventually, virus #2 will eventually dominate the simulation.

3.7 Discussion

In this section, we discuss the limitations of our work and possible future direc-

tions.

Choice of epidemic model. The flu-like SIS (Susceptible-Infected-Susceptible)

epidemiological model is simple, yet illustrative, and has been extensively studied in

past literature in a single-virus setting (cf. [3, 34, 29]). Therefore, we chose to extend

SIS in order to gain fundamental insights into the dynamics of competing viruses. We

leave the investigation of other epidemic models as future work.

Real composite networks. Finding real data for any networked system or

communication is non-trivial due to privacy concerns, infrastructure limitations, and

measurement biases. Finding real data sets of composite networks is even more chal-

lenging. Obtaining the enterprise dataset used in this paper was instrumental in

modeling and understanding how real composite network operate, but the dataset

comes with dissemination restrictions. I believe that the research community could

greatly benefit from the creation of an open repository of real composite networks.
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3.8 Related Work

Single-virus propagation. Many works focus on single meme propagation on

one single topology. Compartmental models like SIS, SIR, etc., have been well-studied

in many epidemiological texts [3, 34]. The evolution of blogs and the maximization of

influence propagation are studied in [22]. Information cascades models are proposed

to study the meme propagation in word-of-mouth communications [21]. Numerous

studies exist on virus propagation on the Internet based on the basic epidemic models

of infection [52, 54]. A fundamental question in epidemiology is the presence of a

threshold, under which an epidemic is guaranteed not to happen. Pastor-Satorras

et al. [42] proposed an epidemic threshold condition for random power law networks,

which uses the “mean-field” approach. Ganesh et al. [20] and Yang et al. [58] provided

epidemic threshold for the single-virus on single topology. Prakash et al. [46] gave the

epidemic threshold condition for almost all single-virus epidemic models on a single

static network.

Multiple viruses and interdependent networks. Newman [40] studied mul-

tiple viruses on a single, special random graph and provided the epidemic threshold

for the case when the second virus propagates over the residual network after the

propagation of the first virus has completed. This scenario is close to the dynamics

of propagation of a single virus—one virus passed over the network, the second virus

starts to pass over the residual network. Prakash et al. [45] only considered multiple
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ideas spreading on a simple and fair-play network. Models for multiple cascades have

been studied as extensions of the independent cascade model, where once a node is

infected with a cascade, it never change its state [11]. The effects of cascades in

inter-dependent networks (e.g., Internet router and power electricity networks) were

investigated by Buldyrev et al. [12]. However, all of these works are completely dif-

ferent from our problem as we consider the more realistic and challenging scenario of

competing viruses propagating simultaneously on composite networks.

Game theory. Meier et al. [35] studied inoculation games in social networks,

where each node selfishly decides whether or not to protect itself. The game between

a virus and an alert over a network was investigated by Aspnes et al. [5]. Kostka et

al. [32] studied competing campaigns as a game-theoretical problem and showed that

being the first player was not always advantageous. However, these works using game

theory are different from our problem where we assume that all nodes are passive and

follow the same propagation model.

3.9 Summary

In this paper, we have formulated the scenario of competing viruses on composite

networks as an SI1I2S model and showed that the epidemic threshold depends on

the largest eigenvalues of the system matrices of both viruses. Extensive simulations

on different datasets demonstrate the effectiveness of the epidemic threshold and the
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largest eigenvalue.
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Chapter 4

Non-binary Information

Propagation

This chapter examines the qualitative behavior and phase transitions points of a

non-linear, continuous value spreading process on a discrete-time, multi-agent net-

work. I begin with by presenting background information on the classic logistic map,

f(x(t)) = x(t + 1) = r0x(t)(1− x(t)), which inspires my two networked logistic map

models, eNLM and iNLM. Using these two models, I demonstrate empirically simi-

larities with the classic logistic map. Ultimately, through empirical analysis, I find

that the network topology, summarized by the first eigenvalue of its adjacency ma-

trix, is critical to the phase transition points and equilibrium behaviors of the eNLM

and iNLM models. Despite the simplicity of our system, we show that these results

include a variety of dynamical systems and apply to diverse scientific fields, from
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biology to network routing protocols.

4.1 What is non-binary propagation?

In the previous chapters, I presented binary propagation models for a variety of

mobility and competition scenarios. In each of those models, I assumed that the

information state propagating through the system was represented by discrete state

value, e.g., “infected” or “not infected.” In this chapter, I re-evaluate the discrete

information assumption and present models for propagating non-binary information.

This change in the nature of the propagating information reflects my observa-

tions of real-world information. To clarify, consider the following scenario. Google’s

Android-based smartphones are gaining popularity and market share through word-

of-mouth campaigns and advertisements. In a word-of-mouth campaign, an individual

is told by a friend that Android phones are great, and at some point, the individual

will be persuaded to purchase the product and share their opinions with their friends.

Yet, one’s excitement about the smartphone is not strictly “excited” or “not excited”

(i.e., binary), rather one experiences a range of excited states, and one’s strength of

excitement influences family, friends and others proportionally. The strength of one’s

excitement can be measured as a continuous real value that spreads influence across

one’s social network of acquaintances.

This example summarizes the key insight that motivates this work, which–simply
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put–is that certain phenomena are not adequately described by a single binary digit

(i.e., infected/not infected), but better described as a spectrum. Other examples of

phenomena that may benefit when modeled using a continuous value include market

penetration, product adoption, gossip/rumors and public opinion.

In the study that follows, I focus on developing the simplest possible model that

characterizes the propagation of real value properties across a networked system. I

modify the classic logistic map to account for non-binary, continuous value state

propagating across networked agents. The selection of the logistic map simplifies

analysis and simulation implementation.

This chapter is separated into three parts. First, I will begin by reviewing the

canonical results on fixed points, phase transitions and chaos in the classic logistic

map function. Next, I introduce our two models for propagating non-binary informa-

tion across networks and qualitatively evaluate the results of a series of simulation

experiments on a variety of random graph models. Finally, using the insights gained

from the qualitative study, I present a series of analytical results that, like the classic

logistic map, demonstrate the existence of fixed points and phase transitions in our

networked logistic map models.

To the best of my knowledge, this is the first work that examines such a network

wide propagation problem and sets the stage for further theoretical analysis of these

systems. From a theoretical point of view, our work may be seen as a first attempt

to explore the outcome of two competing phenomena: attrition at every propagation
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hop and amplification by propagation of properties from adjacent nodes (neighbors).

4.1.1 Contributions

I present the following contributions.

1. Existence Threshold, re. There exists an existence threshold re, such that,

for all 0 < r0 < re, the system will converge to ~x∗ = ~0 as t→ ∞. Furthermore,

we show that re = 1
λA,1

, where λA,1 is the largest absolute value eigenvalue of

the adjacency matrix for all graph models. Numerical simulation results are

presented in Chapter 4.5.3 followed by analysis in Chapter 4.6.1.

2. Dampening Threshold, rd. I demonstrate the dampening threshold rd, such

that, for any value of r0 in the range re < r0 < rd, the system stabilizes to a

fixed point x∗ and at no time during the stabilization process does the system

state exceed x∗. Furthermore, I demonstrate that for rd < r0 < rp, the system

converges to x∗, yet during the stabilization process, the system state exceeds

x∗. These results are show empirically that rd ≈ 2
λ
(Chapter 4.5.4).

3. Periodic Threshold, rp. I show there exists a minimum value for the periodic

threshold rp such that, for values rp < r0, the system will exhibit a periodic

steady state behavior, i.e., there will exist a period p such that ~x(t) = ~x(t− p).

Thus, the steady state behavior is a set ~x∗ ∈ {~x(t−p+1), ~x(t−p+2), · · · , ~x(t)}.
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The periodic threshold will occur at rp ≤ 3
λA,1

. I show this results empirically

for for random graphs in Chapter 4.5.5)

4. Initial Condition Insensitivity. Given a graph G, a parameter r0, and any

appropriately bounded set of initial conditions ~x(0) = [x0(0), x1(0), · · · , xN−1(0)]
⊺,

the system will reach equilibrium at the fixed point ~x∗ for all ~x(0). This results

is demonstrated in Chapter 4.5.6

4.2 What are the challenges?

Most work on spreading processes falls into one of two categories: (1) continuous-

time, continuous-state systems or (2) discrete-time, discrete-state systems. Most

classic models, such as those presented in [53], are continuous-time, continuous-state

systems and fall into the first category. Such systems typically assume homogeneity

of agents across the system, yet, with by adding a discrete structure, e.g., a network

or graph, this assumption is invalidated and new analytical approaches are required.

In order for these systems to account for discrete network structures, such structures

are often reduced to a statistical model representing the mean-value behavior of all

agents in the system and ignoring or losing localized conditions.

The models presented in Chapters 2 and 3 fall into the second category and do

not assume agent homogeneity. As a result, analysis of these models include discrete

network structures and have produced a number of important results that quantify
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the effect of network structure on the spread of information.

The challenges we attempt to address by using a discrete-time, continuous-value

models are as follows.

1. Can we retain localized information?

2. Does the epidemic threshold have any meaning in such systems? If so, how does

it relate to classic models?

3. Does our model lend itself to analysis not available to the classic models?

4.3 Preliminaries

Before we discuss our proposed network spreading models, we begin with a dis-

cussion the function that forms the heart of our models, namely the classic logistic

map. With the logistic map as the basis of our analysis, in this section we introduce

the concepts of phase transition, fixed (or equilibrium) points, and chaos.

4.3.1 The Classic Logistic Map

Throughout the remainder of this chapter, the classic logistic map, shown below

in Equation 4.1, forms the basis of our networked propagation models. Expressed as

a difference equation, the logistic map is

f(x(t)) = x(t+ 1) = r0x(t) (1− x(t)) (4.1)
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Symbol Definition

N Number of agents in the system (vertices)
M Number of connections in the system (edges)
V = {v0, v1, · · · , vN−1} Set of vertices vi in G, where |V | = N
E = {e0, e1, · · · , eM−1} Set of edges in G, where ei = (vk, vj) and |E| = M
G = (V,E) Graph topology
A = [aij ] The adjacency matrix representation of G
~x(t) = [x0(t), x1(t), · · · , xN−1(t)]

⊺ The vector of states for each agent vi, where ~x ∈ R
N

x∗ Fixed point (with period p = 1)
x∗p Periodic point with period p
x∗ =

∑

i ~x
∗
i Sum of ~x∗ values

fi(~x(t+ 1)) = f(xi(t)) Node-level dynamical function

Table 4.1: Terminology Specific to Non-binary Propagation

and is subject to the constraints

1. x(0) = x0,

2. x0 ∈ [0, 1], and

3. 0 < r0 < 4.

The parameter r0 is often referred to as the bifurcation parameter1 and may be

considered akin to a combination of the birth rate β and death rate δ parameters

discussed in previous chapters. The term x(t) represents the value of the system at

time t, and x0 represents the initial condition value.

4.3.2 Definitions

With Equation 4.1 in mind, we introduce the following definitions. For more

information, refer to [53]. Please note, the definitions presented below are well-known,

1Not to be confused with r0 (“r-not”) previously discussed as the epidemic threshold, yet, as we
show below, the two parameters perform a similar function.
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yet reproduced here to add clarity and consistency for the work that follows.

Definition 11. (Fixed Point2)

A fixed point, denoted x∗, is a point such that f(x∗) = x∗.

Definition 12. (Fixed Point Stability)

A fixed point x∗ is called stable if and only if |f ′(x∗)| < 1 and unstable if and only

if |f ′(x∗)| > 1.

Definition 13. (Periodic stability)

A point x∗n that satisfies the fold3 fn(x∗n) = f(f(. . . (x∗n))) =x∗n. The period is

the smallest value of n for which fn(x∗n) =x∗n holds. Note that the fixed point x∗ is

a special case of the periodic fixed point with a period n = 1, i.e., x∗ = x∗1.

4.3.3 The Fixed point, x∗

To determine the fixed point x∗ for the classic logistic map, one must first solve

f(x∗)−x∗= 0, i.e., the point at which f(x∗) =x∗. Next, one must determine the

stability criteria for which x∗ is stable. In Lemma 14, I determine x∗ for the classic

logistic map, following the two steps outlined above.

Lemma 14 (Logistic Map Fixed Point x∗). The logistic map has fixed points x∗ (with

2May also referred to as equilibrium point.
3i.e., the function f applied to x∗n n-times, so if f3(x∗3) =x∗3, then the periodic fixed point is

x∗3 and the period is n = 3.
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period p = 1)

x∗ = 0 and x∗ =
r0 − 1

r0

Proof. Recall Definition 11, for the logistic map4 the fixed points are given by f(x∗) =

x∗. Given r0x
∗(1−x∗) = x∗, we solve for f(x∗)−x∗= 0 as follows:

0 = f(x∗)− x∗

= r0x
∗(1− x∗)− x∗

= r0x
∗ − r0x

∗2 − x∗

= (x∗)(r0 − r0x
∗ − 1)

Now, ignoring the trivial solution x∗ = 0, I concentrate on the term (r0−x∗−1) = 0.

0 = (r0 − r0x
∗ − 1)

r0x
∗ = r0 − 1

x∗ =
r0 − 1

r0

Thus, x∗ = 0 and x∗ = r0−1
r0

.

The two fixed points are stable only for a subrange of r0 values, which we can find

by determining what range of r0 satisfies Definition 12, that is, where |f ′(x∗)| < 1.

4Or any general difference equation
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Solving for |f ′(x∗)| = |f ′( r0−1
r0

)|, we find that x∗ is stable in the range 1 < r0 < 3.

4.3.4 The Periodic Fixed Point, x∗n

What happens at values of r0 > 3 beyond which the x∗ identified above are

unstable? At r0 > 3, |f ′(3−1
3
)| > −1, meaning for values of r0 > 3, the solution

x∗= r0−1
r0

in unstable. Let’s begin by assuming that there exists a fixed point x∗2 solves

the fold f 2 with period n = 2, where f 2 is the composite function f 2(x) ≡ f(f(x)).

Lemma 15. Two stable fixed points exists for the system f 2 ≡ f(f(x)) if and only if

3 < r0 < (1 +
√
6).

Proof. Begin by determining [f 2(x)]
′
.

[

f 2(x)
]′
= f ′(f(x))× f ′(x) (by chain rule)

= r0 [1− 2(r0x(1− x)]× r0(1− 2x)

= r20(1− 2x)(1− 2r0x+ 2r0x
2)

Now, evaluating f 2 for stable fixed points x∗2 =
(r0+1)±

√
(r0+1)(r0−3)

2r0
, we find that

| [f 2(x∗2)]
′ | < 1 for all values of 3 < r0 < (1 +

√
6).
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Figure 4.1: The bifurcation diagram of the classic logistic map for the r0 in the range
[0, 4].

4.3.5 Interpretation Fixed Points and Phase Transitions

Thus far, we have identified three regions of stability for the stable fixed point

solutions presented above. The trivial x∗=0 is stable in the range bounded by r0 ∈

(0, 1), x∗= r0−1
r0

is stable in the range bounded by r0 ∈ (1, 3). And finally, the third

fixed point x∗2 is delineated by the region bounded by r0 ∈ (3, 1+
√
6). As we increase

the values of r0, the system experiences a variety of phase changes.

Definition 16. (Phase change)
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Given the logistic map as described in 4.1, a phase change occurs when the behavior

of f(x) experiences a bifurcation.

In Figure 4.1, we present a plot of the r0-value against the value of the fixed point

x∗ and shows the phase transition behavior of the logistic map for values of r0 in

the range [0, 4]. Indicated on the plot are the points corresponding to r0 = 1 and

r0 = 3, i.e., the r0-values that delineate the boundaries between the three fixed points

regions. We observe that the behavior of x∗ changes as each threshold is crossed.

For instance, as the r0-value increases crossing r0 = 1.0, x∗ achieves a non-negative

value. Furthermore, as the r0-value crosses r0 = 3.0, the fixed point behavior splits

into two distinct values, corresponding to x∗2. These phase changes are referred to as

bifurcations, and this type of plot is commonly referred to as a bifurcation diagram.

For values of 0 < r0 < 1, the system converges to a single state x∗ = 0.

Beginning at r0 > 1, the logistic map converges to a single, non-zero value. This

behavior changes phase again at r0 > 3, at which, we observe the system bifurcate into

a periodic fixed point x∗= x∗2, with a period of n = 2. Simply put, when the logistic

map system settles into an equilibrium x∗, the system oscillates between values in the

sequence defined by x∗2 = {x0, x1}.

For convenience, we will refer to r0 = 1, i.e., the point at which x∗ transitions to

a non-zero value, as the existence threshold (re). The point r0 = 3 will be referred

to as the periodic threshold (rp), i.e., the point at which x∗ transitions from having a

single solution to having multiple solutions. These thresholds signify a change in the
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behavior of the logistic map, also known as a phase change.

4.3.6 Other fixed points

For brevity, the discussion above omits one other fixed point/phase transition

that is important to the rest of this chapter, namely, the phase transition that occurs

at r0 = 2. We refer to this point as the dampening threshold (rd). The dampening

threshold occurs at r0 = 2 and delineates two distinct phase region. In the first region,

bounded by re and rd, i.e., 1 < r0 < 2, the system converges to a single solution such

that for all values x(t), subsequent values of x(t+ 1) are strictly non-decreasing, i.e.,

x(t + 1) ≥ x(t). The second region is bounded by rd and rp, i.e., 2 < r0 < 3. In this

region, the condition strictly non-decreasing condition does not hold.

For a complete discussion on the logistic map, fixed points and phase transitions,

refer to Strogatz [53].

4.4 The NLM Propagation Model

In our networked models described below, we modify the logistic map from a scalar

function f that maps f : R → R to a matrix function F : RN×N → R
N×N, where the

dimension N is defined by the number of nodes in our system.

Consider a graph G = (V,E), where V is a set of vertices (nodes) and E is a

set of edges. Each node vi ∈ V influences its neighbors according to a logistic map
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function, where 0 ≤ i ≤ N−1. Furthermore, G is represented as an adjacency matrix

A = [aij], where aij = 1 when node vi connects to vj and 0 otherwise. Let xi(t) denote

the state of node vi at time t and ~x(t) = [x0(t), x1(t), · · · , xN−1(t)]
⊺ denote the vector

state of the nodes in the system.

Now, for our system, we must determine at what point do we accumulate the

neighbor’s input xj(t). In Figure 4.2, we describe the accumulation options. Ulti-

mately, these two options resolve to taking the inner product versus the outer product

during matrix multiplication.

The accumulation options depicted in Figs 4.2(a) and 4.2(b) are formalized as

follows.

1. Fig 4.2(a). For each time t, we accumulate each of node i’s neighbor’s input,

~a⊺i × ~x(t), then apply the logistic map such that FLM(~a⊺i ~x(t)); or

2. Fig 4.2(b). For each time t, we apply the logistic map to each of i’s neighbors

aji × ~x(t), such that
∑N−1

j=0 FLM(ajixj).

where FLM the function for the logistic map kernel, FLM(x) = r0 × x× (1− x) (i.e.,

Equation 4.1).

Given the scenarios above, we find that at time t + 1, the amount of influence

spread xi(t+ 1) by node vi is, respectively,

fi(~x(t)) = xi(t+ 1) = r0 × ~ai~x(t)
⊺ × (1− ~ai~x(t)

⊺) (4.2)
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Figure 4.2: Accumulation Options.

fi(~x(t)) = xi(t+ 1) =
N−1
∑

j=0

[r0 × ajixj(t)× (1− ajixj(t))] (4.3)

where the node vj is a neighbor of vi (i.e., edge (vj, vi) ∈ E or aji = 1). For conve-

nience, we refer to Equation 4.2 as the Internally Summed Networked Logistic

Map (iNLM) and Equation 4.3 as the Externally Summed Networked Logistic

Map (eNLM).

Finally, we define FA as

FA(~x(t)) = ~x(t+ 1) =

























f0(~x(t))

f1(~x(t))

...

fN−1(~x(t))

























(4.4)
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Figure 4.3: Example of eNLM thresholds simulated on an Erdős-Rényi random
graph with N = 100, p = 0.3. Each vertical line indicates a particular threshold con-
dition: (1) Existence Threshold, (2) Dampened Behavior Threshold, (3) Periodicity
Threshold. Insets show typical behavior for each phase region.

4.4.1 Initial Observations of NLMs

In this chapter, we examine the effect of graph topology on the phase transitions

of the systems described above. We begin by defining NLM analogues to the thresh-

olds observed in the classic logistic mapping (i.e., §4.3.5 and §4.3.6), specifically, the

existence threshold (re), dampening threshold (rd), and periodic threshold (rp).

In the following, we will refer to Figure 4.3 to illustrate the qualitative behaviors

of each threshold under consideration. Figure 4.3 shows a bifurcation diagram for an

eNLM spreading model on an Erdős-Rényi random graph. We are encouraged by the

following qualitative observations.

• The general shape of the bifurcation diagram shown in Figure 4.3 resembles

that shown in Figure 4.1.
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• The behavior of each phase region (depicted in insets of Figure 4.3), behaves

similar to the classic logistic map. For instance, in the region bounded by

0.034 < r0 < 0.068, all r(t) ≤ r(t + 1), i.e., satisfy the strictly non-decreasing

condition.

4.4.2 Limitations of our model

As with the classic logistic map, our model suffers from the problem of invalid or

divergent initial conditions. We say the system diverges when ~x∗ → ∞ as t→ ∞ and

never settles on a solution. That is, there exists a vector ~x0 that when ~x(0) = ~x0, the

system diverges and will never settle to a fixed point ~x∗. We must take care not to

initialize simulations with values of ~x0 that cause the system to diverge.

4.5 Simulation Results and Implications

In the following sections, we perform a qualitative comparison of the eNLM/iNLM

models versus the classic logistic mapping as exemplified in Figure 4.1.

4.5.1 Methodology

For each trial, we instantiated a specific graph based on classic random network

models, namely the Erdős-Rényi random graph and 2. Barabási-Albert random graph

models. Once instantiated, we selected a node seeding methodology, either individual,
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uniform (iu), subset, uniform (su), or all, uniform (au), described below.

1. Individual, Uniform: A single node in the graph is initialized with a seed value

drawn uniformly from (0,1).

2. Subset, Uniform: A random subset of k nodes are initialized with a seed value

drawn uniformly from (0,1).

3. All, Uniform: A nodes in the system are initialized with a seed value drawn

uniformly from (0,1).

Within each trial, all nodes were instantiated with either the iNLM or eNLM model

described in Section §4.3. Trials ran until convergence on a fixed point or at least

t = 250 time steps, whichever came first.

4.5.2 Graph Models

Erdős-Rényi Random Graphs

The Erdős-Rényi random graph models is defined as follows. Given N nodes and

edge probability p, an edge exists between nodes i and j as follows:

eij =















1, with probability p

0, with probability (1− p)

(4.5)
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Barabási-Albert Random Graphs

This model is often referred to as the Preferential Attachment Model. Barabási-

Albert grows a power-law network (with γ = 3) as follows: Begin with an initial

network of m0 ≥ 2 nodes with degree of each node at least 1. New nodes are added

until the desired graph size of N is reached. Each new node is connected tom existing

nodes with a probability that is proportional to the number of edges that the existing

nodes already have, more formally:

pi =
ki

∑

j kj
, (4.6)

where ki is the degree of node i.

4.5.3 Evaluation of Existence Threshold, re

I begin with an examination of the Existence Threshold on various network mod-

els. Recall that the existence threshold (re) is the point below which the system

converges to ~x∗=~0. The existence threshold has a number of implications related to

information survivability and epidemic threshold.

Figures 4.4 and 4.4 show a series of plots for the iNLM on Erdős-Rényi graphs. The

existence threshold is indicated in the first figure and shows that re is approximately

0.034. Curiously, we find this is approximately 1
λA,1

.

Figures 4.4 and 4.4 also demonstrate that re does not change for any given set
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Figure 4.4: Bifurcation diagram of iNLM applied to an Erdős-Rényi Graph with
N = 100 and p = 0.3 (and graph seed value of 0). For each figure, nodes were
initialized using the individual, uniform method. λA,1 = 29.37

of initial conditions, that is, despite changing the initial seeding method and values,

the existence threshold always occurs at re = 0.34. When qualitatively compared to

When compared to the classic logistic map in Figure 4.1, we note that all plots share

the same general features, e.g., similar bifurcation patterns. The primary qualitative

difference between the classic and the iNLM on Erdős-Rényi is the scale. For iNLM

on Erdős-Rényi, the magnitude of r∗ =
∑

~r∗i is greater than the classic logistic map.

Furthermore, as mentioned above, re is scaled by 1
λA,1

.
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Figure 4.5: Bifurcation diagram of iNLM applied to a Barabási-Albert Graph with
N = 100 and m = 3 (and graph seed value of 0). For each figure, nodes were
initialized using the all, uniform method. λA,1 = 9.16.

4.5.4 Evaluation of Dampening Threshold, rd

A set of results demonstrating the effect of the dampening regions is shown in

Figure 4.6. The non-dampening results are presented in Figure 4.6(a) and dampening

results shown in Figure 4.6(b). For each plot, the top subgraph shows the cumulative

x, whereas the bottom subplot shows individual node xi, where x =
∑

i xi.

Focusing on the top subplots, we see that for models exhibiting dampening be-

havior, the cumulative sum x fluctuates until finally settling to the fixed point of x∗.

In contrast, whereas in the non-dampening subplot, the system settles to the fixed

point x∗ such that x(t+1) ≥ x(t), i.e., in a non-decreasing manner. For the examples

shown in Figure 4.6, I empirically determined rd = 0.1986.
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(b) Dampening, r0 = .250

Figure 4.6: Non-dampening versus dampening. These figures were produced using a
Barabási-Albert random graph with N = 100 and m = 3 and graph seed of 0. For
each plot, the top subgraph shows the cumulative x, whereas the bottom subplot
shows individual node xi, where x =

∑

i xi.

For all graphs and graph models examined, I determined that rd =
3

λA,1
±0.01205N ,

where N is the number of nodes in the system.

4.5.5 Evaluation of Periodic Threshold, rp

In Figure 4.7, I summarize the values of rp for both Erdős-Rényi and Barabási-

Albert random graphs. These results are consistent for both iNLM and eNLMmodels.

In Figures 4.7(c) and 4.7(d) the results for iNLM and eNLM are shown against

the inverse of λA,1. There is a clear linear relationship observed for both re and re,

corresponding to re =
1

λA,1
and rp =

3
λA,1

. This relationship exists for Barabási-Albert

graphs as well, indicated in Figures 4.7(a) and 4.7(b), yet there is a greater degree of

variance.
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Figure 4.7: These figures show the experimentally determined values of re and rp for
the Erdős-Rényi and Barabási-Albert graph on both eNLM and iNLM models against
1

λA,1
. For both thresholds, Erdős-Rényi have linear relation equivalent re =

1
λA,1

and

rp =
2

λA,1
. Alternatively, Barabási-Albert graphs show more variation, particularly in

rp.

4.5.6 Evaluation of Initial Condition Sensitivity

Finally, each of the plots presented in Figures 4.5 and 4.4 were seeded at random

from a different seed node. Yet, despite the seeding method or criteria, for a given

graph, the system will converge to the same r∗ value. Furthermore, the thresholds

are consistent across each set of initial conditions.
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Figure 4.8: Interesting results from Barabási-Albert plot. Inset shows that, like the
classic logistic map, at certain r0 values the fixed point values x∗ will “re-converge”
to a periodic fixed point.

4.6 Analysis

The system is represented as a vector of node states ~x(t) = [x0(t), x1(t), · · · , xN−1(t)]
⊺

at time t. Our system-level propagation function is encoded as the iterate map

FA : RN → R
N . That is, FA maps the vector of node states ~x(t) to ~x(t+ 1).

In this section, we examine the aggregate behavior of system states, that is s(t)

as calculated by the aggregation function H : RN → R. Recall from Section 4.3, we

define the propagation function FA as the networked logistic map and the aggregation

function H as
∑

i xi.

Before we begin analysis of the existence threshold on the two NLM models, we
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must first review some relevant mathematical concepts. The following proofs rely

on element-wise multiplication of matrices, referred to as the Hadamard product of

matrices.

Definition 17. Hadamard Matrix Multiplication

Given two matrices A,B, the Hadamard product, denoted A◦B, is equal to [aijbij],

where aij, bij denote the i, jth element of the matrices A and B, respectively.

4.6.1 Existence Threshold

Existence Threshold Condition

In this section, I determine the Existence Threshold, re, of the iNLM model as

described in Equation 4.2. To simplify the determining the iNLM fixed points and

stability criteria, I formulate the following system-wide iNLM model, FA, as follows.

FA(~x) =

























f0(~x)

f1(~x)

...

fN−1(~x)

























= ~x(t+ 1) =
((

r0A~x
∗~1⊺

)

◦
(

I−A~x∗~1⊺
))

~1 (4.7)

where fi(~x) is the node-level iNLM function.

Now, with Equation 4.7 in mind, I will determine re for iNLM.
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Theorem 18. Given the global propagation function for the iNLM system FA(~x(t))

(Eq. 4.7), there exists two stable fixed point ~x∗, such that

~x∗ − r −A−1~1

r
and ~x∗ = ~0 (4.8)

Proof.

Outline of Proof. First, determine x∗ by solving FA(x
∗)−x∗= 0, similar to the

proof for Lemma 14.

~0 = FA(~x
∗)− ~x∗

=
((

r0A~x
∗~1⊺

)

◦
(

I−A~x∗~1⊺
))

~1− ~x∗

=
((

r0A~x
∗~1⊺

)

◦
(

I−A~x∗~1⊺
))

~1− (~x∗ ◦ I)~1

~0~1⊺ = 0 =
((

r0A~x
∗~1⊺

)

◦
(

I−A~x∗~1⊺
))

− (~x∗ ◦ I)

= r0A~x
∗~1⊺ − r0(A~x

∗~1⊺)◦2 − (~x∗ ◦ I)

= r0A~x
∗~1⊺ − r0A(~x∗)◦2~1⊺ − (~x∗ ◦ I)

= r0A~x
∗~1⊺ − r0A(I ◦ ~x∗)2~1~1⊺ − (~x∗ ◦ I)
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= r0A~x
∗~1⊺ − r0A(I ◦ ~x∗)2I− (~x∗ ◦ I)

= r0A~x
∗~1⊺ − r0A(I ◦ ~x∗)2I− (~x∗ ◦ I)

= r0A(~x ◦ I)~1~1⊺ − r0A(I ◦ ~x∗)2I− (~x∗ ◦ I)

= r0A(~x ◦ I)I− r0A(I ◦ ~x∗)2I− (~x∗ ◦ I)

= r0A(~x ◦ I)− r0A(I ◦ ~x∗)2 − (~x∗ ◦ I)

0 = (~x∗ ◦ I) (r0A− r0A(~x∗ ◦ I)− I)

At this point, two solutions present themselves, namely, ~x∗◦I = 0 and r0A−r0A(~x∗−

I) − I = 0. Solving the trivial solution, one finds ~x∗ = ~0. Now, let’s focus on the

second solution.

0 = r0A− r0A(~x∗ ◦ I)− I

0~1 = (r0A− r0A(~x∗ ◦ I)− I)~1

~0 = r0A~1− r0A(~x∗ ◦ I)~1− I~1

= r0A~1− r0A~x
∗ −~1

Immediately, we find that we can rearrange this equation, yielding

~x∗ =

(

r0 −A−1

r0

)

~1 (4.9)
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Note that the term r0−A−1

r0
is similar to the solution to the classic logistic map

given in §4.3.3.

The next step is to determine the range of r0 for which the solutions above are

valid. Recall from the Lemma 14 that to determine whether or not a fixed point

was stable one simply determine if f ′(x∗) < 1. A complimentary theorem exists for

multivariate systems.

Theorem 19. A fixed point x∗ is stable if and only if |ρ(J(FA(x̃
∗)))| = |ρ(∇FA(~x

∗))| <

1, where the ρ is the eigenvalue function and J is the Jacobian matrix function.

The Jacobian matrix is the multivariate analog of the derivative f ′, where J is

defined as follows:

J = ∇FA(~x) =

























∂x0(t+1)
∂x0(t)

∂x1(t+1)
∂x0(t)

. . . ∂xN−1(t+1)

∂x0(t)

∂x0(t+1)
∂x1(t)

∂x1(t+1)
∂x1(t)

. . . ∂xN−1(t+1)

∂x1(t)

...
...

. . .
...

∂x0(t+1)
∂xN−1(t)

∂x1(t+1)
∂xN−1(t)

. . . ∂xN−1(t+1)

∂xN−1(t)

























(4.10)

Let ρ5 for more detail. be a function that returns all eigenvalues of a particular

matrix. In order for ~x∗ to be stable, all eigenvalues of |ρ(∇FA(~x
∗))| < 1. So, we must

determine what values of r0 for a given adjacency matrix A satisfy |ρ(∇FA(~x
∗))| < 1.

Now, by substituting the fixed point solution expressed in Eq. 4.9 into |ρ(∇FA(~x
∗))| <

5Note that the Perron-Frobenius theorem guarantees λA,1 > λA,2 > . . . ≥ λA,N . See [53]
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1, we find

|ρ(∇FA(~x
∗))| < 1

|ρ(AC)| < 1

whereC is convenient substitution whereCii = Jii andCij = 0 for all i, j. Ultimately,

due to this decomposition, each non-zero element of C = 2− r0, thus the eigenvalue

of C = 2− r0. So, finally, we find So solving for the equation above, we find

r0 × λA,1 > 1

and

r0 × λA,1 < 3

4.7 Related Works

In this section, we briefly cover works related to our own.

4.7.1 Information Propagation

At its heart, the networked logistic map is a means of information propagation,

analogous to disease (or epidemic) spreading processes. For a gentle introduction

to this subject, refer to the survey by Hethcote [25]. Early propagation models
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assumed homogeneous populations; that is, a population with no social or spatial

structure. Newer models apply underlying structure to the population, thus creating

a heterogeneous population. We too apply a network structure to our model through

the use of generative graph models, such as Erdős-Rényi or Barabási-Albert . The key

difference between our work and such disease spreading processes is our introduction

of a continuous valued measure of node state.

4.7.2 Applications

The study of dynamical processes on networks applies to a wide variety of diverse

scientific fields, ranging from computer science and engineering to neuroscience to

finance. For a comprehensive survey, refer to [1] or [4].

The area of distributed systems benefits from deeper understanding of the behavior

of dynamical systems operating on networks. Consensus algorithms often require

the distributed system to achieve a global state (signifying a consensus among the

population). Understanding the effect of networks on such dynamical processes will

result in better performance of such systems. Global coordination algorithms (such

as routing algorithms) will also benefit from a deeper understanding of dynamical

processes on networks.

The efficiency gains promised by a deeper understanding will fall into one of two

general categories: 1) Modifying dynamical system to exploit a fixed structure, or 2)

Modifying structure to benefit a dynamical system.
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The area of data mining often exploits relations between data to effect efficient

extraction of knowledge from large data sets. Thus, it is another natural area that

will benefit from the understanding of dynamical systems and their relation to graph

structures.

4.8 Summary

In the preceding study, we have effectively de-coupled propagation model from

connectivity structure for a deterministic, non-binary propagation function.

Using a variety of graph models, I demonstrated the following series of results:

1. Novel Propagation Models Based on the classic logistic map function, I

developed two networked propagation models, eNLM and iNLM.

2. Existence Threshold, re. For each of the NLM models, I demonstrated

through empirical analysis that the existence threshold re =
1

λA,1
. Furthermore,

I analyzed the models and confirmed the empirical results. These results are

analyzed in §4.6.1 and numerical simulation results are given in §4.5.3.

3. Dampening Threshold, rd. Empirically, I showed that the NLM models

exhibit a dampening behavior similar to the classic logistic map. Additionally,

I demonstrated through simulations that rd ≈ 2
λA,1

(§4.5.4).

4. Periodic Threshold, rp. I showed that there exists a periodic threshold for
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the two NLMs presented in this study. Extending the proof for the existence

threshold in §4.5.3, I showed that rp < 3
λA,1

. Furthermore, I demonstrated

empirically that the more uniform the degree distribution of A, the closer rp

will be to 3
λA,1

.

5. Initial Condition Insensitivity. Finally, through a series of empirical results,

I demonstrated that, given an network topology A, the system will converge on

the same set of x∗’s for all valid initial conditions.
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Chapter 5

Conclusion

Each chapter of this dissertation addresses a specific problem in the area of spread-

ing processes on complex network structures. First, I introduced epidemic spreading

processes on dynamic network structures, modeling short-range, point-to-point com-

munication between mobile devices. The key finding was that the tipping point–a.k.a.

the epidemic threshold–is intimately related to the first eigenvalue of the connectivity

matrix λA. This was followed by an examination competing information (or viruses)

on composite networks, and again, λA predicted not only the epidemic threshold, but

also the winner of a given competition. Finally, I introduced a model of non-binary

information propagation based on the classic logistic map. Through a rigorous anal-

ysis and numerical results, I again found an close relationship between various phase

transitions and λA.

At the beginning of this thesis, I asked what affect does topology have on spreading
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processes on networks. The results presented herein, as well as other results from

different authors, clearly show that λA is the key measure of topology affecting the

spreading processes evaluated herein.
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