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Abstract

As plants are sessile organisms that have to attune their physiology and morphology continuously to varying environmental 
challenges in order to survive and reproduce, they have evolved complex and integrated environment–cell, cell–cell, and 
cell–organelle signalling circuits that regulate and trigger the required adjustments (such as alteration of gene expression). 
Although reactive oxygen species (ROS) are essential components of this network, their pathways are not yet completely 
unravelled. In addition to the intrinsic chemical properties that define the array of interaction partners, mobility, and stabil-
ity, ROS signalling specificity is obtained via the spatiotemporal control of production and scavenging at different organellar 
and subcellular locations (e.g. chloroplasts, mitochondria, peroxisomes, and apoplast). Furthermore, these cellular compart-
ments may crosstalk to relay and further fine-tune the ROS message. Hence, plant cells might locally and systemically react 
upon environmental or developmental challenges by generating spatiotemporally controlled dosages of certain ROS types, 
each with specific chemical properties and interaction targets, that are influenced by interorganellar communication and by 
the subcellular location and distribution of the involved organelles, to trigger the suitable acclimation responses in associa-
tion with other well-established cellular signalling components (e.g. reactive nitrogen species, phytohormones, and calcium 
ions). Further characterization of this comprehensive ROS signalling matrix may result in the identification of new targets 
and key regulators of ROS signalling, which might be excellent candidates for engineering or breeding stress-tolerant plants.
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Introduction

The predicted climate change and global warming will affect 
the biotic and abiotic environment of plants, with an impact 
on crop yields and biomass production (Lobell et  al., 2009; 

Schlenker and Roberts, 2009; IPCC, 2014). As plants are ses-
sile, they evolved diverse strategies to combat environmental 
challenges. These strategies depend on the type, severity, and 
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combination of biotic and/or abiotic stress(es), and require 
speci�c and �exible combinations of signalling components 
to trigger adaptation and acclimation responses that may be 
applicable to more than one environmental cue, usually referred 
to as cross-tolerance (Suzuki et al., 2012, 2014). The initiation 
and regulation of these processes mostly involve well-charac-
terized signalling molecules, such as phytohormones (Pieterse 
et  al., 2012; Bartoli et  al., 2013), calcium ions (Ca2+) (Stael 
et al., 2015), reactive nitrogen species (Kocsy et al., 2013), and 
reactive oxygen species (ROS) (Baxter et al., 2014).

ROS, including the superoxide anion (O2·
−), hydrogen per-

oxide (H2O2), and the hydroxyl radical (HO·), as well as singlet 
oxygen (1O2), are formed in organelles during electron trans-
port reactions in photosynthesis and respiration, and as by-
products of enzymatic reactions in photorespiration and other 
metabolism (Das et al., 2015). ROS are also produced enzy-
matically in the apoplast of lignifying cells and as a response to 
external stimuli (Demidchik, 2015). ROS were long regarded as 
unwanted and harmful by-products of normal cellular metab-
olism. However, during the last two decades our understanding 
of the role of ROS has greatly expanded from merely detri-
mental species causing oxidative stress to the view that they are 
essential messengers involved in redox signalling (Mittler et al., 
2011; Schieber and Chandel, 2014; Vaahtera et al., 2014). ROS 
can initiate and integrate with signalling networks, thereby reg-
ulating a broad range of processes, such as growth, develop-
ment, defence, and acclimation responses to biotic and abiotic 
stresses (Gapper and Dolan, 2006; Baxter et al., 2014).

Each ROS has its own set of distinct chemical properties 
(Møller et al., 2007) and may accumulate transiently in spe-
ci�c cellular microenvironments. Their production and scav-
enging systems are compartmentalized and/or need speci�c 
activation. ROS can react with apoplastic signalling compo-
nents, cytosolic kinases, phosphatases, various redox-sensi-
tive proteins, and transcription factors (Foyer and Noctor, 
2013; Wrzaczek et al., 2013), thereby initiating communica-
tion events that adjust plant growth, development, and stress 
responses according to environmental cues. ROS signalling is 
also strongly interconnected with the response to plant hor-
mones, including salicylic acid (SA), jasmonic acid (JA), eth-
ylene, abscisic acid (ABA), and auxin (Blomster et al., 2011; 
Pieterse et al., 2012; Bartoli et al., 2013). These interactions 
can take place at the level of both hormone biosynthesis and 
hormone signalling; that is, proteins initially isolated for their 
role in hormone signalling also play signalling roles in ROS 
responses (Kangasjärvi et al., 2005; Mittler et al., 2011).

As all ROS have their own unique chemical properties and 
reactivity, they also possess their own speci�c set of targets 
and signalling routes (Vaahtera et al., 2014). OH· is the most 
unstable ROS and rapidly reacts with all sorts of cellular 
components (e.g. lipids, DNA, carbohydrates, and proteins), 
as re�ected by its half-life of only 1 ns. The O2·

− and 1O2 mol-
ecules are quite similar in terms of stability, with a half-life of 
1 μs (Halliwell and Gutteridge, 2015). Nevertheless, they vary 
greatly in target speci�city: whereas O2·

− interacts mainly with 
protein Fe–S centres, 1O2 may oxidize polyunsaturated fatty 
acids, guanine, and several amino acids. In contrast, H2O2 
is much more stable (half-life of 1 ms) and can accumulate 

to relatively high concentrations (μM to mM) (Cheeseman, 
2006; Møller et  al., 2007). However, these unique chemical 
properties of ROS do not include information about the sub-
cellular production site.

The estimated subcellular H2O2 production rates in the 
light under photorespiratory conditions are 4030  nmol m−2 
s−1 for chloroplasts, 10 000 nmol m−2 s−1 for peroxisomes, and 
<216 nmol m−2 s−1 for mitochondria (Foyer and Noctor, 2003), 
whereas the production rates of the more unstable O2·

− and 
1O2 are dif�cult to estimate. Each ROS apparently propagates 
its signal through a distinct set of compartment-speci�c inter-
action partners. Hence, ROS signalling is probably linked to 
compartment-speci�c sensory systems that can connect them 
with other signalling pathways and transduce the signal down-
stream for compartment-speci�c or compartment-directed 
responses (Møller and Sweetlove, 2010). Thus, the signalling 
speci�city of ROS results not only from the chemical char-
acteristics, but also from spatiotemporal control of sensory 
mechanisms (Bailly et al., 2008; Shapiguzov et al., 2012; Foyer 
and Noctor, 2013; Baxter et al., 2014; Sewelam et al., 2014), 
and is affected by the distribution and relative position of the 
participating cellular organelles or subcellular compartments 
(Suzuki et al., 2012) and by the developmental stage (Mhamdi 
et al., 2010). This review is focused on ROS production and sig-
nalling in different subcellular compartments and organelles, 
and on the mechanisms involved in determining the ROS sig-
nal speci�city and intercompartmental communication.

Apoplastic ROS production

The apoplast is the intercellular space outside the plasma 
membrane formed by the continuum of cell walls and the 
extracellular spaces. Diffusion through the apoplast is much 
faster than through the cytosol, thereby facilitating rapid cell–
cell communication. The apoplast has a few special features 
that affect its redox properties (Potters et al., 2009). First of 
all, the pH of the apoplast is lower than that of the cyto-
plasm (Gao et al., 2004), which reduces the redox sensitivity 
of cysteine. Hence, the proteins in the apoplast should be less 
redox sensitive, but, compared with the cytosol, the apoplast 
also has lower amounts of low-molecular weight antioxidants, 
such as glutathione and ascorbate, and, thus, a lower antioxi-
dant buffering capacity. Therefore, ROS can accumulate in the 
apoplast, enabling the activation of ROS signalling pathways 
that counteract the effect of low pH on the redox sensitivity of 
the apoplastic proteins (Fig. 1). Furthermore, changes in apo-
plastic ROS levels affect the ascorbate gradient and, conse-
quently, lead to changes in cellular redox homeostasis (Foyer 
et al., 2009; Munné-Bosch et al., 2013). In addition, a large 
number of apoplastic proteins contain thiol groups that could 
be involved in or target redox regulation. Apoplastic h-type 
thioredoxins that interact with apoplastic ROS have been 
identi�ed (Zhang et al., 2011). A small cysteine-rich apoplas-
tic pre-protein has been shown to be proteolytically processed 
by a metacaspase in a ROS-dependent manner to produce a 
ligand involved in ROS-dependent cell death (Wrzaczek et al., 
2015), whereas a group of cysteine-rich receptor-like kinases 
(CRKs) play primary and �ne-tuning roles related to oxidative 
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stress (Bourdais et al., 2015). However, speci�c proteins with 
specialized cysteine pairs as a direct target for ROS/redox reg-
ulation in the apoplast still await detailed elucidation.

Apoplastic ROS production, induced by extracellular stim-
uli, such as pathogens or ozone, is one of the �rst measurable 
events during different biotic and abiotic stresses (Wojtaszek, 
1997). This ROS production is mediated by NADPH oxidases 
and class III cell wall peroxidases (Torres, 2010; Daudi et al., 
2012; O’Brien et  al., 2012). The NADPH oxidases, which 
are designated respiratory burst oxidase homologs (RBOHs) 
in plants, are integral plasma membrane proteins that utilize 
cytosolic NADPH as the electron donor to reduce extracellular 
O2 to O2·

−. They are composed of six transmembrane domains, 
a C-terminal FAD-binding domain, and two N-terminal 
calcium-binding (EF-hand) domains, the activity of which is 

regulated both transcriptionally (Adachi et al., 2015) and by 
various post-translational modi�cations, mostly targeting the 
cytosolic N-terminal domain. The N-terminal EF-hands can 
bind Ca2+, and several amino acid residues are phosphorylated 
by various kinases, such as the OPEN STOMATA1 (OST1), 
calcium-dependent protein kinases (CDPKs), and calcineu-
rin B-like (CBL)-interacting protein kinases, CIPKs (Marino 
et al., 2012; Baxter et al., 2014). The Ca2+-dependent RBOH 
activation includes a conformational change of the EF-hand 
(Zhao et al., 2005; Ogasawara et al., 2008; Monshausen et al., 
2009) together with crosstalk with the phosphorylation events 
(Kimura et al., 2012; Kadota et al., 2014).

Apoplastic class-III peroxidases are a second set of enzy-
matic ROS producers that operate in various physiological 
processes, such as lignin polymerization (Passardi et al., 2004), 

Fig. 1. ROS signalling-mediated local and systemic responses against (a)biotic stresses. Abiotic and biotic stresses lead to redox imbalances in 

different subcellular compartments, resulting in both local stress responses and systemic responses; that is, systemic acquired acclimation (SAA) and 

systemic acquired resistance (SAR). Information flow via intercompartmental ROS signalling is important for cellular homeostasis, hormonal balance, and 

co-ordinated stress responses. Crosstalk between different cellular signalling systems, resulting in stress responses and acclimation, is very complex, and 

many questions concerning ROS sensing, specificity, and regulation are still unanswered. ROS is produced continuously in different subcellular locations as 

part of cellular metabolism, but abiotic and biotic stresses induce additional ROS production in stress-specific subcellular locations (1, 3) that lead to stress 

recognition and activation of apoplastic and symplastic stress signalling pathways, including ROS, RNS, hormone, and Ca2+ signalling (2). In the case of a 

strong stress, ROS scavenging by antioxidants is not efficient enough to keep ROS under the threshold levels, causing redox imbalances that are sensed 

locally (4 and 5), but also in the cytosol. H2O2 can pass membranes through aquaporins (11), but otherwise it is not well understood how redox changes 

are sensed. Despite the complexity, plants are able to sort out stress signals and adjust their metabolism accordingly to maintain the optimal physiological 

status for growth (6), possibly involving signal transduction via kinase (K)- and/or redox (R)-based intermediates in the cytoplast (and apoplast) (7). 

Membrane lipids and redox-sensitive plasma membrane-located protein kinases, such as CRKs, have been suggested to sense apoplastic ROS produced 

by RBOHs and cell wall peroxidases (9) and to deliver the stress signals to the cytosol for further processing (10). Redox-sensitive protein kinases 

might even play a role in the propagation of the ROS wave that delivers the stress signal to the neighbouring cells (8). Arrows (→) represent stimulation/

activation and bars (Τ) inhibition/deactivation. A question mark indicates assumed interactions or hypothetical signalling mechanisms. Dashed lines display 

temporal and variable ROS signalling contributions or interactions that depend on the type of cellular compartment and the characteristics of the (a)biotic 

stresses affecting these compartments. Red arrows symbolise systemic signalling or transport. TF, transcription factor; TI, transcription inhibitor; PHR, 

photorespiration; PS, photosystem; NADP(H), nicotinamide adenine dinucleotide phosphate (reduced); P, phosphorylated; S-H, cysteine thiol group.
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but also during pathogen defence (Torres, 2010; Daudi et al., 
2012; O’Brien et al., 2012). Class-III peroxidases are soluble 
and are bound ionically or covalently to the cell walls. Their 
reaction mechanism is based on a peroxidative and hydroxylic 
catalytic cycle (Passardi et al., 2004, 2005; O’Brien et al., 2012; 
Lüthje et  al., 2013). Whereas the latter couples the release 
of several ROS with the reduction of H2O2 or O2·

−, the per-
oxidative cycle combines the reduction of H2O2 to H2O with 
the oxidation of various substrates, leading to O2∙

− produc-
tion (Liszkay et al., 2003; Passardi et al., 2004). Hence, both 
cycles may regulate H2O2 production (Passardi et al., 2004). 
Transgenic Arabidopsis thaliana plants expressing an antisense 
cDNA that targeted type-III peroxidases exhibited a reduced 
oxidative burst and an enhanced susceptibility to fungal and 
bacterial pathogens (Bindschedler et al., 2006). Fungal elici-
tors trigger a type-III peroxidase and an RBOHD-dependent 
oxidative burst that initiates callose deposition and alters gene 
expression (Daudi et al., 2012; O’Brien et al., 2012).

Conveying the (apoplastic) message

Phospholipid membranes allow cells to build up physiologi-
cally relevant chemical or electrical gradients and to compart-
mentalize cellular pathways, nutrients, and metabolites. In 
combination with interplay between the diverse antioxidant 
and ROS-producing systems, these membranes enable cells 
to maintain a non-toxic steady-state level of ROS by allow-
ing their transient accumulation in particular subcellular 
locations for signalling purposes (Mittler et al., 2004; Foyer 
and Noctor, 2013). By separating the symplasm from the 
apoplasm, the plasma membrane is a key to cellular homeo-
stasis and ROS signalling. For example, H2O2 cannot diffuse 
freely through the plasma membrane due to its polarity, and 
its transport is controlled by H2O2-permeable (or even spe-
ci�c) aquaporins, through which membranes are crossed in 
a regulated manner (Bienert and Chaumont, 2014; Grondin 
et al., 2016). Thus, an apoplastic oxidative burst may result in 
enhanced oxidation of the apoplast, whereas the cytoplasm 
remains reduced. The redox gradient that is formed across 
the plasma membrane allows differential redox regulation of 
proteins at the cell surface, including the receptors and ion 
channels (Foyer and Noctor, 2013), possibly initiating a cas-
cade of signalling pathways (Shapiguzov et al., 2012; Foyer 
and Noctor, 2013; Wrzaczek et al., 2013).

The apoplastic oxidative burst has been associated with 
extracellular signalling and cell–cell communication that 
may trigger systemic physiological responses and acclima-
tion to environmental stresses (Mittler et  al., 2011; Suzuki 
et  al., 2013; Baxter et  al., 2014). Despite their immobility, 
RBOHD proteins can mediate long-distance signalling via 
dynamic autopropagating ROS waves that require each cell 
along the way to activate RBOHD proteins independently 
(Miller et al., 2009, 2011; Suzuki et al., 2013; Baxter et al., 
2014). This RBOH-related ROS generation in the adjacent 
cells probably involves the previously mentioned RBOH con-
trol mechanisms, including CDPKs, especially CPK5. The 
Arabidopsis NADPH oxidase RBOHD has been shown to be 
an in vivo target for CPK5. Phosphorylation of RBOHD by 

CPK5 activates it, resulting in ROS perception in the neigh-
bouring cell, where Ca2+ signalling and CPK5 again are acti-
vated, spreading the RBOHD activation further (Dubiella 
et al., 2013; Suzuki et al., 2013). The resulting ROS wave has 
a systemic character, travelling from its local source at a rate 
of 8.4 cm min−1 through the apoplastic space to distant, non-
stressed tissues, where it affects gene expression (Miller et al., 
2009). This ROS wave may be essential for the induction of 
systemic acquired resistance to biotic stresses and systemic 
acquired acclimation to abiotic environmental cues (Torres 
et  al., 2005; Miller et  al., 2009; Suzuki et  al., 2012, 2013; 
Baxter et al., 2014). Furthermore, it acts in concert with hor-
monal (e.g. JA, SA, ethylene, and ABA), Ca2+, and systemic 
electric signals (Hasegawa et  al., 2011; Mittler et  al., 2011; 
Karpiński et al., 2013; Suzuki et al., 2013; Baxter et al., 2014) 
and may also trigger systemic responses related to wounding, 
metabolism, and plant development (Sagi et al., 2004; Suzuki 
and Mittler, 2012; Baxter et al., 2014).

Apoplastic ROS production is important not only for 
long-distance extracellular signalling, but also for the initia-
tion of several intracellular signalling events and changes in 
the cellular redox homeostasis (Mittler et al., 2011). One of 
the best understood processes in which extracellular ROS 
are involved in triggering intracellular responses is stoma-
tal regulation. Genetic evidence indicates that the NADPH 
oxidases RBOHD and RBOHF are involved in the regula-
tion of stomatal closure (Murata et al., 2001; Zhang et al., 
2009). ABA-induced stomatal closure is impaired in the rbohf 
mutants and even more in the rbohd rbohf double mutants 
(Kwak et al., 2003). Furthermore, application of the NADPH 
oxidase inhibitor diphenyliodonium produced a similar effect 
on ABA-induced stomatal closure (Zhang et  al., 2001). 
Similarly, high CO2-induced stomatal closure is de�cient in 
rbohd rbohf double mutants (Chater et al., 2015). However, 
it is still unknown whether apoplastic ROS are active and 
perceived outside the plasma membrane, or whether H2O2 
derived from the RBOH-produced O2∙

− is transported to the 
cytoplasm across the plasma membrane. The apoplastic H2O2 
can move through the plasma membrane to the cytoplasm 
via aquaporins (Bienert and Chaumont, 2014; Bienert et al., 
2014), and thus alter the symplastic redox state, react with 
symplastic components, and induce further responses in cel-
lular metabolism and gene expression. H2O2 may also diffuse 
symplastically from cell to cell via plasmodesmata or through 
the vasculature via the cells bordering the phloem and xylem 
(Suzuki et al., 2011).

To affect both apoplastic and cytosolic signalling pro-
cesses, the changes in ROS accumulation must be sensed in 
all subcellular compartments by means of location-speci�c 
systems. Different systems that perceive apoplastic ROS accu-
mulation have been proposed, but no experimentally proven 
receptors or sensory systems have been identi�ed in plants. 
Yet, indirect evidence points to their existence, and various 
components may be involved in ROS sensing (Shapiguzov 
et al., 2012; Wrzaczek et al., 2013). As many apoplastic pro-
teins and peptides are rich in cysteine or contain conserved 
cysteines in their extracellular domain, they are suitable 
candidates as ROS sensors (Wrzaczek et al., 2009; Murphy 
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et al., 2012). Moreover, the plasma membrane comprises sev-
eral microdomains (i.e. lipid or membrane rafts) with vari-
ous redox-sensitive systems and components (Lüthje et  al., 
2013). In addition to the proposed receptor protein-related 
systems responsible for ROS perception, several other pos-
sible mechanisms that are affected by apoplastic ROS accu-
mulation and cause downstream changes have been identi�ed 
or might be involved in apoplastic ROS-sensory systems. 
ROS may also cause membrane lipid peroxidation (Farmer 
and Mueller, 2013), alter ion �uxes across the membrane by 
affecting redox-regulated ion channels (Garcia-Mata et  al., 
2010), cause membrane depolarization (DeCoursey, 2003), 
result in functional conformational changes of proteins, and 
induce electric signals (Farmer and Mueller, 2013; Suzuki 
et al., 2013; Wrzaczek et al., 2013). These proposed apoplas-
tic ROS sensors/receptors probably work in parallel, allowing 
�ne-tuned and accurate intracellular signalling in response to 
apoplastic ROS (Wrzaczek et al., 2013).

A signi�cant number of receptor-like kinases (RLKs) are 
involved in plant responses to environmental cues (Chae et al., 
2009; Osakabe et  al., 2013; Sierla et  al., 2013; Kangasjärvi 
and Kangasjärvi, 2014). Given the central role of ROS, recent 
research on the involvement of RLKs in ROS sensing and 
signalling suggests that ROS play important roles in receptor 
activation. Apolastic ROS formed under stressful conditions 
can modify cell wall components and apoplastic proteins, 
whereas their breakdown products might act as receptor 
ligands. For example, a short peptide cleaved by metacaspase 
9 from the extracellular GRIM REAPER (GRI) protein in a 
process that requires RBOHD-produced ROS acts as a ligand 
for the pollen-speci�c receptor-like kinase 5 (PRK5) protein, 
a leucine-rich repeat (LRR)-RLK involved in ROS-induced 
cell death (Wrzaczek et al., 2009, 2015). ROS molecules have 
also been suggested to activate receptors by direct redox 
modi�cations of their extracellular domain, such as cysteine 
residues, leading to conformational changes and thus recep-
tor activation and subsequent signal transduction. Several 
members of the CRK family, an RLK subfamily, appear to 
act in the sensory mechanisms that detect increased extracel-
lular ROS (Idänheimo et al., 2014; Bourdais et al., 2015). An 
LRR-type RLK, GHR1, might also be involved in apoplastic 
ROS-related regulation of stomatal movements through con-
served cysteine residues (Hua et al., 2012). Thus, an RLK-
related sensory system in which either CRKs (Bourdais et al., 
2015) or LRR-type RLKs (Hua et al., 2012; Wrzaczek et al., 
2015) could be involved in the process induced or mediated 
by ROS. Similar apoplastic ROS signalling can be activated 
by exposure to a gaseous ROS molecule, such as ozone (O3), 
that enters through stomatal pores and rapidly degrades into 
O2·

− and H2O2 in the apoplast (reviewed in Vainonen and 
Kangasjärvi 2015).

The interaction of apoplastic ROS signalling with hor-
mone signalling has mostly been studied with O3 as elicitor. 
O3 treatment increases biosynthesis of all major stress hor-
mones (reviewed in Kangasjärvi et  al., 2005). The connec-
tions between hormones and ROS signalling can conveniently 
be analysed in Arabidopsis mutants or biosynthesis-de�cient 
transgenic lines, such as sid2, de�cient in ISOCHORISMATE 

SYNTHASE1 required for SA biosynthesis; aos, de�cient in 
ALLENE OXIDE SYNTHASE and thus in JA biosynthesis; 
the NahG transgene, encoding a bacterial salicylate hydroxy-
lase that degrades SA; and mutants involved in hormone 
signalling (ein2, ETHYLENE INSENSITIVE2; and coi1, 
CORONATINE INSENSITIVE1, encoding the JA recep-
tor). To study the interaction between hormones, double and 
triple mutants that allow the study of two or three hormones 
simultaneously have been used (Kim et al., 2014; Xu et al., 
2015). Treatment of these Arabidopsis mutants with O3 has 
revealed a model in which JA is a negative regulator of apo-
plastic ROS-induced cell death, and SA and ethylene are posi-
tive regulators (Kangasjärvi et al., 2005; Blomster et al., 2011; 
Xu et al., 2015). The most prominent interaction among the 
hormones is inhibition of JA signalling by ethylene, in con-
trast to the current dogma in pathogen signalling in which 
a synergistic interaction is assumed (Tuominen et al., 2004; 
Kim et al., 2014; Xu et al., 2015). Intriguingly, with a similar 
set of mutants and O3-induced changes in gene expression 
instead of cell death, several roles for these hormones have 
been observed, as positive and negative regulators, as well as 
antagonistic and synergistic hormonal interactors (Xu and 
Brosché, 2014; Xu et al., 2015). Furthermore, in comparison 
with the wild type, a very large number of O3-regulated genes 
had no altered expression in any hormone-related mutant 
(Xu et al., 2015), overall emphasizing the context speci�city 
of ROS signalling and the activation of multiple signalling 
pathways in response to apoplastic ROS.

Chloroplastic ROS production

Besides supplying photosynthesizing cells with energy, chlo-
roplasts are also hubs for ROS signalling (Fig. 1). They pro-
duce signi�cant and diverse pools of ROS in response to 
environmental changes, thereby initiating intraorganellar 
communication and affecting nuclear gene expression (Lee 
et al., 2007; Shapiguzov et al., 2012; Sierla et al., 2013; Voss 
et al., 2013). Exposure of chloroplasts to sudden high light 
intensities or abiotic stresses that decrease the maximal pho-
tosynthetic capacity provoke an excess of excitation/photon 
energy that over-reduces the photosynthetic electron trans-
port (PET) components (Dinakar et al., 2012; Adams et al., 
2013) and produce various ROS (Asada, 2006; Mubarakshina 
et al., 2010; Foyer and Shigeoka, 2011; Fischer et al., 2013). 
Chloroplastic O2∙

− can be delivered during photosynthesis in 
three ways. First, the partial oxidation of H2O at the PSII 
electron donor side results in the formation of H2O2, which is 
then either reduced to OH∙ or oxidized to O2∙

− (Pospíšil, 2009). 
Secondly, PET-related reduction of plastohydroquinone 
(PQH2) at the cytochrome b6f complex turns a plastoquinone 
(PQ) into a plastosemiquinone (PQ∙−) that might generate 
O2∙

− upon interaction with oxygen (Cleland and Grace, 1999; 
Mubarakshina and Ivanov, 2010; Baniulis et al., 2013). The 
O2∙

− formed can be reduced within the thylakoid membrane 
to H2O2 by PQH2 (Mubarakshina et al., 2006; Ivanov et al., 
2007; Pospíšil, 2009; Mubarakshina et al., 2010), putatively 
involving the oxidation of the PSI components phylloqui-
none A1 and the Fe–S centre SX (Mubarakshina and Ivanov, 
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2010). Thirdly, within PSI, most electrons are promptly trans-
ferred from the reduced P700 reaction centre to the stromal 
Fe–S protein ferredoxin. As this water-soluble protein is a 
powerful reductant, oxygen reduction by reduced ferredox-
ins is probably responsible for most chloroplastic O2∙

− pro-
duction (Asada, 2006). Under optimal circumstances, the 
chloroplastic O2∙

− is dismutated to H2O2 by thylakoid-bound 
and stromal superoxide dismutases and further oxidized to 
water by the ascorbate peroxidases and peroxiredoxins in the 
water–water cycle.

1O2 is produced at photosystem II (PSII) under speci�c con-
ditions. Normally, an excited P680 will reduce its neighbour-
ing electron acceptor molecule pheophytin and start a cascade 
of redox reactions via the members of the PET chain, result-
ing in the reduction of P700 of PSI and the establishment 
of an electrochemical proton gradient across the thylakoid 
membrane. However, whenever there is excess photon energy 
or a decreased CO2 assimilation rate, over-reduction of the 
subsequent PET component will cause an excited triple state 
of the P680 and of chlorophyll antennae that may modify 
the electron con�guration of neighbouring oxygen molecules 
and turn them into 1O2 (Krieger-Liszkay, 2005; Asada, 2006; 
Krieger-Liszkay et al., 2008; Fischer et al., 2013), which will 
further react with different components in and around PSII.

Chloroplastic ROS and biotic stress

Together with other subcellular compartments, chloroplasts 
contribute to ROS production during the hypersensitive 
response (HR) in the defence against pathogens (Yao and 
Greenberg, 2006; Liu et  al., 2007; Zurbriggen et  al., 2009, 
2010; Stael et  al., 2015). In the last few years, the involve-
ment of chloroplasts in plant immunity has been increas-
ingly recognized (Kangasjärvi et al., 2012; Shapiguzov et al., 
2012; Sierla et al., 2013; Serrano et al., 2016). For example, 
the pathogen response differs between light and dark (Roden 
and Ingle, 2009; Hoeberichts et al., 2013; Lozano-Durán and 
Zipfel, 2015), pathogen recognition triggers rapid transcrip-
tional reprogramming of chloroplast-encoded transcripts, 
and some bacterial and viral elicitors interact with chloro-
plast-targeted proteins or are imported into chloroplasts 
(Padmanabhan and Dinesh-Kumar, 2010; de Torres Zabala 
et al., 2016).

Chloroplasts also respond to ROS signals from other cellu-
lar compartments. For instance, when apoplastic ROS levels 
are high, this information is relayed to the chloroplasts by an 
as yet unknown mechanism, followed by chloroplastic ROS 
production. A short apoplastic ROS burst induces chloroplas-
tic ROS production in guard cell chloroplasts (Vahisalu et al., 
2010). The �agellin 22 (�g22)/FLAGELLIN SENSING2 
(FLS2) recognition-related immunity responses that trigger 
an apoplastic ROS burst have been shown to require chlo-
roplastic ROS-dependent or -related processes (Nomura 
et al., 2012; Göhre et al., 2012; Sano et al., 2014). Changes 
in gene expression pro�les induced by �g22/FLS2-dependent 
processes in the chloroplasts resemble those provoked by 1O2 
(Nomura et al., 2012; Stael et al., 2015), suggesting that the 

processes initiated in the apoplast are followed by 1O2 pro-
duction and signalling in the chloroplasts. The chloroplastic 
responses in biotic interactions are reviewed in more detail by 
Serrano et al. (2016).

Chloroplastic 1O2 signalling

To unravel which components of the signal transduction 
pathways are triggered by 1O2, the �uorescent (�u) mutant of 
Arabidopsis (Meskauskiene et al., 2001) has been the instru-
mental model system for years (op den Camp et  al., 2003; 
Ochsenbein et  al., 2006; Laloi et  al., 2007; Lee et  al., 2007; 
Kim et  al., 2012). In the dark, �u seedlings accumulate the 
chlorophyll precursor protochlorophyllide, resulting in 1O2 
production at dark-to-light transition. This subsequent, arti�-
cially produced burst of 1O2 initiates pathways leading to chlo-
rosis and cell death together with a profound reprogramming 
of nuclear gene expression (op den Camp et al., 2003). The 1O2 
burst also activates a broad range of responses related to biotic 
and abiotic stresses, including the induction of ENHANCED 
DISEASE SUSCEPTIBILITY1 (EDS1)-dependent accu-
mulation of SA and the induction of the PATHOGENESIS-

RELATED PROTEIN1 (PR1) and PR5 genes (Ochsenbein 
et al., 2006; Lee et al., 2007). EXECUTER1 (EX1) and EX2, 
two nuclear-encoded chloroplast proteins associated with thy-
lakoid membranes with unknown function, are required for 
the 1O2 -dependent chloroplast retrograde signalling (Wagner 
et al., 2004; Lee et al., 2007; Kim et al., 2012). The biological 
effects related to 1O2 might be antagonized by H2O2, because 
the overexpression of the thylakoid-bound ascorbate peroxi-
dase in the �u mutant intensi�es cell death, growth restriction, 
and 1O2-speci�c nuclear gene expression (Laloi et al., 2007). 
In the nucleus, TOPOISOMERASE VI is a regulator that 
can bind to promoters of 1O2-responsive genes and act as an 
activator of 1O2-regulated genes and as a repressor of H2O2-
responsive genes (Šimková et al., 2012)

Due to its reactivity and rapid quenching, 1O2 cannot 
diffuse beyond the chloroplast envelope (Asada, 2006). 
Nonetheless, 1O2 has been demonstrated to act as a potent ret-
rograde signal (Triantaphylidès and Havaux, 2009; Laloi and 
Havaux, 2015) and to induce several stress-responsive path-
ways by producing an array of secondary messengers, such 
as reactive electrophile species, oxylipins, oxidized peptides, 
and the carotenoid cleavage compound β-cyclocitral (op den 
Camp et al., 2003; Møller and Sweetlove, 2010; Farmer and 
Mueller, 2013; Fischer et al., 2013; Laloi and Havaux, 2015). 
Genetic screens have revealed that EX1 and EX2 (Lee et al., 
2007; Kim et al., 2012), the chloroplast thylakoid membrane-
localized CALCIUM SENSING RECEPTOR protein CAS 
(Nomura et al., 2012), the nuclear TOPOISOMERASE VI 
(Šimková et al., 2012), and EDS1 (Ochsenbein et al., 2006) 
act in 1O2 signal transduction. EDS1 also processes chloro-
plastic O2∙

− signals and spatiotemporally co-ordinates chloro-
plastic and apoplastic ROS signals, probably in crosstalk with 
SA (Straus et al., 2010).

Although the �u mutant is a convenient tool to produce 
1O2, some concerns have been raised as to whether its use 
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represents an arti�cial system for the study of 1O2 signalling 
(Kim and Apel, 2013). Especially at later time points, the �u 
mutant displays excessive chloroplast leakage after dark-to-
light transition. Whereas some of the early regulated genes 
(15 min) could be speci�c for 1O2, the genes regulated after 2 h 
might correspond to genes responsive to many stresses (Kim 
and Apel, 2013). Hence, to get a full picture of 1O2 signal-
ling, additional mutants with increased 1O2 accumulation and 
novel genetic screens are required to understand its role (Kim 
et al., 2012; Kim and Apel, 2013; Ramel et al., 2013). A screen 
for mutants defective in 1O2 signalling in Chlamydomonas 

reinhardtii led to the identi�cation of METHYLENE BLUE 
SENSITIVITY (MBS), a small zinc �nger protein (Shao 
et  al., 2013). The corresponding proteins in Arabidopsis, 
MBS1 and MBS2, are needed for proper responses to high 
light, and they regulate the expression of genes responsive 
to 1O2, but not to H2O2/O2

− (Shao et al., 2013). As indicated 
above, the response to 1O2 is multifaceted, and several signal-
ling pathways could probably act in parallel, including those 
regulated by EX1/EX2 and β-cyclocitral (Kim and Apel 
2013).

Hormones and 1O2 signalling

The signalling role of hormones from the chloroplast is obvi-
ous, given that biosynthesis of SA, JA, and ABA all start in 
the chloroplast. The exact role of hormones in ROS signal-
ling initiated from the chloroplast has mainly been studied 
for 1O2 signal transduction (i.e. in �u) or in gene expression 
experiments with treatments that increase chloroplastic ROS 
production (such as high light treatment). Increased 1O2 pro-
duction in �u promotes the synthesis of oxylipins, such as JA 
and cis-(+)-12-oxophytodienoic acid (OPDA) (Ochsenbein 
et al., 2006). Cell death in �u and chlorina1 (chl1), a mutant 
with reduced amounts of Chl b and, hence, increased 1O2 pro-
duction, decreases when crossed with JA-de�cient mutants 
(Danon et  al., 2005; Ramel et  al., 2013). It is noteworthy 
that this cell death-activating effect of JA in 1O2 signalling 
is opposite to the protective role of JA in apoplastic ROS-
induced cell death (Kangasjärvi et al., 2005; Blomster et al., 
2011). Oxylipin biosynthesis includes much more than only 
JA, and the precursor OPDA has been proposed to act antag-
onistically to JA in cell death regulation (Danon et al., 2005). 
Whereas the bioactive JA-Ile conjugate is perceived through 
the receptor COI1, OPDA can be sensed through its own 
receptor CYCLOPHILIN 20-3 to regulate redox signalling 
(Park et al., 2013). Hence, oxylipins and JA need to be con-
sidered as multiple signals rather than limited to the function 
of JA only.

In contrast to the opposite roles of JA in 1O2 signal trans-
duction versus apoplastic ROS signalling, the role of SA 
is more similar as a cell death promoter. Removal of SA 
through introduction of the NahG transgene or the sid2 SA 
biosynthesis mutant into various ROS-sensitive backgrounds 
reduces cell death, regardless of whether the ROS signal 
is initiated from the apoplast, chloroplast, or peroxisome 
(Danon et al., 2005; Kangasjärvi et al., 2005; Kaurilind et al., 

2015). The effect of the 1O2 signal molecule β-cyclocitral is 
at least partially regulated through SA in the regulation of 
damage and gene expression after high light treatment (Lv 
et  al., 2015). Consistent with mutant analysis, gene expres-
sion analysis from high-light-treated plants and �u reveals an 
increase in gene expression related to both SA and JA signal-
ling (Ochsenbein et al., 2006; Tikkanen et al., 2014)

In contrast to 1O2, H2O2 may diffuse from the thylakoid 
membrane (Davletova et al., 2005; Mubarakshina and Ivanov, 
2010) to the nucleus (Borisova et al., 2012). These previous 
reports may be related to direct H2O2 translocation from the 
chloroplast to the nucleus via stromules that are induced in 
response to internal redox signals (Brunkard et al., 2015) or 
during the ROS-induced programmed cell death in the HR 
(Caplan et  al., 2015). However, the signalling mechanisms 
triggered by organellar/plastid ROS that �nally affect the 
nuclear gene expression remain largely elusive (Jaspers and 
Kangasjärvi, 2010; Shapiguzov et  al., 2012); these mecha-
nisms are reviewed in detail by Kmiecik et al. (2016) and are 
not treated here.

Peroxisomal ROS production and signalling

Oxygenation of ribulose-1,5-bisphosphate carboxylase/oxy-
genase (Rubisco) in the chloroplasts initiates the intraor-
ganellar photorespiration pathway that also leads to H2O2 
production in the peroxisomes (Foyer and Noctor, 2009; 
Kangasjärvi et al., 2012) (Fig. 1). The photorespiratory path-
way consists of two interconnected cycles that functionally 
entangle chloroplasts, peroxisomes, mitochondria, and the 
cytosol: one cycle involved in glycolate carbon (C2) recycling 
and one in ammonium recycling (Foyer and Noctor, 2009; 
Bauwe et  al., 2010). The �rst step of the photorespiratory 
pathway in the peroxisomes is the oxidation of glycolate to 
glyoxylate that is catalysed by GLYCOLATE OXIDASE, gen-
erating H2O2 (Foyer and Noctor, 2009; Bauwe et al., 2010).

Photorespiratory H2O2 production is considered to be the 
most signi�cant oxidant source under light conditions in C3 
plants (Noctor et al., 2002; Foyer and Noctor, 2003), because 
C3 plants are prone to enhanced photorespiration, especially 
at high temperatures or under other stress conditions (Foyer 
and Noctor, 2009; Sage, 2013). Photorespiration is recog-
nized as an important source of ROS signals when plants are 
exposed to various abiotic stresses (Osmond and Grace, 1995; 
Wingler et al., 2000; Foyer and Noctor, 2009; Maurino and 
Peterhansel, 2010; Voss et al., 2013; Weber and Bauwe, 2013). 
Catalases guard the peroxisomal H2O2 homeostasis in photo-
synthesizing tissues (Willekens et al., 1997; Queval et al., 2007; 
Du et  al., 2008; Mhamdi et  al., 2012). In loss-of-function 
mutants, such as the Arabidopsis catalase2 (cat2) mutant, a 
conditional and non-invasive induction of peroxisomal H2O2 
levels can be achieved through changes in growth conditions 
(Mhamdi et  al., 2010, 2012). Catalase-de�cient plants have 
proven to be instrumental model systems to study the tran-
scriptional responses provoked by the increased production 
and accumulation of peroxisomal H2O2 levels (Dat et  al., 
2001; Vandenabeele et al., 2004; Vanderauwera et al., 2005; 
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Queval et al., 2007, 2012). Increased H2O2 levels observed in 
cat2 mutants have a direct impact on the cellular redox bal-
ance, as demonstrated by enhanced glutathione synthesis and 
decreased glutathione:glutathione disul�de ratios.

The responsiveness of the H2O2-induced genes may depend 
on the photoperiod rather than on the total light exposure or 
on the degree of oxidative stress (Queval et  al., 2007). The 
identi�ed H2O2-responsive transcriptomes have revealed that 
expression levels of several defence-related genes increased, 
whereas expression of anthocyanin and some antioxi-
dant-related genes decreased (Vandenabeele et  al., 2004; 
Vanderauwera et  al., 2005). One of the most rapidly and 
strongly induced genes was the UDP-glucosyltransferase-
encoding gene UGT74E2 (Vanderauwera et  al., 2005) that 
has been shown to enhance drought and salt tolerance and 
to modulate plant morphology by interacting with auxin 
homeostasis when overexpressed (Tognetti et al., 2010). The 
connection between ROS and auxin appears to relate to the 
stress-induced morphogenic response that is responsible for 
the negative regulation of the optimal growth-related pro-
cesses when stress acclimation is induced by ROS (Potters 
et al., 2007; Teotia et al., 2010; Blomster et al., 2011; Brosché 
et al., 2014).

The role played by stress hormones in cell death control in 
the cat2 mutant has been studied via genetic approaches by 
means of double mutants (Chaouch et al., 2010; Han et al., 
2013; Kaurilind et  al., 2015). SA and associated signalling 
components, including NONEXPRESSOR OF PR GENES1 
and EDS1, are crucial determinants of cat2-driven cell death, 
whereas ethylene, a promoter of apoplastic ROS-mediated 
cell death, has seemingly no in�uence on cat2-mediated cell 
death (Kaurilind et al., 2015), reinforcing the use of different 
signalling pathways for ROS from various subcellular sources 
(Sewelam et al., 2014).

Mitochondrial ROS production and 
signalling

Mitochondrial ROS production takes place mostly in the oxi-
dative phosphorylation process, the �nal stage of the aerobic 
respiration pathway. The oxidative phosphorylation couples 
the transfer of electrons that originate from NAD(P)H and 
�avin adenine dinucleotide (FAD) to their �nal acceptor O2, 
with the transport of protons across a proton-impermeable 
inner mitochondrial membrane via several proton pumping 
enzyme complexes (I, III, and IV). This respiratory electron 
transport (RET) chain establishes an electrochemical proton 
gradient that is used in ATP synthesis. However, some RET 
chain components may leak electrons that can reduce O2 to 
O2∙

− that, in turn, may yield H2O2 and OH∙ via subsequent 
univalent reducing steps (Navrot et al., 2007; Blokhina and 
Fagerstedt, 2010; Vanlerberghe, 2013). The RET chain sites 
from which most O2∙

− is released are the complexes I  and 
III (Navrot et al., 2007; Blokhina and Fagerstedt, 2010). Of 
crucial importance is the reduction state of ubiquinone, a 
small lipid-soluble electron and proton carrier located within 
the inner mitochondrial membrane; it serves as a regulatory 

cross-point for the mitochondrial RET-dependent O2∙
− pro-

duction (Navrot et al., 2007; Blokhina and Fagerstedt, 2010). 
Over-reduction of the ubiquinone pool at complex I  can 
lead to a reverse RET activity and the release of O2∙

− into 
the mitochondrial matrix. At complex III, the hyper-reduced 
state of the ubiquinone pool induces a direct electron trans-
fer to molecular O2, followed by O2∙

− deposition in both the 
mitochondrial stroma and the matrix.

Alterations in the mitochondrial ROS homeostasis are 
involved in the retrograde communication between the 
mitochondria and the nucleus (Rhoads and Subbaiah, 
2007; Woodson and Chory, 2008; Schwarzländer et  al., 
2012; Shapiguzov et  al., 2012; De Clercq et  al., 2013). In 
Arabidopsis, this ROS-dependent signalling is re�ected 
in the elevated expression of a set of genes known as the 
mitochondrial dysfunction regulon (De Clercq et al., 2013). 
Amongst these genes, the ALTERNATIVE OXIDASE1-
encoding gene AOX1 (Vanlerberghe, 2013) is recognized as 
a hallmark responder to mitochondrial retrograde signalling 
events. AOX1 is generally activated under abiotic and biotic 
stresses and, more speci�cally, those deregulating respira-
tory metabolism (Clifton et al., 2006; Li et al., 2013). Under 
these conditions, AOX1 may dispatch an excess of electron 
energy from the RET as heat (Blokhina and Fagerstedt, 2010; 
Vanlerberghe, 2013), preventing over-reduction of the RET 
chain components and aggrevation of oxidative stress (Van 
Aken et al., 2009; Cvetkovska and Vanlerberghe, 2012, 2013; 
Vanlerberghe, 2013). The ROS-inducible transcription fac-
tor WRKY15 represses AOX1 by binding to its promoter 
(Vanderauwera et  al., 2012). This repression probably bal-
ances growth against salt/osmotic stress acclimation, because 
WRKY15 overexpression renders plants sensitive to salt, 
osmotic, and oxidative stresses, and simultaneously enhances 
leaf growth and biomass production under control condi-
tions (Vanderauwera et  al., 2012). Mitochondrially derived 
ROS may also affect the expression of several genes with 
the mitochondrial dysfunction motif  in their promoters (De 
Clercq et  al., 2013). The ARABIDOPSIS NAC DOMAIN 

CONTAINING PROTEIN13 (ANAC013) and ANAC017 
increase tolerance against oxidative stress in plants when 
overexpressed (De Clercq et al., 2013; Ng et al., 2013b). In 
addition, the homeostasis between mitochondrial ROS and 
antioxidant levels is essential to neutralize the excess of pho-
tosynthesis-reducing power, avoiding oxidative damage in the 
thylakoid membranes of chloroplasts (Noguchi and Yoshida, 
2008; Dinakar et al., 2010).

Interorganellar signalling

Although each organelle may individually manage its redox 
state and, thereby, contribute to the intracellular ROS 
homeostasis (Foyer and Noctor, 2013), ROS or related sig-
nalling intermediates are involved in interorganellar commu-
nication, as described for chloroplasts (Pesaresi et al., 2007; 
Kopczewski and Kuźniak, 2013). Chloroplasts and mitochon-
dria are tightly connected through metabolism, energy, and 
the redox state (Noguchi and Yoshida, 2008; Dang et al., 2014; 
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Bailleul et  al., 2015), and co-operatively inform the nucleus 
of their developmental and functional states (Pesaresi et al., 
2007; Woodson and Chory, 2008; Kopczewski and Kuźniak, 
2013). Mitochondrial ROS might be the common signals that 
are produced upon mitochondrial dysfunction (Rhoads and 
Subbaiah, 2007). A  cis-regulatory element in the promoter 
region of several genes targeted by mitochondrial retro-
grade signalling, the mitochondrial dysfunction motif, is also 
responsive to H2O2 and recognized by transcription factors, 
such as ANAC013 and ANAC017 in Arabidopsis (De Clercq 
et  al., 2013; Ng et  al., 2013b). Upon mitochondrial redox 
imbalance, the endoplasmic reticulum-tethered ANAC013 
and ANAC017 are proteolytically released from the endoplas-
mic reticulum and translocated into the nucleus to activate the 
transcription of several genes that encode mitochondria-tar-
geted proteins. Incidentally, ANAC013 interacts with RCD1 
(Jaspers et  al., 2009; O’Shea et  al., 2015), a nuclear protein 
involved as a co-regulator of several transcription factors, 
whereas absence of the interaction leads to high expression of 
genes with the mitochondrial dysfunction motif in their pro-
moters, such as AOX1 and ANAC013 (Brosché et al., 2014). 
The RCD1 protein is also involved in the acclimation response 
to chloroplastic redox imbalance and in the regulation of 
chloroplastic antioxidant and light-harvesting chlorophyll 
a/b-binding (LHCB) protein genes (Hiltscher et al., 2014).

Another nuclear protein with known regulation of genes 
encoding both chloroplastic and mitochondrial-targeted 
components, such as AOX1 and LHCB, is the CYCLIN-
DEPENDENT KINASE E1 (CDKE1) identi�ed as the 
Arabidopsis regulator of aox1 (rao1) mutant (Ng et  al., 
2013a; Blanco et al., 2014). CDKE1 acts in the kinase unit 
of the Mediator complex, which is a regulatory component 
between sequence-speci�c transcription factors and the gen-
eral transcription factor TFIID required for RNA polymer-
ase II binding. The C-terminal part of RCD1 contains an 
RST domain responsible for its interaction with transcrip-
tion factors. This domain is also present in the Arabidopsis 
TAF4 (Jaspers et  al., 2010), a regulatory component of 
TFIID. Thus, the nucleus appears to contain proteins that 
respond to redox imbalances in both mitochondria and chlo-
roplasts, downstream of the sequence-speci�c transcription 
factors, and to be involved in the regulation of transcriptional 
responses required for acclimation. However, very little is 
actually known about these aspects of interorganellar signal-
ling and interactions. Identi�cation of the additional compo-
nents involved and elucidation of their mechanistic roles and 
interactions in the regulation of (interorganellar) signalling 
are one of the major questions for the future.

Interorganellar communication may use ROS redox-
scavenging enzymes as well, such as poplar peroxiredoxin, 
thioredoxin, and glutaredoxin (Kopczewski and Kuźniak, 
2013). ROS can be transported between different cellular 
compartments via intracellular vesicle traf�cking (Leshem 
et al., 2006, 2010). Furthermore, organelles are connected via 
metabolic pathways, such as the photorespiration pathway 
that encompasses chloroplasts, peroxisomes, mitochondria, 
and the cytosol. This pathway not only intertwines closely 
with the peroxisomal H2O2 production and signalling with 

chloroplastic photosynthesis rates, but it can also affect all 
other organelles by its integration into a paramount part of 
the plant metabolism and signalling cascades (Fernie et al., 
2013; Florian et  al., 2013; Sørhagen et  al., 2013). All the 
aspects of interorganellar connections are reviewed more 
thoroughly by Kmiecik et al. (2016).

In summary, ROS molecules can be produced in chloroplasts, 
peroxisomes, and mitochondria as a result of cellular metabo-
lism and intentionally in the apoplastic region by enzymatic 
complexes (such as peroxidases and RBOHs) to serve diverse 
developmental or stress response-related purposes. Moreover, 
there are some indications that ROS might be generated within 
the cell nucleus (Ashtamker et  al., 2007; Mor et  al., 2014). 
However, unwanted, unfavourable stress conditions may inten-
sify the regular ROS production and initiate the accumula-
tion of toxic ROS doses in the plant cells (i.e. oxidative stress). 
Therefore, plants have developed several antioxidant strategies 
to prevent or control these harmful ROS levels, thus maintain-
ing the redox homeostasis. Through consequent opportunities 
at the different subcellular compartments to allow transient 
increases in ROS, organellar and apoplastic ROS impact spe-
ci�cally (spatiotemporally) and differentially (positively or neg-
atively) on the progression or inhibition of particular signalling 
cascades. Plants probably evolved such a complex and inter-
twined ROS-dependent interorganellar communication to cap-
ture the wide spectrum of distinct environmental stimuli that 
affect cellular homeostasis, allowing them to adapt their physi-
ology accordingly. The ongoing assessment of this comprehen-
sive ROS signalling matrix may result in the identi�cation of 
new molecular targets implicated in ROS signalling that might 
be excellent candidates to develop novel technologies towards 
the breeding of more stress-tolerant plants.
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