Spreads in strongly regular graphs

Citation for published version (APA):

Haemers, W. H., \& Tonchev, V. D. (1995). Spreads in strongly regular graphs. (EIDMA preprint series; Vol. 95-PS-01). Eindhoven University of Technology.

Document status and date:

Published: 01/01/1995

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Spreads in strongly regular graphs
Willem H. Haemers Vladimir D. Tonchev

EIDMA Preprint Series 95-PS-01

Spreads in strongly regular graphs

Willem H. Haemers
Tilburg University, Tilburg, The Netherlands
Vladimir D. Tonchev
Michigan Technological University, Houghton, MI 49991, USA

Abstract

A spread of a strongly regular graph is a partition of the vertex set into cliques that meet Delsarte's bound (also called Hoffman's bound). Such spreads give rise to colorings meeting Hoffman's lower bound for the chromatic number and to certain imprimitive three-class association schemes. These correspondences lead to conditions for existence. Most examples come from spreads and fans in (partial) geometries. We give other examples, including a spread in the McLaughlin graph. For strongly regular graphs related to regular two-graphs, spreads give lower bounds for the number of non-isomorphic strongly regular graphs in the switching class of the regular two-graph.

1 Introduction

A spread in a geometry is a set of pairwise disjoint lines that cover all the points. For a partial geometry the point graph (or collinearity graph) is strongly regular and lines are cliques in the point graph that meet Delsarte's bound. We define a spread in a strongly regular graph as a partition of the vertex set into cliques that meet Delsarte's bound. So that a spread of a partial geometry provides a spread in its point graph. A spread in a strongly regular graph Γ corresponds to a coloring of the complement of Γ that meets Hoffman's bound for the chromatic number. In terms of a partition of the pairs of vertices it corresponds to an imprimitive three-class association scheme. The chromatic number of strongly regular graphs have been studied by the first author in [11]; some of his results have direct consequences for spreads. Imprimitive three class association schemes have been studied by Chang [6] and some results, presented here, can also be found in Chang's work.

Throughout Γ will denote a (n, k, λ, μ) strongly regular graph on n vertices with eigenvalues k, r and $s(k \geq r>s)$ and multiplicities $1, f$ and g, respectively. Then the
parameters satisfy the following basic equations:

$$
\mu=\lambda-r-s=k+r s=(k-r)(k-s) / n, 1+f+g=n, k+f r+g s=0
$$

If Γ is primitive (that is, Γ is neither a disjoint union of cliques or a complete multipartite graph), then $0<\mu<k, 1<r<k$ and $s<0$. For these and other results on graphs, designs, finite geometries and association schemes, we refer to Cameron and Van Lint [5] or Van Lint and Wilson [17].

2 Delsarte-cliques and Hoffman-colorings

Delsarte [8] showed that a clique in Γ has at most $K=1-k / s$ vertices. Applied to the complement of Γ it yields that a coclique has at most

$$
\bar{K}=1+\frac{n-k-1}{r+1}=\frac{n}{K}
$$

vertices. We call a (co)clique that meets the Delsarte bound a Delsarte-(co)clique. (Many people call them Hoffman-(co)cliques. The bound for strongly regular graphs, however, was first given by Delsarte. Hoffman later generalized it to arbitrary regular graphs.) The following result is well known; see for example [2] p.10.

Lemma 2.1 A (co)clique C of Γ is a Delsarte-(co)clique if and only if every vertex not in C is adjacent to a constant number of vertices of C.

Clearly, if Γ has a spread, K and $n / K=\bar{K}$ must be integers. We call a parameter set for a strongly regular graph feasible for a spread if it satisfies these divisibility conditions. Note that if a parameter set is feasible for a spread, then so is the parameter set of the complement. Hoffman [16] (see also [17] p. 397 or [12]) proved that the chromatic number of Γ is at least $K=1-k / s$ (the bound holds for any graph with largest eigenvalue k and smallest eigenvalue s). We call a coloring meeting this bound a Hoffman-coloring. It is clear that each color class of a Hoffman-coloring of Γ is a coclique of size $n / K=\bar{K}$, so a Hoffman coloring of Γ is the same as a spread in the complement of Γ. Results from [11] on the chromatic number of strongly regular graphs have the following consequences for Hoffman-colorings.

Theorem 2.2 If Γ is primitive and admits a Hoffman-coloring then $k r \geq s^{2}$.
Proof. Theorem 2.2.3 of [11] (see also [12]) states that if Γ is not the pentagon (which obviously has no Hoffman-coloring), the chromatic number is at least $1-s / r$, so $K \geq$ $1-s / r$.

Corollary 2.3 For a fixed K there are only finitely many primitive strongly regular graphs with a Hoffman-coloring with K colors.

Proof. The above inequality and $k+r s=\mu>0$ give $-s \leq r(K-1)<(K-1)^{2}$. Hence $n=(k-r)(k-s) / \mu \leq k(k-s)=s^{2} K(K-1)<K(K-1)^{5}$.

In fact, by Theorem 4.1.2 of [11] the above statement holds for any coloring of a primitive strongly regular graph. If K is small, we can be more precise:

Theorem 2.4 Suppose Γ is a primitive strongly regular graph with a Hoffman-coloring with at most four colors. Then Γ has chromatic number 3 and Γ is the Lattice graph $L(3)$ (i.e. the line graph of $K_{3,3}$), or Γ has chromatic number 4 and Γ is $L(4)$, the complement of $L(4)$, the Shrikhande graph or one of the eleven $(64,18,6,4)$ strongly regular graphs that are incidence graphs of three linked symmetric $2-(16,6,2)$ designs.

Proof. Theorem 4.3.1 of [11] gives all 4-colorable strongly regular graphs. Of these we take the primitive ones that meet Hoffman's bound.

For the definition of (and more about) linked symmetric designs we refer to Section 5.

3 Partial geometries

Suppose Γ is geometric, that is, Γ is the point graph of a partial geometry G (say). Then the parameters of G are $K=1-k / s$ ($=$ line size), $R=-s$ and $T=-r-k / s$. The lines of G are Delsarte-cliques of Γ, but not all Delsarte-cliques need to be lines. Thus if G has a spread, then so does Γ, but the converse needs not be true. This is illustrated by the partial geometry with parameters $(K, R, T)=(3,2,2)$, which has the complete 3-partite graph $K_{2,2,2}$ as point graph. However, a spread of Γ obviously gives a spread of G if all Delsarte-cliques of Γ are lines of G, in this case we will call Γ faithfully geometric.

An ovoid in G is a set C of pairwise non-collinear points so that every line intersects C in just one point. Thus C is a spread in the dual of G. It follows (for instance from Lemma 2.1) that C is a Delsarte-coclique of Γ, and conversely, each Delsarte-coclique corresponds to an ovoid. A partition of the points of G into ovoids is called a fan of G. So we have:

Proposition 3.1 If Γ is the point graph of a partial geometry G, then Γ has a Hoffmancoloring if and only if G has a fan.

Many partial geometries with spreads and fans are known, leading to many examples of strongly regular graphs with spreads and Hoffman-colorings. To be more specific we distinguish, as usual, four types of partial geometries: the (dual) Steiner 2-designs, the (dual) nets, the generalized quadrangles and the proper partial geometries. For spreads and fans in generalized quadrangles we refer to a nice survey by Payne and Thas [21]. A fan in a dual Steiner 2-design is the same as a parallelism or resolution. Many such designs are known (see [19]). They exist for example for all feasible parameters with block size $(=R)$ equal to 2,3 or 4 . Any two lines of a dual Steiner 2 -design meet, so this geometry has no spread. A net is a partial geometry with $T=R-1$; it is the same as a set of $R-2$ MOLS (mutually orthogonal Latin squares) of order K. Nets clearly have spreads and it is also easy to see that a net has a fan if and only if the set of MOLS can be extended by one more square. See [1] for more about nets and Steiner systems. For spreads and fans in proper partial geometries we refer to [7].

Many pseudo-geometric graphs are not geometric. On the other hand, in some cases being (faithfully) geometric is forced by its parameters. This can lead to non-existence of strongly regular graphs with spreads or Hoffman-colorings for certain parameters.

Proposition 3.2 If $\mu=s^{2}$ (i.e. Γ has the parameters of the point graph of a dual Steiner 2-design) and if $2 r>(s+1)\left(s^{3}+s-2\right)$, then Γ has no spread.

Proof. By Neumaier [20], Γ is faithfully geometric to a dual Steiner 2-design, which has no spread.

Note that just the condition that $\mu=s^{2}$ is not enough to exclude spreads, since $K_{2,2,2}$ has spreads (but we know of no primitive counter example).

4 Three-class association schemes

Suppose Γ is primitive and has a spread. We define on the vertices of Γ the relations R_{0}, R_{1}, R_{2} and R_{3} as follows: $\{x, y\} \in R_{3}$ if x and y are in the same clique of the spread and $\{x, y\} \in R_{i}$ if $\{x, y\} \notin R_{3}$ and the distance between x and y in Γ equals $i(i=0,1,2)$.

Proposition 4.1 The relations $R_{0}, R_{1}, R_{2}, R_{3}$ form an imprimitive 3 -class association scheme with eigenmatrix

$$
P=\left[\begin{array}{cccc}
1 & k+k / s & n-k-1 & -k / s \\
1 & r+1 & -r-1 & -1 \\
1 & s+1 & -s-1 & -1 \\
1 & r+k / s & -r-1 & -k / s
\end{array}\right]
$$

and respective multiplicities $1, f-\bar{K}+1, g$ and $\bar{K}-1$. And conversely, a 3 -class association scheme with eigenmatrix P gives rise to a strongly regular graph with eigenvalues k, r and s having a spread.

Proof. Let $A_{0}, A_{1}, A_{2}, A_{3}$ be the adjacency matrices of the relations R_{0}, \ldots, R_{3}. Then

$$
A_{0}=I, \sum_{i=0}^{3} A_{i}=J, A_{3}+I=I_{\bar{K}} \otimes J_{K}
$$

and $A=A_{1}+A_{3}$ is the adjacency matrix of Γ. Since Γ is strongly regular, the span $\langle I, J, A\rangle$ is closed under multiplication. Lemma 2.1 implies that $A A_{3} \in\left\langle I, J, A_{3}\right\rangle$. Therefore $\left\langle A_{0}, A_{1}, A_{2}, A_{3}\right\rangle$ is closed under multiplication, so represents an association scheme. The scheme is imprimitive since R_{3} is an equivalence relation and the eigenvalues of A_{i} provide the entries of P. Conversely, for a scheme with eigenmatrix P, A_{3} has only two distinct eigenvalues, so must represent a disjoint union of cliques and $A_{1}+A_{3}$ has only three distinct eigenvalues, so represents a strongly regular graph Γ. Relation R_{3} gives a partition of Γ into cliques, which must be Delsarte-cliques by Lemma 2.1.

Imprimitive 3 -class association schemes are studied by Chang [6]. He calls the schemes considered here of Γ type.

Observe that, for each ℓ, the product $(P)_{1 \ell}(P)_{2 \ell}(P)_{3 \ell}$ is positive and therefore the Krein parameter q_{13}^{2} is positive and hence Neumaier's absolute bound (see [2] p.51) gives $g \leq(f-\bar{K}+1)(\bar{K}-1)$. By use of $k+f r+g s=0$ it follows easily that the latter inequality is equivalent to Theorem 2.2 applied to the complement of Γ. Chang derives the same inequality from the Krein condition and in the next section we shall give a direct proof and consider the case of equality.

The relation R_{1} of the scheme is a distance-regular graph precisely when two vertices in R_{3} have distance 3 in the graph R_{1}. In Γ this means that each vertex p has one neighbor in each clique of the spread not containing p. This is the case if and only if $-s(r+1)=k$, that is, if Γ is pseudo geometric for a partial geometry with $T=1$ (i.e. a generalized quadrangle). The involved distance-regular graphs are antipodal covers of the complete graphs. Such graphs have been studied extensively by Godsil and Hensel [9].

5 Linked symmetric designs

A system of m linked symmetric ($v, k^{\prime}, \lambda^{\prime}$) designs is a collection $\left\{\Omega_{0}, \ldots, \Omega_{m}\right\}$ of disjoint sets and an incidence relation between each pair of sets such that:

1. For each pair Ω_{i}, Ω_{j} the incidence relation gives a symmetric 2 - $\left(v, k^{\prime}, \lambda^{\prime}\right)$ design.
2. For any three distinct sets $\Omega_{i}, \Omega_{j}, \Omega_{k}$ and for any two points $p \in \Omega_{j}$ and $q \in \Omega_{k}$, the number of elements in Ω_{i} incident with both p and q can take only two values x and y say, depending on whether p and q are incident or not.
Linked symmetric designs were introduced by Cameron [4]. (Though Cameron did not require that all designs have the same parameters, but for simplicity we do.) It follows that $(x-y)^{2}=k^{\prime}-\lambda^{\prime}$ and $y\left(k^{\prime}+x-y\right)=k^{\prime} \lambda^{\prime}$. The incidence graph of such a system has the union of $\Omega_{0}, \ldots, \Omega_{m}$ as vertex set; two vertices being adjacent whenever they belong to incident points of different sets. By definition we see that such a graph is strongly regular if and only if $m \lambda^{\prime}=y(m-1)$. If so, it has a Hoffman-coloring (by Lemma 2.1) and the eigenvalues are $k=m k^{\prime}, r=k^{\prime} / m$ and $s=-k^{\prime}$, and so the bound of Theorem 2.2 is tight. The next result states that the converse is also true. For convenience we use the formulation of the previous section.

Theorem 5.1 If Γ is a primitive strongly regular graph with a spread, then

$$
g \leq(f-\bar{K}+1)(\bar{K}-1)
$$

and equality holds if and only if the complement of Γ is the incidence graph of a system of linked symmetric designs.

Proof. The proof is just the obvious generalization of the one of Theorem 4.2.7 in [11]. Let, as before, A_{0}, \ldots, A_{3} be the adjacency matrices of the corresponding association scheme. Define

$$
E=-s(k-r) A_{0}+(k-s) A_{1}+\left(k+r s-s-s^{2}\right) A_{3} .
$$

Then by use of the eigenmatrix P we find that $\operatorname{rank}(E) \leq f-\bar{K}+2$. We partition the matrices E and A_{2} according to the spread:

$$
E=\left[\begin{array}{ccc}
E_{00} & \cdots & E_{0 m} \\
\vdots & & \vdots \\
E_{m 0} & \cdots & E_{m m}
\end{array}\right], A_{2}=\left[\begin{array}{ccc}
A_{00} & \cdots & A_{0 m} \\
\vdots & & \vdots \\
A_{m 0} & \cdots & A_{m m}
\end{array}\right]
$$

wherein $m=\bar{K}-1$. Then $E_{i j} \in\left\langle I, J, A_{i j}\right\rangle, E_{i i}=\left(k+r s-s-s^{2}\right) J-(s+1)(k-s) I$ and $A_{i i}=0$ for $i, j=0, \ldots, m$. It follows that E_{00} has full rank K, hence $K \leq f-\bar{K}+2$ and by use of $K \bar{K}=n=f+g+1$ we find the required inequality. If equality holds, then $K=\operatorname{rank}\left(E_{00}\right)=\operatorname{rank}(E)$, which implies that $E_{i j}=E_{i 0} E_{00}^{-1} E_{0 j}$. For $i=j$ this leads to $A_{i 0} A_{i 0}^{\top}=A_{i 0} A_{0 i} \in\langle I, J\rangle$ and since $A_{i 0} J \in\langle J\rangle$, it follows that $A_{i 0}$ is the incidence matrix of a symmetric 2 -design. For $i \neq j$ we get $A_{i 0} A_{0 j} \in\left\langle J, A_{i j}\right\rangle$, which implies by Theorem 2
of [4] that the 2 -designs are linked.
Sufficiently large systems of linked designs are known to exist if v is a power of 4. Mathon [18] proved that there are exactly twelve systems of three linked $(16,6,2)$ designs, leading to eleven non-isomorphic incidence graphs. One of these graphs also comes from a fan in the generalized quadrangle with parameters ($4,6,1$), but the remaining ten are not geometric. These graphs are mentioned in Theorem 2.4. The theorem above excludes the existence of a $(75,42,25,21)$ strongly regular graph with a spread, indeed the complement would have a Hoffman-coloring with $k r=s^{2}$, but the corresponding system of 4 linked $(15,8,4)$ designs does not exist, because $m \lambda^{\prime}=16$ is not divisible by $m-1=3$. In fact, it is not known if a strongly regular graph with these parameters exists. Similarly it follows that no $(96,45,24,18)$ strongly regular graph with a spread exists.

6 Small parameters

In this section we list the feasible parameters for strongly regular graphs with a spread up to 100 vertices and try to determine existence. First we consider some easy infinite families. Imprimitive strongly regular graphs obviously have spreads and Hoffman-colorings. The triangular graph $T(m)$ is the line graph of K_{m} and is geometric for a (trivial) dual Steiner system. It is primitive and feasible for a spread if $m \geq 5$ and even. Then $T(m)$ has no spreads (by Theorem 2.2 for example), but several Hoffman-colorings (corresponding to 1 -factorizations of K_{m}). For $m \neq 8, T(m)$ is determined by its parameters, but there are three more graphs with the parameters of $T(8)$: the Chang graphs. They too have no spreads (again by Theorem 2.2) but several Hoffman-colorings (easy exercise). The Lattice graph $L(m)$ is the linegraph of $K_{m, m}$ and is geometric for a net. For each $m, L(m)$ has precisely two spreads and a number of Hoffman-colorings (corresponding to Latin squares of order m). For $m \neq 4, L(m)$ is determined by its parameters. There is one more graph with the parameters of $L(4)$: the Shrikhande graph. By Theorem 2.4 (or just by checking) it follows that the Shrikhande graph has Hoffman-colorings, but no spreads. All remaining feasible parameters of strongly regular graphs with a spread are listed in Table 1 (by feasible we mean that the parameters $n, k, \lambda, \mu, f, g, K$ and \bar{K} are positive integers that satisfy the basic equations). For each parameter set we indicate what is known about existence of a spread and a Hoffman-coloring, so that we do not need to consider the complementary parameter set. Most examples come from spreads and fans in nets (indicated by "net"), dual Steiner systems ("dss") or generalized quadrangles ("gq"). The abbreviation "abs" refers to the absolute bound for strongly regular graphs ($v \leq f(f+3) / 2)$ and "drg" means that a distance-regular graph is obtained by

n	k	λ	μ	r	s	K	\bar{K}	spread	Hoffman-coloring
25	12	5	6	2	-3	5	5	YES, net	YES, net
27	10	1	5	1	-5	3	9	YES, gq, drg	NO, 2.2, 2.4, 3.1
35	16	6	8	2	-4	5	7	YES, dss	NO, 6.1
36	15	6	6	3	-3	6	6	YES, net	$?$
40	12	2	4	2	-4	4	10	YES, gq, drg	NO, 2.4
45	12	3	3	3	-3	5	9	NO, 6.1, drg	YES, gq
49	18	7	6	4	-3	7	7	YES, net	YES, net
49	24	11	12	3	-4	7	7	YES, net	YES, net
63	22	1	11	1	-11	3	21	NO, abs	NO, abs, 2.2, 2.4
63	30	13	15	3	-5	7	9	YES, dss	$?$
64	18	2	6	2	-6	4	16	YES, gq, drg	YES, gq, 2.4, 5.1
64	21	8	6	5	-3	8	8	YES, net	YES, net
64	28	12	12	4	-4	8	8	YES, net	YES, net
64	30	18	10	10	-2	16	4	NO, abs, 2.2, 2.4	NO, abs
70	27	12	9	6	-3	10	7	$?$	YES, dss
75	32	10	16	2	-8	5	15	$?$	NO, 5.1
76	21	2	7	2	-7	4	19	NO, [13], drg	NO, [13], 2.2, 2.4
81	24	9	6	6	-3	9	9	YES, net	YES, net
81	32	13	12	5	-4	9	9	YES, net	YES, net
81	40	19	20	4	-5	9	9	YES, net	YES, net
85	20	3	5	3	-5	5	17	YES, gq, drg	$?$
95	40	12	20	2	-10	5	19	$?$	NO, 2.2
96	20	4	4	4	-4	6	16	YES, gq, drg	YES, gq
96	35	10	14	3	-7	6	16	$?$	$?$
96	45	24	18	9	-3	16	6	NO, 5.1	$?$
99	48	22	24	4	-6	9	11	YES, dss	$?$
100	27	10	6	7	-3	10	10	YES, net	YES, net
100	36	14	12	6	-4	10	10	YES, net	$?$
100	45	20	20	5	-5	10	10	$?$	$?$
									$?$

Table 1: Feasible parameters for primitive strongly regular graphs with a spread (or Hoffman-coloring) on at most 100 vertices. The parameters of the triangular and the lattice graphs are left out. For each pair of complementary parameters, only the one with the smaller k is given.
deleting the edges of the cliques of the spread. Most cases of non-existence come from results treated earlier. Two cases need more explanation:

Proposition 6.1 For the parameter sets $(35,18,9,9)$ and $(45,12,3,3)$ there exists no strongly regular graph with a spread.

Proof. Consider the complement and assume existence of a ($35,16,6,8$) strongly regular graph Γ with a Hoffman-coloring. Then $r=2, s=-4$ and Γ has five color classes of size 7. The subgraph induced by three of these classes has a regular partition (i.e. each block matrix of the partitioned incidence matrix has constant row and column sum) with quotient matrix $4\left(J-I_{3}\right)$, so has the eigenvalue -4 with multiplicity at least 2 . This implies that the bipartite subgraph Γ^{\prime} induced by the remaining two color classes has at least twice the eigenvalue 2 (By use Theorem 1.3.3 in [11] or Lemma 1.2 in [14]), and by interlacing, no eigenvalue between 2 and 4 . Therefore the bipartite complement of Γ^{\prime} is a cubic bipartite graph on 14 vertices for which the three largest eigenvalues are 3,2 and 2. Bussemaker et al. [3] have enumerated all cubic graphs on 14 vertices, but none has the required property.
A $(45,12,3,3)$ strongly regular graph is pseudo geometric to a generalized quadrangle, and hence a spread would provide a distance regular antipodal 5-cover of K_{9}. Such a distance-regular graph does not exist; see [2] p.152.

The smallest unsolved case is a $(36,15,6,6)$ strongly regular graph with a Hoffmancoloring. Since there exist no two orthogonal Latin squares of order 6, such a graph cannot be geometric. Probably such a graph does not exist at all, since E. Spence has tested all strongly regular graphs with these parameters known to him (over 30000; see [22]) and found that none has a Hoffman-coloring.

7 Regular 2-Graphs

In this section we need some results from regular two-graphs, which we shall briefly explain (see [5] for more details). A two $\operatorname{graph}(\Omega, \Delta)$ consists of a finite set Ω, together with a set Δ of unordered triples (called coherent triples) from Ω, such that every 4 -subset of Ω contains an even number of triples from Δ. With any graph (Ω, E) we associate a two-graph (Ω, Δ) by defining three vertices coherent if they induce an even number of edges. Two graphs (Ω, E) and (Ω, E^{\prime}) give rise to the same two-graph if and only if Ω can be partitioned into two parts $\Omega=\Omega_{1} \cup \Omega_{2}$ such that $E \cap\left(\Omega_{i} \times \Omega_{i}\right)=E^{\prime} \cap\left(\Omega_{i} \times \Omega_{i}\right)$ for $i=1,2$ and $E \cap\left(\Omega_{1} \times \Omega_{2}\right)=\left(\Omega_{1} \times \Omega_{2}\right) \backslash E^{\prime}$. The operation that transforms E to E^{\prime} is called Seidel switching and the corresponding graphs are called switching equivalent.

The descendant (or derived graph) Γ_{ω} of (Ω, Δ) with respect to a point $\omega \in \Omega$ is the graph with vertex set $\Omega \backslash\{\omega\}$, where two vertices p and q are adjacent if $\{\omega, p, q\} \in \Delta$. Clearly the two-graph associated with $\Gamma_{\omega}+\omega$ is (Ω, Δ) again, thus there is a one-to-one correspondence between two-graphs and switching classes of graphs.

A two-graph (Ω, Δ) is regular if every pair of points from Ω is contained in a constant number a of coherent triples. Every descendant of a regular two-graph is a strongly regular graph with parameters $n=|\Omega|-1, k=a$, and $\mu=a / 2$. We will parameterize a regular two-graph with the eigenvalues r and s of a descendant ($a=-2 r s$ and $|\Omega|=1-(2 r+1)(2 s+1)$). Conversely, any strongly regular graph with $k=2 \mu$ (or $k=-2 r s$) is a descendant of a regular two-graph. Often there are other strongly regular graphs associated to a regular two-graph (Ω, Δ). This is the case if the switching class of (Ω, Δ) contains a regular graph Γ. Then it follows that Γ is strongly regular and has also the eigenvalues r and s, but Γ has one more vertex and a different degree than a descendant. In fact, there are two possible values for the degree of $\Gamma:-2 r s-r$ and $-2 r s-s$.

A clique of (Ω, Δ) is a subset C of Ω, such that every triple of C is coherent. So if $\omega \in C$ then $C \backslash\{\omega\}$ is a clique in Γ_{ω}, hence $|C| \leq K+1=2 r+2$ and from Lemma 2.1 it follows that every vertex of Γ_{ω}, not in C, is adjacent to r vertices of C. A spread in a regular two-graph is a partition of the point set into cliques of size $2 r+2$.

Proposition 7.1 If a regular two-graph admits a spread, then the corresponding switching class contains a strongly regular graph of degree $-2 r s-s$ with a spread.

Proof. Take a graph Γ in the switching class of the regular two-graph (Ω, Δ) switched such that each (two-graph) clique of the spread corresponds to a (graph) clique of Γ (because the cliques are disjoint, we can always do so). Let C be such a clique. By considering the descendants with respect to various points of C it follows that every vertex of Γ, not in C is adjacent to $|C| / 2$ vertices of C. Therefore Γ is regular of degree $|C|-1+(|\Omega|-|C|) / 2=-2 r s-s$ and hence strongly regular.

For example for every odd prime power q, the unitary two-graph (Ω, Δ) with eigenvalues $r=(q-1) / 2$ and $s=-\left(q^{2}+1\right) / 2$ (see Taylor [23]) is defined on the $q^{3}+1$ absolute points of a unitary polarity in $P G\left(2, q^{2}\right)$. The non-absolute lines of the plane meet Ω in $q+1=2 r+2$ points, that form a clique in (Ω, Δ) and one easily finds $q^{2}-q+1$ non-absolute lines that intersect each other outside Ω. So we have a spread in (Ω, Δ) and by the above proposition we obtain a strongly regular graph with a spread with parameter set:

$$
\begin{equation*}
\left(q^{3}+1, q\left(q^{2}+1\right) / 2,\left(q^{2}+3\right)(q-1) / 4,\left(q^{2}+1\right)(q+1) / 4\right) \tag{1}
\end{equation*}
$$

Notice that by Theorem 2.2 these graphs have no Hoffman-coloring. If we switch in Γ with respect to the union of some cliques, we again find a strongly regular graph with a spread with the same parameters, which may or may not be isomorphic to the Γ. There are $2^{q^{2}-q}$ such switchings possible and $|\operatorname{aut}(\Omega, \Delta)|=2 q^{3}\left(q^{3}+1\right)\left(q^{2}-1\right)$ (we restrict to the case that q is a prime), so then the number of non-isomorphic such strongly regular graphs is at least

$$
\begin{equation*}
\frac{2^{q^{2}-q-1}}{q^{3}\left(q^{3}+1\right)\left(q^{2}-1\right)} \tag{2}
\end{equation*}
$$

Also spreads in a descendant give switching partitions of (Ω, Δ), that produce (many) strongly regular graphs.

Proposition 7.2 If a descendant Γ_{ω} of a regular two-graph (Ω, Δ) admits $-s-1$ disjoint Delsarte-cliques, then the corresponding switching class contains a strongly regular graph of degree $-r s-s$.

Proof. Let Ω_{1} be the set of vertices of the $-s-1$ Delsarte-cliques. Switch in $\Gamma_{\omega}+\omega$ with respect to $\Omega_{1} \cup\{\omega\}$. Then we obtain (as follows easily by use of Lemma 2.1) a regular graph of degree $-r s-s$ in the switching class of (Ω, Δ).

Since a spread in Γ_{ω} contains $-2 s-1$ Delsarte-cliques, we have:
Corollary 7.3 If Γ_{ω} has a spread, then there exist at least

$$
\frac{1}{|\operatorname{aut}(\Omega, \Delta)|}\binom{-2 s-1}{-s-1}
$$

non-isomorphic strongly regular graphs of degree $-r s-s$ in the switching class of (Ω, Δ).
Consider again the unitary two-graph. The q^{2} non-absolute lines through a fixed absolute point ω form a spread Γ_{ω}. Thus there are at least

$$
\frac{1}{2 q^{3}\left(q^{3}+1\right)\left(q^{2}-1\right)}\binom{q^{2}}{\left(q^{2}-1\right) / 2}
$$

strongly regular graphs with parameters (1) and q prime. This number is bigger than the one given in (2), but here we don't know if the graphs have spreads. For $q=5$, for example, we find at least six non-isomorphic $(126,65,28,39)$ strongly regular graphs and at least two with a spread.

8 The McLaughlin graph

The McLaughlin graph (for short $M c \Gamma$) is the unique strongly regular graph with parameters $n=275, k=112, \lambda=30$ and $\mu=56$. It is the descendant of the (also unique) regular two-graph (Ω, Δ) with eigenvalues $r=2$ and $s=-28$, see Goethals and Seidel [10]. For another discussion of $M c \Gamma$ see [15]. The automorphism group of (Ω, Δ) is Conway's simple group Co_{3} which acts 2 -transitively on Ω and the point stabilizer is $M c L .2$, the full automorphism group of $M c \Gamma$. We shall now describe $M c \Gamma$ explicitely by means of this group. Therefor we list six permutations of $\{1, \ldots, 275\}$ which generate $M c L .2$ (of order 1796256000), and the indices of the 112 neighbors of vertex 1:

1. 1234118106141210228101091211314785913921922937100962201053586161208235434123644
 10298124921279926594103129260257252632376523425153152661642482531669177735022175 67712118466744624616516911162142160132182272091525194197188185576817459704975 176584551233224241204274221557111212239214244141992011965411718118018356190186187 112271101631641071662552161082152172662681259713093254259154153261155101122158159 121256157267270193119263150120264148262149272226137238231223281168240143245145170 168171114182313924320713524720311591924620627113482293280205144211136269222146213 23022589423683789017816718977275179761822001951987217219117324219223220260138258
2. 1234156124158357119176962731571641116210193220201199206197103104208219216108153 72758160371631554015013616526125726047166126171134119141118140151132131170270127 131221542051021069812121933141593416112325119122417922327518623018718822726226891 92236184239240145681421481476626271676716831183235228256113174180243175545221070 6377621249612151942135857195511984220220420055539921821797209101100211415621432 6439515774367618381643481051071965950207203114117247181249811151772651099426784 8687250246792712012913316925135231392213717313865241722814612014912513015212830 144143292124824482802452538811122985255273263266110932642599596254269116222225190 1762211781897825822624123111245252238464489233237182234185902426019227423227283
3. 12354342928274012113719131129119181412412112236126120127987125123321306352313 3938109242107979899108101102103939411056555419321621525821777149158153154164155 1631591577215014816676621168980828190105104100112115798310941515295964445468648 4950858411343479153111871061148878117132172521223120302426128163315118133172145 1361381371391601621611681441351731517463731471526566681697164701401421416967165 7517014315616717113414626026426126620120520619521419625726718618922018723022122657 229181183197247239240178244242243179180238208209210241246245182595861228227188191 232223225224192219218194190231222233263255259265207199200211203204202213212198254 26225627027326824823525018460236174176249234175237177185253272251271269252274275
4. 1241047204955117255210691438635443910394791121175414275611010712985105109118 4534811312197185228180183181164210141250174705968571886771175242169622841141823 1193431133241650114621221268255212266274265260257217215244241166163190187196201 176194582082292191471612352202367519918621623962233214204224124127554196100371117 1081029288999881125801228983901231261319310113042192811612012111515531338120128 9513210433402698293287973682781341352062072261431452232451481592437277171189195 173607469656115123716025363248252251218152234156249140209142642276616518417716273 19120017216719819217016819376182178179246158157247238150149240272137262264263231267 203256139271270211261144155232205153154146259225213230222136202269273258254275138
5. 13210941231128461063410911991114315295611312613312887251899120148168156262175 1512102311641692571931832632282651291314118103847948233911092981078690158194207 25626712138124111051049716115541251012262361451852402721402601416618723813762163 1492291701812456819018015018821971250478556201272788123021116441740282422318457

14374186171147264165672496323719526913823416222015723016721319219615425915569135 20018977732181602272061745010841953615132265389784333117229312210096130371981 55710229111328313144245358049825124225227419161248197270208179212198224217216255 246199592331732112141822221591611667614425824113970201247254215153266273209268261 142152134177235203271243172239647523217858722051362251762216520460253251146275244 202
6. 21310384098743712139853415299108109959612730252612612012524919751393536115 3461612210513313212811810610410033171512412112315616216126916016463218152165147 15119422021915375747315415590798211780838584861121148978311191301292122321418 501011071034943481021920131115871138811111681479228554256542927234694931104544 22423319122623222118822822723118922319267148149150686572767757215216217615958193 6266166230186229190187225222235236177176254261260265259257184249168171140144170136 146163692131962082051992112012022042031982122141972092102002061952071571581596471 70139173145134172137142141169167143138135237174175234264256262267273268270263255 26624818525025125325217824623918325818218017924024523818124724124360244274272242 271275

The 112 vertices adjacent to vertex 1 are:
91522273032424346515860636571767879818283858990939699104107111114116122125131 133134136137138139142143146149153157161165168172173174177178179181185190191192195 200201202203204205207209211212216218221222223226228230232233234236238240241242243 244246248249251252253254258259260262263266267268269270271272273274275

Theorem 8.1 The McLaughlin graph admits a spread.

Proof. The following ordering groups the vertices into 55 disjoint cliques of size 5 (i.e. Delsarte-cliques):

1	9	85	90	$275 ;$	2	7	138	141	$274 ;$	3	21	192	199	$273 ;$
4	14	213	218	$272 ;$	5	8	225	228	$271 ;$	6	20	202	226	$257 ;$
10	16	221	238	$261 ;$	11	17	229	252	$258 ;$	12	26	206	241	$263 ;$
13	18	223	235	$266 ;$	15	23	214	227	$260 ;$	19	24	216	234	$265 ;$
22	36	183	219	$259 ;$	25	32	184	215	$270 ;$	27	33	189	210	$254 ;$
28	35	198	236	$267 ;$	29	48	153	174	$264 ;$	30	49	154	181	$256 ;$
31	51	146	193	$255 ;$	34	45	163	243	$269 ;$	37	50	170	233	$262 ;$
38	56	171	248	$268 ;$	39	78	140	191	$196 ;$	40	79	167	177	$217 ;$
41	84	137	166	$195 ;$	42	86	143	162	$187 ;$	43	95	136	164	$182 ;$
44	82	155	169	$201 ;$	46	88	158	172	$220 ;$	47	83	145	157	$194 ;$
52	80	148	161	$178 ;$	53	94	160	168	$244 ;$	54	100	139	165	$245 ;$
55	104	135	150	$185 ;$	57	116	124	152	$246 ;$	58	106	126	144	$242 ;$
59	81	119	156	$232 ;$	60	91	121	149	$208 ;$	61	108	129	173	$249 ;$
62	105	120	179	$253 ;$	63	87	130	190	$197 ;$	64	99	115	134	$188 ;$
65	101	118	186	$203 ;$	66	98	133	200	$239 ;$	67	103	125	176	$211 ;$
68	117	123	209	$230 ;$	69	107	127	231	$251 ;$	70	89	110	151	$205 ;$
71	97	111	147	$247 ;$	72	109	131	212	$237 ;$	73	96	112	159	$240 ;$
74	102	114	142	$224 ;$	75	93	128	180	$207 ;$	76	92	132	175	$204 ;$

```
77 113 122 222 250.
```

The above spread was found by a computer search. The search was stopped after five different spreads were found. At that point we had given up hope for completing the search. The order of $C o_{3}$ equals $2^{10} .3^{7} \cdot 5^{3} .7 .11 .23$, so by Corollary 7.3 there are at least 7715 non-isomorphic strongly regular graphs in the switching class of (Ω, Δ). Since $M c \Gamma$ probably has many spreads and since the bound of Corollary 7.3 is very pessimistic, the actual number of non-isomorphic ($276,140,58,84$) strongly regular graph is, no doubt, much bigger. It is to be expected that only relatively small collections of the $\binom{57}{27}$ possible switching sets coming from the spread above lead to isomorphic graphs. But because the corresponding permutations do not need to form a group it is not clear how to get a significantly better estimate in an easy way.

References

[1] T. Beth, D. Jungnickel and H. Lenz, Design theory, Cambridge Univ. Press, 1985.
[2] A.E Brouwer, A. Cohen and A. Neumaier, Distance-regular graphs, Springer-Verlag, 1989.
[3] F.C. Bussemaker, S. Čobeljić, D.M. Cvetković and J.J. Seidel, Computer investigations of cubic graphs, T.H.-Report 76-WSK-01, Techn. Univ. Eindhoven, 1976.
[4] P.J. Cameron, On groups with several doubly-transitive permutation representations, Math. Z. 128 (1972), 1-14.
[5] P.J. Cameron and J.H. van Lint, Designs, graphs, codes and their links, Cambridge Univ. Press, 1991.
[6] Yaotsu Chang, Imprimitive symmetric association schemes of rank 4, University of Michigan Ph.D. Thesis, August 1994.
[7] F. De Clerck, A. Del Fra and D. Ghinelli, Pointsets in partial geometries, in: Advances in Finite Geometries and Designs (J.W.P. Hirschfeld, D.R. Hughes and J.A. Thas eds.), Oxford Univ. Press, 1991, pp. 93-110.
[8] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Research Reports Suppl. 10, 1973.
[9] C.D. Godsil and A.D. Hensel, Distance regular covers of the complete graph, J. Combinatorial Theory B 56 (1992), 205-238.
[10] J.M. Goethals and J.J. Seidel, The regular two-graph on 276 vertices, Discrete Math. 12 (1975), 143-158.
[11] W.H. Haemers, Eigenvalue techniques in design and graph theory, (Technical University Eindhoven, Ph.D. Thesis, 1979), Math. Centre Tract 121, Mathematical Centre, Amsterdam, 1980.
[12] W.H. Haemers, Interlacing eigenvalues and graphs, Lin. Alg. Appl. (to appear).
[13] W.H. Haemers, There exists no (76,21,2,7) strongly regular graph, in: Finite Geometry and Combinatorics (F. De Clerck et al. eds.), Cambridge Univ. Press, 1993, pp. 175-176.
[14] W.H. Haemers and D.G. Higman, Strongly regular graphs with strongly regular decomposition, Lin. Alg. Appl. 114/115 (1989), 379-398.
[15] W. H. Haemers, C. Parker, V. Pless and V. D. Tonchev, A design and a code invariant under the simple group Co_{3}, J. Combin. Theory, A 62 (1993), 225-233.
[16] A.J. Hoffman, On eigenvalues and colorings of graphs, in: Graph Theory and its Applications (B. Harris ed.), Acad. Press, New York, 1970, pp. 79-91.
[17] J.H. van Lint and R. Wilson, A course in combinatorics, Cambridge Univ. Press, 1992.
[18] R. Mathon, The systems of linked 2-(16,6,2) designs, Ars Comb. 11 (1981), 131-148.
[19] R. Mathon and A. Rosa, Tables of parameters of BIBD's with $r \leq 41$ including existence enumeration and resolvability results, Ann. Discrete Math. 26 (1985), 275-308.
[20] A. Neumaier, Strongly regular graphs with smallest eigenvalue $-m$, Archiv der Mathematik 33 (1979), 392-400.
[21] S.E. Payne and J.A.Thas, Spreads and ovoids in finite generalized quadrangles, Geometriae Dedicata 52 (1994), 227-253.
[22] E. Spence, Regular two-graphs on 36 vertices, Lin. Alg. Appl. (to appear).
[23] D.E. Taylor, Regular two-graphs, Proc. London Math. Soc. Ser. 33 (1977), 257-274.

