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Spreading properties of beams radiated by
partially coherent Schell-model sources
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1. INTRODUCTION
Much research has been carried out in recent years on the
development of tools for defining and measuring the qual-
ity of optical beams and resonators.1 In particular, one of
the most common parameters that characterize the qual-
ity of a light beam, the so-called M2 factor,2 keeps on
playing a basic role in light-beam characterization.1

A host of general properties have been established for
the coherent case,1,3,4 and the effects of the coherence
properties of a light source on the spreading features of
the radiated beam have been extensively studied.1,5–9

Nonetheless, for the partially coherent case, analytical re-
sults are restricted mainly to so-called Gaussian Schell-
model (GSM) beams,6,10,11 twisted GSM beams,12–14 and
further incoherent superpositions of Gaussian modes.15,16

Among classes of sources encountered in partial coher-
ence theory, one of the most important is that of Schell-
model sources.17 One may wonder whether the analyti-
cal structure of the cross-spectral density (CSD) of a
Schell-model source is sufficient for deriving some signifi-
cant property of the M2 factor of beams generated by such
sources. In this paper we show that the M2 factor of
these beams has a simple expression. More precisely,
the fourth power of M is obtained from the value that
would pertain to the beam in the coherent limit by adding
a term proportional to the second derivative of the modu-
lus of the spectral degree of coherence at the origin.

In Section 2 a definition and some properties of the M2

factor are given, and the analytical derivation of our re-
sult is reported in Section 3. As examples, in Section 4
two classes of Schell-model sources are considered: GSM
sources and J0-correlated sources.18 For the latter case,
0740-3232/99/010106-07$15.00 ©
an alternative derivation, based on the Wolf’s modal
expansion,17 is presented in Appendix A.

2. M2 FACTOR OF A PARTIALLY
COHERENT BEAM
To simplify the formalism we consider a one-dimensional
source, that is, a source whose characteristics depend
only on one of the coordinates of the transverse plane.
Later we will see how the results can be extended to the
more general case of a two-dimensional source.

Under suitable hypotheses, the partially coherent
source is characterized by the CSD function W0(x1 , x2).17

Since the temporal frequency is assumed to be fixed, the
explicit dependence of the CSD on it has been omitted.
The field generated by such a source can propagate in the
form of a beam.17 We suppose that the source plane
(z 5 0, in a suitable reference frame) need not coincide
with the waist plane of the radiated beam, which we as-
sume to be located at z 5 z. In this case, in the paraxial
approximation, the M2 factor of the beam is defined as2

M2 5 4pszs` , (1)

where sz and s` are the square roots of the variances of
the transverse intensity profiles at the waist plane, Iz(x),
and in the far field, I`(p). Here p has dimensions of a
spatial frequency and is related to the far-field angular
coordinate u through the relation

p 5 u/l, (2)

where l is the wavelength. More precisely, we have
1999 Optical Society of America
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s z
2 5

1
N E ~x 2 x̄z!

2Iz ~x !dx, (3)

s `
2 5

1
N E ~ p 2 p̄ !2I`~ p !dp, (4)

where N denotes the total power carried by the beam,
that is,

N 5 E Iz~x !dx 5 E I`~ p !dp, (5)

and where

x̄z 5
1
N E xIz ~x !dx, (6)

p̄ 5
1
N E pI`~ p !dp (7)

are the mean transverse coordinate at the waist and the
mean propagation direction of the beam, respectively. In
view of the above remarks on the physical meaning of p,
we see that lp̄ is the mean propagation angle of the beam
and ls` is the angular spread.

The meaning of M2 is that it specifies the far-field di-
vergence properties of a light beam, once the width at the
waist has been fixed. It can be proved that, for a fixed
spot size at the waist, the least diverging beam is a coher-
ent Gaussian beam of zero order. Accordingly, M2 mea-
sures the different properties in diffractive spread of a
general beam (whose M2 is always .1) compared with a
Gaussian beam (M2 5 1).

In the following, for simplicity we will assume that the
first-order moments of the intensity distributions (both at
the source plane, z 5 0, and in the far field) are set to
zero. We obtain these values by suitably choosing the
origin of the x axis and the direction of the z axis, which
has to coincide with the propagation axis of the beam. In
particular, it can easily be seen that these conditions im-
ply that x̄z 5 0 for any z. The situation is sketched in
Fig. 1(a).

Since we want to derive a relationship between M2 and
the coherence properties of the source, we have to express
the quantities that appear in Eq. (1) in terms of those at
the plane z 5 0, which we can do by considering that the
variance of the transverse profile follows a parabolic law,2

from which we obtain

s z
2 5 s 0

2 2 l2s `
2 z2. (8)

Moreover, the value of z can be expressed in terms of W0
in the following way9:

z 5
J

2pls `
2 , (9)

with

J 5
1
N

Im E pF ]W̃0~2p1 , p2!

]p1
G

p25p
p15p

dp, (10)

where Im stands for the imaginary part and the tilde de-
notes the two-dimensional Fourier transform.
On inserting from Eqs. (8) and (9) into Eq. (1), we ob-
tain immediately

M2 5 ~16p 2s 0
2s `

2 2 J2!1/2. (11)

The width s` can be directly expressed in terms of the
CSD of the field at the plane z 5 0 by means of the fol-
lowing formula9:

s `
2 5

1

4p2N
E F ] 2W0~x1 , x2!

]x1]x2
G

x25x
x15x

dx, (12)

so Eq. (11) represents the generalization of Eq. (1) to the
case in which the field characteristics are known only at
the plane z 5 0.

Results derived in this section can be obtained with dif-
ferent approaches, such as those based on the Wigner dis-
tribution function and on variance matrix V.1,8,11,19–21

3. CASE OF A SCHELL-MODEL SOURCE
In this section we specialize Eq. (11) to the case of a
Schell-model source by using the pertinent CSD to evalu-
ate J and s` .

Let us recall that the CSD of a Schell-model source is

W0~x1 , x2! 5 T* ~x1!T~x2!g~x1 2 x2!, (13)

where T(x) is a generally complex function such that
uT(x)u2 5 I0(x) is the optical intensity. Further, the as-
terisk stands for the complex conjugate, and g(u) is the
degree of spectral coherence (u 5 x1 2 x2).17

Fig. 1. Pictorial representation of the propagated beam for (a)
the partially coherent source and (b) the associated coherent
source.
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It is convenient to write the degree of coherence by
means of its modulus and phase; that is,

g~u ! 5 a~u !exp@ic~u !#, (14)

with a and c real functions. Well-known properties of
the CSD17 imply that

a~u ! 5 a~2u !, c~u ! 5 2c~2u !; (15)

i.e., a is an even function of u, whereas c is odd. These
properties will be used in the following, where we shall
assume that a and c and their derivatives, at least up to
the second order, are continuous functions.

On inserting from Eq. (13) into Eq. (10), after some cal-
culations we obtain

J 5 Im E T* ~x !T8~x !dx, (16)

so that J is actually independent of the degree of coher-
ence. This important property of J will be essential for
deriving the results of the present section. Note that if T
is a real function, J 5 0, regardless of the expression of g.
This implies that, in such a case, the source plane always
coincides with the waist plane of the propagated beam.

As regards s` [see Eq. (12)], the second derivative of
the CSD in Eq. (13) turns out to be

S ] 2W0

]x1]x2
D

x25x
x15x

5 uT8~x !u2g~0 ! 2 uT~x !u2g9~0 !

1 $T* ~x !T8~x ! 2 @T8~x !#* T~x !%g8~0 !.

(17)

The quantities g8(0) and g9(0) can be profitably ex-
pressed in terms of the functions a and c, defined in Eqs.
(15). Indeed, when the symmetry properties of these
functions (and of their derivatives) and the condition
g(0) 5 1 are used, it follows that

g8~0 ! 5 ic8~0 !, g9~0 ! 5 a9~0 ! 2 c82~0 !. (18)

From Eqs. (12), (17), and (18) we see that s `
2 can be

written as

s `
2 5

1

4p2N
E uT8~x !u2dx 2

1

4p2 @a9~0 ! 2 c82~0 !#

1 i
c8~0 !

2p2N
E T* ~x !T8~x !dx, (19)

where the equality uT(x)u2 5 I0(x) and Eq. (5) have been
used as well as the relation

E T* ~x !T8~x !dx 5 2E @T8~x !#* T~x !dx, (20)

which can be easily proved through integration by parts.
An easier interpretation of Eq. (19) can be obtained

through Fourier analysis. Using well-known theorems,22

we obtain
s `
2 5

1

N
E p2uT̃~ p !u2dp 2

1

4p2 @a9~0 ! 2 c82~0 !#

2
c8~0 !

2pN
E puT̃~ p !u2dp, (21)

where T̃( p) is the Fourier transform of the function T(x).
The integrals in Eq. (21) can be interpreted as follows:

Let us consider the coherent source that has a field distri-
bution equal to T(x) at the plane z 5 0, that is, the
source specified by the CSD of Eq. (13), when the degree
of spectral coherence equals 1 for any value of (x1
2 x2). Such source will be referred to as the coherent
source associated with the partially coherent one. Of
course, the intensity profile at a typical cross section of
the beam radiated by the associated coherent source dif-
fers, in general, from that of the partially coherent beam,
except for z 5 0. In particular, T̃( p) can be taken as the
far-zone field distribution of the coherent beam, and the
corresponding far-zone intensity will be given by

I`
~c !~ p ! 5 uT̃~ p !u2. (22)

This means that the integrals in Eq. (21) can be inter-
preted as moments of the intensity profile of the coherent
beam in the far zone, which suggests that the M2 of the
partially coherent beam can be somehow related to that of
the associated coherent beam. To this end, we introduce
the mean propagation direction of the associated coherent
beam, namely, p̄ (c), and the square root of the variance of
the intensity profile in the far zone, s`

(c) , defined through
expressions similar to those given in Eqs. (7) and (4).

It is worth noting that not only the variance in the far
zone but also the mean propagation direction of the coher-
ent beam is generally different from that of the partially
coherent beam, p̄. This means that, even if we choose
the z axis to be coincident with the propagation direction
of the partially coherent beam, this coincidence will not
necessarily occur for the associated coherent beam. The
situation that corresponds to the propagated coherent
beam is sketched in Fig. 1(b), where the longitudinal co-
ordinate of the waist plane, z (c), is also shown. It should
be noted that, although the parameter J is independent of
the coherence state of the source, this is not the case for
the position of the waist plane, because of the relation in
Eq. (9), where J is divided by s `

2 , which depends on g, as
will be clear below.

On inserting from Eqs. (7) and (4) into Eq. (21) we ob-
tain the following expression for s `

2 :

s `
2 5 s`

~c !2
2

a9~0 !

4p 2 1 F p̄ ~c ! 2
1

2p
c8~0 !G2

. (23)

As we are going to show in a moment, the term in
square brackets in Eq. (23) gives the mean propagation
direction of the partially coherent beam. Indeed, the ex-
pression of p̄ in terms of the CSD of the source is (see, for
example, Ref. 23)

p̄ 5
1
N E pW̃0~2p, p !dp. (24)
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On inserting a CSD of the form of Eq. (13) into Eq. (24),
we obtain after some calculations

p̄ 5
i

2p Fg8~0 ! 2
1
N E T* ~x !T8~x !dxG , (25)

which, using Eqs. (18), we can easily transform into the
form

p̄ 5 p̄ ~c ! 2
1

2p
c8~0 !. (26)

The right-hand side of the Eq. (26) just coincides with the
term in square brackets in Eq. (23). Since we have as-
sumed that the z axis coincides with the mean propaga-
tion direction of the partially coherent beam, that term
vanishes and we have

s `
2 5 s`

~c !2
2

a9~0 !

4p2 . (27)

Since, as can be easily seen, a9(0) < 0, Eq. (27) confirms
the intuitive feeling that a reduction of the coherence fea-
tures of the source leads to a widening of the angular
spread of the radiated beam. Consequences of this fact
[from Eqs. (9) and (8)] are that, in the case of the coherent
source, the width at the waist is smaller and the distance
between the source and the waist plane is greater than
for the partially coherent case.

By use of Eq. (27), the expression for the M2 factor of
the beam radiated by the partially coherent source turns
out to be, from Eq. (11),

M2 5 @16p 2s 0
2s `

2 2 4s 0
2a9~0 ! 2 J2#1/2. (28)

Now, if we recall that the quantity J2 is independent of
the coherence state of the source [see Eq. (16)], we can
join it with the first term in square brackets in Eq. (28) to
obtain, through Eq. (11), the M2 factor, say, Mc

2, of the
beam radiated by the associated coherent source. We
thus obtain

M2 5 @Mc
4 2 4s 0

2a9~0 !#1/2. (29)

Equation (29) represents the main result of this study
and shows how the coherence properties of a Schell-model
source affect the spreading features of the radiated beam.
It is remarkable that the quality factor depends on the de-
gree of coherence only through the second-order deriva-
tive of its modulus, evaluated at x1 2 x2 5 0. This
means, in particular, that two sources with the same in-
tensity profile but different coherence functions will show
the same spreading properties (in the sense of the second-
order moments), provided that the quantity a9(0) is the
same for both the sources.

Although we obtained Eq. (29) by starting from a one-
dimensional source, it could be easily shown, following an
analogous procedure, that Eq. (29) retains its validity
when the M2 factor of the beam radiated by a two-
dimensional source has to be evaluated along one of the
transverse coordinates.

Moreover, for cases in which intensity distribution is
axially symmetric, Eq. (29) can be extended to the radial
quality factor, Mr

2, which is defined as2

Mr
2 5 2pszs` , (30)
where now s z
2 and s `

2 are the radial second-order mo-
ments of the intensity distributions.2 Such an extension
reads as

Mr
2 5 @Mcr

4 2 s 0
2¹2a~0, 0 !#1/2, (31)

where s 0
2 is the radial variance of the source intensity

distribution, ¹2 denotes the Laplace operator, and Mcr
2 is

the radial quality factor in the coherent limit.
The main virtue of Eqs. (29) and (31) is that they allow

us to evaluate the M2 factor of the beam produced by any
Schell-model source by solving the propagation problem
for the coherent limit instead of for the more demanding
partially coherent case. This is particularly useful when-
ever the coherent solution is already known, as we shall
see through the examples given in Section 4. It should
be noted, however, that this does not apply to sources,
such as those of the twisted Gaussian Schell-model type,
for which the spectral degree of coherence m(r1 , r2) does
not depend only on the vectorial difference r1 2 r2 .12

4. EXAMPLES
A. Gaussian Schell-Model Source
The CSD of a one-dimensional GSM source can be written
in the form of Eq. (13), with the functions T and g given
by24

T~x ! 5 T0 expS 2
x2

4s 0
2D , (32)

g~u ! 5 expS 2
u2

2s m
2 D . (33)

Here, T0 is a positive parameter and s 0
2 and s m

2 are the
variances of the intensity profile and of the degree of co-
herence, respectively.

Because of the Gaussian form of the function T, the M2

factor of the beam radiated by the associated coherent
source is unitary, and we can write

M2 5 @1 2 4s 0
2a9~0 !#1/2. (34)

Since g is real, it also coincides with the function a de-
fined in Eq. (14). By performing the second derivative of
a we obtain

a9~u ! 5 2
1

s m
2 S 1 2

u2

s m
2 D expS 2

u2

2s m
2 D , (35)

so, from Eq. (34), the M2 factor of the GSM beam turns
out to be

M2 5 S 1 1 4
s 0

2

s m
2 D 1/2

, (36)

in agreement with the propagation law derived in Ref. 10.
It is worth recalling that for this kind of beam a global co-
herence parameter can be defined as

h 5 sm /s0 . (37)

From Eq. (36) we see that the M2 factor depends only on
such a parameter and that the beam quality is an increas-
ing function of it, as expected.
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Starting from Eq. (31), it can be easily shown that Eq.
(36) also gives the radial beam quality factor for a two-
dimensional GSM beam, provided that the quantities s 0

2

and s m
2 now represent the two-dimensional variances of

the intensity and the degree, respectively, of the coher-
ence profiles.

B. Gaussian J0-Correlated Schell-Model Source
In this section we study the spreading properties of an-
other class of partially coherent fields originated by a
Schell-model planar source, namely, the J0-correlated
Schell-model (JSM) beams.18 Sources of this kind were
first synthesized starting from an annular incoherent
source,25 and later it was shown that the radiated beams
constitute a class of partially coherent modes inside a
Fabry–Perot resonator.26 The degree of coherence of
such sources is a Bessel function of the first kind and zero
order, whereas, as for the previous example, the intensity
profile has been chosen as Gaussian. Thus we have

T~r! 5 T0 expS 2
r2

2s 0
2D , (38)

g~u! 5 J0~buuu!, (39)

where b is a positive parameter.
By using Eq. (31) and taking the fact that g is real into

account (so a 5 g), we have

¹2a 5 ¹2g 5
1
r

d
dr Fr

d
dr

J0~br !G 5 2
b

r
d
dr

@rJ1~br !#,

(40)

and, using the well-known relation27

d
dx

@xJ1~x !# 5 xJ0~x !, (41)

after some calculation we obtain

¹2a~0, 0 ! 5 2b2. (42)

Since in this case [see Eq. (38)] Mcr
2 5 1, we obtain the

following expression for the radial quality factor for JSM
beams:

Mr
2 5 ~1 1 b2s 0

2!1/2. (43)

Fig. 2. Degree of coherence, as a function of the normalized
variable u/s0 , for a GSM source (dashed curve) and a JSM
source (solid curve) with the same global coherence parameter
h 5 2.
An alternative procedure, which leads to the same result
starting from knowledge of the modal expansion of the
J0-correlated source,18 is reported in Appendix A.

Notice that, similarly to the case of GSM sources, a glo-
bal coherence parameter can be defined as

h 5
2

s0b
, (44)

Fig. 3. Far-field intensity profiles for a GSM source (dashed
curves) and a JSM source (solid curves) with the same global co-
herence parameter, as functions of the normalized spatial fre-
quency s0p. Values of h are (a) 2, (b) 1, and (c) 0.5.
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which is sufficient to completely characterize a JSM beam
with respect to its divergence properties. In particular,
Eq. (43) coincides with Eq. (36) if the h parameters of the
two sources coincide, i.e., if

sm 5 2/b. (45)

As an example, in Fig. 2 a plot of the degree of coherence
of a JSM source is shown (solid curve), together with that
of the associated GSM source (dashed curve), for h 5 2.

The two sources exhibit exactly the same intensity pro-
file but, because of the different coherence properties with
which they are endowed, the propagated beams behave in
different ways, as we can understood by exploiting the re-
sults of Wolf’s modal theory of coherence.17 Indeed, since
the coherent modes of a GSM source24,28 are shape invari-
ant, through paraxial propagation the beam obtained as
an incoherent superposition of such modes keeps this
property.29 This is not true for a JSM beam, because it is
obtained by superimposing Bessel–Gauss beams,18,30,31

which present approximately the same transverse profile
only within a certain distance from the waist plane. De-
spite the difference in shape of the propagated profiles,
the coincidence between the M2 factors of the beams en-
sures that their propagated widths are equal to each
other at any transverse plane.

In Fig. 3 we show far-field intensity profiles of a GSM
beam (dashed curves) and a JSM beam (solid curves) with
identical source intensity profiles and the same global co-
herence parameter [see Eq. (45)], as a function of the nor-
malized far-field coordinate s0p, for some values of the
global coherence parameter h.

5. CONCLUSIONS
A simple rule for determining the M2 factor of the beam
radiated by any Schell-model source has been derived. It
stems from the knowledge of the M2 factor of the beam
radiated by the associated coherent source, which is char-
acterized by the same CSD function as the partially co-
herent source but with the degree of coherence set to 1 for
all pairs of points at the source plane. Thus the rule
turns out to be particularly useful whenever the solution
for the coherent case is already known, as for a Gaussian-
shaped source. Examples have been given for GSM and
J0-correlated sources.

APPENDIX A: ALTERNATIVE EVALUATION
OF M2 FOR A J0-CORRELATED BEAM
We start from the CSD in Eq. (13), with T and g given by
Eqs. (38) and (39), respectively. For such a source the
waist coincides with the plane z 5 0, so the radial M2 fac-
tor is given by Eq. (30) with sz 5 s0 .

To evaluate the beam width in the far field we use the
standard techniques of the modal theory of coherence in
the spatial-frequency domain.32 To this end we intro-
duce the modal decomposition of the CSD of a Gaussian
J0-correlated source, i.e.,

W0~r1 , r2! 5 (
n52`

1`

lnfn* ~r1!fn~r2!, (A1)
where the eigenvalue ln and the eigenfunctions fn(r) are
given by18,31

ln 5 ps 0
2T0

2 expS 2
b2s 0

2

2 D InS b2s 0
2

2 D , (A2)

fn~r! 5 f0n expS 2
r2

2s 0
2D Jn~br !exp~2inu!, (A3)

where Jn and In are the nth-order Bessel function and a
modified Bessel function, respectively, of the first kind,
(r, u) are polar coordinates of r, and

f0n 5 T0 /Aln. (A4)

Equation (A3) states that the modes of a JSM source
are the so-called Bessel–Gauss beams of nth order.30

Now, it is known17 that the intensity distribution on
the spatial-frequency plane, say, I (`)(p), is given by

I ~`!~p! 5 W̃0~p, 2p!. (A5)

By using modal expansion (A1), after some algebra we ob-
tain

W̃0~p1 , p2! 5 (
n52`

1`

lnf̃n* ~2p1!f̃n~p2! (A6)

and thus

I ~`!~p! 5 (
n52`

1`

lnuf̃n~p!u2. (A7)

The explicit expression of Eq. (A7) can be given a closed
form. Indeed, starting from the Fourier transform of the
modes fn (Ref. 33),

f̃n~p! 5 ps 0
2~2i !nf0nexpS 2

b2s 0
2

2 D exp~22p2s 0
2 p2!

3 In~2pbs 0
2 p !exp~2inw!, (A8)

with ( p,w) the polar coordinates of p, we obtain

I ~`!~p! 5 4p2s 0
4 exp~2b2s 0

2!exp~24p2s 0
2 p2!

3 (
n 5 2`

1`

In
2~2pbs 0

2 p !

5 4p2s 0
4 exp~2b2s 0

2!

3 exp~24p2s 0
2 p2!I0~4pbs 0

2 p !, (A9)

where use has been made of formula (5.8.6.1) of Ref. 34.
From Eq. (A9) it can be seen that the intensity profile on
the spatial-frequency plane is a radial function, so its
variance is

s `
2 5

E
0

`

I0~4pbs 0
2 p !exp~24p2s 0

2 p2!p3dp

E
0

`

I0~4pbs 0
2 p !exp~24p2s 0

2 p2!pdp

.

(A10)

The evaluation of this quantity can be performed with for-
mula (6.631.10) of Ref. 35 and the relation I0(x)
5 J0(ix), yielding
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s `
2 5

1

4p2s 0
2 ~1 1 b2s 0

2!. (A11)

Finally, the radial quality factor Mr
2 of the J0-correlated

beam turns out to be

Mr
2 5 ~1 1 b2s 0

2!1/2, (A12)

which coincides with Eq. (43).
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