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Abstract
One of the critical deficiencies of SQL is lack of support for n-

dimensional array-based computations which are frequent in OLAP
environments. Relational OLAP (ROLAP) applications have to
emulate them using joins, recently introduced SQL Window
Functions [18] and complex and inefficient CASE expressions. The
designated place in SQL for specifying calculations is the SELECT
clause, which is extremely limiting and forces the user to generate
queries using nested views, subqueries and complex joins.
Furthermore, SQL-query optimizer is pre-occupied with
determining efficient join orders and choosing optimal access
methods and largely disregards optimization of complex numerical
formulas. Execution methods concentrated on efficient computation
of a cube [11], [16] rather than on random access structures for
inter-row calculations. This has created a gap that has been filled by
spreadsheets and specialized MOLAP engines, which are good at
formulas for mathematical modeling but lack the formalism of the
relational model, are difficult to manage, and exhibit scalability
problems. This paper presents SQL extensions involving array
based calculations for complex modeling. In addition, we present
optimizations, access structures and execution models for
processing them efficiently.

1 Introduction

One of the most successful analytical tools for business data is a
spreadsheet. A user can enter business data, define formulas over it
using two-dimensional array abstractions, construct simultaneous
equations with recursive models, pivot data and compute aggregates
for selected cells, apply a rich set of business functions, etc. They
also provide flexible user interfaces like graphs and reports.

Unfortunately, analytical usefulness of the RDBMS has not
measured up to that of spreadsheets or specialized MOLAP tools
[2]. It is cumbersome and in most cases inefficient to perform array-
like calculations in SQL -- a fundamental problem resulting from

lack of language constructs to treat relations as arrays and to de
formulas over them and lack of efficient random access methods
array accesses.

Spreadsheets provide a terrific user interface but, on the ot
hand, have their own problems. They offer two dimensional “row
column” addressing, i.e. physical addressing using row and colu
offsets. Hence, it is hard to build a symbolic model where formul
reference actual data values. A significant scalability problem exi
when either the data set is large (can one define a spreadsheet
terabytes of sales data?) or the number of formulas is signific
(can one process tens of thousands of spreadsheet formula
parallel?). In collaborative analysis with multiple spreadshee
consolidation is difficult as it is nearly impossible to get a comple
picture of the business by querying multiple spreadsheets e
using its own layout and placement of data. There is no stand
metadata or a unified abstraction inter-relating them akin
RDBMS dictionary tables and RDBMS relations.

This paper proposes spreadsheet-like computations in RDB
through extensions to SQL, leaving the user interface aspects to
handled by OLAP tools. Here is a glimpse of our proposal:
• Relations can be viewed as n-dimensional arrays, a

formulas can be defined over their cells. Cell addressing
symbolic, using dimensional columns.

• The formulas can automatically be ordered based on t
dependencies between the cells.

• Recursive references and convergence conditions
supported providing for a recursive execution model.

• OLAP applications frequently fill gaps in sparse data, a
operation called densification which is difficult in ANSI SQL
but natural in the proposed SQL-spreadsheet.

• Formulas are encapsulated in a new SQL query clau
evaluated after the existing query clauses. Since this is
extension to the query block, the result is a relation and can
further used in joins, subqueries, etc.

• The new clause supports partitioning of the data. This allow
evaluation of formulas independently for each partitio
providing a natural parallelization of execution.

• Formulas support UPSERT and UPDATE semantics as well
correlation between their left and right side. This allows us
simulate the effect of multiple joins and UNIONs using
single access structure.

This paper also describes optimizations and execution strateg
possible with the proposed extensions. For instance:
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• The partitioning of data provides an obvious way to parallelize
the computation of spreadsheet and provide scalability. If the
partitioning is not explicitly specified, our optimizer can
automatically infer the partitioning in some cases.

• Efficient hash based access structures on relations can be used
for symbolic array addressing, enabling fast computation of
formulas.

• The formulas whose results are not referenced in outer blocks
can be removed from spreadsheet, thus removing unnecessary
computations.

• The predicates from other query blocks can be moved inside
query blocks with spreadsheets, thus considerably reducing
the amount of data to be processed. Conditions for validity of
this transformation are given.

This paper is organized as follows. Section 2 provides SQL
language extensions for spreadsheet. Section 3 provides motivating
examples and comparisons to equivalent processing in SQL.
Section 4 describes analysis of the spreadsheet clause and query
optimizations with spreadsheets. Section 5 discusses our execution
models. Section 6 reports results from experiments on spreadsheet
queries. Section 7 concludes and suggests topics for further
research.

2 SQL Extensions For Spreadsheets

Notation. In the following examples we will use a fact table f(t,
r, p, s, c) representing a data-warehouse of electronic products with
three dimensions: time (t), region (r), and product (p), and two
measures: sales (s) and cost (c).

Spreadsheet clause. OLAP applications divide relational
attributes into dimensions and measures. To model that, we
introduce a new SQL query clause, called thespreadsheet clause,
which identifies, within the query result, PARTITION,
DIMENSION and MEASURES columns. The PARTITION (PBY)
columns divide the relation into disjoint subsets. The DIMENSION
(DBY) columns uniquely identify a row within each partition,
which we call acell, and serve as array index to the measure
columns. The MEASURES (MEA) columns identify expressions
computed by the spreadsheet. Following this, there is a sequence of
formulas, each describing a computation on cells. Thus the
structure of the spreadsheet clause is:

<existing parts of a query block>
SPREADSHEET PBY (cols) DBY (cols) MEA (cols)
<processing options>
(
      <formula>, <formula>,.., <formula>
)

It is evaluated after joins, aggregations, window function and,
final projection, but before the ORDER BY clause..

Cells are referenced using a familiar array notation. Cell
references can designate asingle cell referencewhen dimensions
are uniquely qualified e.g., s[p=’dvd’, t=2002], or set of cells called
a range referencee.g. s[p=’dvd’, t<2002] where dimensions are
qualified by predicates.

Each formula represents an assignment and contains a left side
that designate target cells and a right side that contains expressions
involving cells or ranges of cells within the partition. For example:

SELECT r, p, t, s
FROM f
SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(
  s[p=’dvd’,t=2002] = s[p=’dvd’,t=2001]*1.6,
  s[p=’vcr’,t=2002] = s[p=’vcr’,t=2000]
                    + s[p=’vcr’,t=2001],
  s[p=’tv’, t=2002] =avg(s)[p=’tv’,1992<t<2002]
)

partitions tablef by region r and defines that within each region
sales of ’dvd’ in 2002 will be 60% higher than in 2001, sales o
’vcr’ in 2002 will be the sum of sales in 2000 and 2001, and sales
’tv’ will be the average of years between 1992 and 2002. As
shorthand, a positional notation exists, for example: s[’dvd’,200
instead of s[p=’dvd’,t=2002].

The left side of a formula defines calculations which can span
range of cells. A new functioncurrentv() (referred to ascv() in
short) carries the value of a dimension from the left side to the rig
side thus effectively serving as a join between right and left sid
The * operator denotes all values in the dimension. For example

SPREADSHEET DBY (r, p, t) MEA (s)
(

s[’west’,*,t>2001]=
1.2*s[cv(r),cv(p),t=cv(t)-1]

)

states that sales of every product in ’west’ region for year > 20
will be 20% higher than sales of the same product in the preced
year. Observe that region and product dimensions on the right s
reference functioncv() to carry dimension values from left to the
right side.

Formulas may specify a range of cells to be updated. A formu
referring to multiple cells on the left side is called anexistential
formula. For existential formulas, the result may be orde
dependent. For example the intention of

SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(
  s[’vcr’,t<2002]=

avg(s)[’vcr’,cv(t)-2<=t<cv(t)]
)

is that the sales of ’vcr’ for all years before 2002 is an average
two preceding years. Processing rows in ascending and descen
order w.r.t dimension t produces different results as we are b
updating and referencing measure s. Such cases are detected b
compiler [Section 4 on page 4] and executed using cyclic algorith
[Section 5 on page 7]. To avoid ambiguity, the user can specify
order in which the rule should be evaluated :

SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(
  s[’vcr’, t<2002] ORDER BY t ASC =

avg(s)[cv(p),cv(t)-2<=t<cv(t)]
)

An innovative feature of SQL spreadsheet is creation of ne
rows in the result set. Any formula, with a single cell reference o
left side, can operate either in UPDATE or UPSERT (defau
mode. The latter creates new cells within a partition if they do n
exist, otherwise it updates them. UPDATE ignores nonexiste
cells. For example,

SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(
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  UPSERT s[’tv’, 2000] =
      s[’black-tv’,2000] + s[’white-tv’,2000]
)

will create for each region a row with p=’tv’ and t=2000 if this cell
is not present in the input stream. An existential formula defines a
range of dimension values on left side. Since these dimensions may
belong to a continuous domain and it is not always possible to find
out the individual set of values, we do not allow upsert mode with
an existential formula.

Reference Spreadsheets.OLAP applications frequently deal, in
a single query, with objects of different dimensionality. For
example, the sales table may have region(r), product(p), and time(t)
dimensions, while the budget allocation table has only region(r)
dimension. To account for that, our query block can have, in
addition to the main spreadsheet, multiple, read-only reference
spreadsheets which are n-dimensional arrays defined over other
query blocks. Reference spreadsheets, akin to main spreadsheets,
have DBY and MEA clauses indicating their dimensions and
measures respectively. For example, assume a budget table
budget(r,p) containing predictionsp for sales increase for each
regionr. The following query predicts sales in 2002 in region ‘west’
scaling them using prediction p from the budget table.

SELECT r, t, s
FROM f GROUP by r, t
SPREADSHEET
  REFERENCE budget ON (SELECT r, p FROM budget)

DBY(r) MEA(p)
DBY (r, t) MEA (s)
(
  s[’west’,2002]= p[’west’]*s[’west’,2001],
  s[’east’,2002]= s[’east’,2001]+s[’east’,2000]
)

The purpose of a reference spreadsheet is similar to a relational
join, but it allows us to perform, within a spreadsheet clause,
multiple joins using the same access structures (e.g., hash table -
see Section 5), thus self-joins within spreadsheet can be cheaper
than outside of it.

Ordering The Evaluation Of Formulas. By default, the
evaluation of formulas occurs in the order of their dependencies,
and we refer to it as the AUTOMATIC ORDER. For example in

SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(
  s[’dvd’,2002] = s[’dvd’,2000] + s[’dvd’,2001]
  s[’dvd’,2001] = 1000
)

the first formula depends on the second and consequently we will
evaluate the latter one first. However, there are scenarios in which
lexicographical ordering of evaluation is desired. We provide an
explicit processing option, SEQUENTIAL ORDER, for that as in:

SPREADSHEET DBY(r,p,t) MEA(s) SEQUENTIAL ORDER
(. ..<formulas>....)

Cycles and Recursive Models. Similarly to existing
spreadsheets our computations may contain cycles, as in the
formula:

s[1] = s[1]/2
Consequently we have processing options to specify the number

of iterations or the convergence criteria for cycles and recursio
The ITERATE (n) option requests iteration of the formulas ’n
times. The optional UNTIL condition will stop the iteration when
the <condition> has been met upto a maximum of “n” iterations
specified by ITERATE(n). The <condition> can reference cel
before and after the iteration facilitating definition of convergenc
conditions. A helper functionprevious(<cell>) returns the value of
<cell> at the start of each iteration. For example,

SPREADSHEET DBY (x) MEA (s)
  ITERATE (10) UNTIL (PREVIOUS(s[1])-s[1] <= 1)
( s[1] = s[1]/2 )

will execute the formula s[1] = s[1]/2 until the convergenc
condition is met, up to a maximum of 10 iterations (in this case
initially s[1] is greater than or equal to 1024, evaluation of th
formulas will stop after 10 iterations).

Spreadsheet Processing Options and Miscellaneous
functions. There are other processing options for the SQ
spreadsheet in addition to the ones for ordering of formulas a
termination of cycles. For example, we can specify UPDATE
UPSERT options as default for the entire spreadsheet. The op
IGNORE NAV allows us to treat NULL values in numeric
operations as 0, which is convenient for newly inserted cells w
the UPSERT option.

The new predicate<cell> IS PRESENTindicates if the row
indicated by the <cell> existed before the execution of th
spreadsheet clause and is convenient for determining upse
values.

3 Motivating Example of Spreadsheet Usage

Here is an example demonstrating the expressive power of
SQL spreadsheet and its potential for efficient computation
compared to the alternative available in ANSI SQL.

An analyst predicts sales for the year 2002. Based on busin
trends, sales of ’tv’ in 2002 is their sales in 2001 scaled by t
average increase between 1992 and 2001. Sales of ’vcr’ is the s
of their sales in 2000 and 2001. Sales of ’dvd’ is the average of t
three previous years. Finally, the analyst wants to introduce in ev
region a new dimension member ’video’ for the year 2002, defin
as sales of ’tv’ plus sales of ’vcr’. Assuming that rows for ‘tv’
‘dvd’, ‘vcr’ for year 2002 already exist, we can express th
analyst’s query as:

SELECT r, p, t, s
FROM f
SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(
F1: UPDATE s[’tv’,2002] =

slope(s,t)[’tv’,1992<=t<=2001]*s[’tv’,2001]
+ s[’tv’,2001]

F2: UPDATE s[’vcr’, 2002] =
      s[’vcr’, 2000] + s[’vcr’, 2001],
F3: UPDATE s[’dvd’,2002] =

(s[’dvd’,1999]+s[’dvd’,2000]+s[’dvd’,2001])/3,
F4: UPSERT s[’video’, 2002] =
      s[’tv’,2002] + s[’vcr’,2002]
)

Theslope()aggregate is a recent addition to ANSI SQL [18] an
denotes linear regression slope. To express the above quer
ANSI SQL, formula F1 would require an aggregate subquery plu
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join to the fact table f, formula F2 a double self-join of the fact
table, formula F3 a triple self join of the fact table, and formula F4 a
union operation. Such a query would not only be difficult to
generate but would also result in an inefficient execution as
compared to the query with spreadsheet. For the latter we need to
scan the data and generate a point addressable access structure like
a hash table or an index for all formulas only once. If we can
deduce from database constraints that t is from an integer domain,
then formula F1 is first transformed into

F1: UPDATE s[’tv’,2002] =
slope(s,t)[’tv’,t in (1992,.,2001)]*s[’tv’,2001]
+ s[’tv’,2001]

This way, the access structure can be used for random, multiple
accesses along the time dimension as opposed to a scan to find out
the rows satisfying the predicate. Formulas F2, F3, and F4 can use
the structure directly. The structure is then used multiple times
giving a performance advantage over multiple joins required by
equivalent ANSI SQL. In real applications, we expect hundreds of
formulas and consequently building a single point access structure
in place of hundreds of joins provides a significant performance
advantage.

As another example consider the “densification” of a dimension
d - a process which assures that alld values are present in the output
for every combination of other dimensions. This operation is
frequently used in time-series where all time values must be present
in the output. This is used for moving averages, prior-period
computation, calendar construction, etc. Assume that for each
product(p) and region(r) we want to ensure that all years present in
the dimension table,time_dt, are present in the output. The fact
table f, is sparse, and may not have all time periods for every
product-region pair. Using our spreadsheet this is expressed as:

SELECT r, p, t, s
FROM f
SPREADSHEET PBY(r, p) DBY (t) MEA (s, 0 as x 1)
(
  UPSERT x[FOR t IN (SELECT t FROM time_dt)]= 0
)

This partitions the query by (r, p) and within each partition
upserts all values from the time dimension. An equivalent
formulation using ANSI SQL involves a cartesian product off to
time_td and a joinback tof, a series of operations much less
efficient than these required for the above spreadsheet execution:

SELECT f.r, f.p, f.t, f.s
FROM f RIGHT OUTER JOIN
     ( (SELECT DISTINCT r, p FROM f)
        CROSS JOIN
        (SELECT t FROM time_dt)
      ) v
   ON (f.r = v.r and f.p = v.p and f.t = v.t)

4 Spreadsheet Analysis And Optimization

The spreadsheet analysis determines the order of evaluation of
formulas, prunes formulas whose results are fully filtered out by
outer queries, restricts the formulas whose results are partially

filtered, migrates predicates from outer queries into inner WHER
clause to limit the data processed by the spreadsheet, and gene
a filter condition to identify the cells that are required througho
the evaluation of the spreadsheet formulas.

The analysis also determines one of two types of executi
methods: one for acyclic and one for (potentially) cyclic formula
Because of complex predicates in formulas, analysis cannot alw
ascertain acyclicity of formulas in the spreadsheet. Hence,
sometimes end up using the cylic execution method for acyc
spreadsheets which is expensive compared to the acyclic metho

Formula dependencies and Execution Order: The order of
evaluation of formulas is determined from their dependency grap
FormulaF1 depends onF2 (written F2 -> F1) if a cell evaluated by
F2 is used byF1. For example in:

F1: s[’video’,2000]=s[’tv’, 2000]+s[’vcr’, 2000]
F2:s[’vcr’,  2000]=s[’vcr’,1998]+s[’vcr’, 1999]

F2 -> F1 asF1 requires a cell s[’vcr’,2000] computed byF2. To
form the -> relation, for each formulaF we determine cells that are
referenced on its right side R(F) and cells that are modified on
left side, L(F). Obviously,F2 -> F1 iff R(F1) intersects L(F2). In the
presence of complex cell references, like s[’tv’, t2+t3+t4< t5], it is
hard to determine the intersection of predicates. In this case,
assume that the formula references all cells. This may result
over-estimation of the -> relation leading to spurious cycles in t
dependency graph.

The -> relation results in a graph with formulas as nodes a
their dependency relationship as directed edges. The graph is t
analyzed for (partial) ordering.

A spreadsheet formula can access a range of cells (e.g.,
aggregate - avg(s)[‘tv’,*] or left side of an existential formula - s[*
*] = 10) and thus require a scan of data. If two formulas a
independent (unrelated in the partial order derived from the grap
they can be evaluated concurrently using a single scan. To ena
concurrent evaluation, formulas are grouped into enumerated lev
such that each level contains independent formulas, and no form
in the level may depend on a formula in a higher level.

The path through the partial order with the maximum number
scans represents the minimum number of total scans possible, s
they are all related by the partial order. If we have an acyclic gra
(i.e., a partial order), then we can minimize the number of leve
containing scans to this value. The following algorithm generat
the levels such that number of scans is minimized - for a proof o
minimality please refer to the extended version of the paper.

Let G(F, E) be the graph of the -> relation whereF are formulas
andE the -> edges. We will call a formula with no incoming edge
asourceand formulas with only single cell referencessingle_refs:

GenLevels(G) {
LEVEL <- 1
WHILE (F is not empty) {

Find the set FS of all the SOURCES in F
If (cycle is detected) {

 break the cycle /* see below */
  } else if (FS contains single_refs) {

 assign single_refs in FS to level LEVEL;
 F = F - single_refs in FS

} else (FS contains only scans) {
 assign formulas in FS to level LEVEL;

(1)This initializes the measure x to “0” before the execution of
spreadsheet and is similar to naming constants in ANSI views
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 F = F - FS
}

 LEVEL <- LEVEL + 1,
}

}

For example,

SELECT * FROM f
GROUP BY p, t
SPREADSHEET DBY(p,t) MEA(sum(s) s)
(

F1: s[’tv’, 2000] = sum(s)[’tv’, 1990<t<2000],
F2: s[’vcr’,2000] = sum(s)[’vcr’, 1995<t<2000],

  F3: s[’vcr’,1999]=s[’vcr’,1997]+s[’vcr’,1998]
)

Here, the spreadsheet graph has one edge: F3 -> F2. The
algorithm will assign the point reference F3 to level 1 and the scan
F2 to level 2, but will delay assigning the scan F1 until level 2 so
that F1 and F2 can share a single scan.

The GenLevelsalgorithm presented simplifies the cyclic case.
Before generating the levels, the graph is analyzed for strongly
connected components using algorithms in [17]. We can then
isolate cyclic subgraphs from acyclic parts of the graph and from
other cyclic subgraphs. This is important because the computational
complexity of cyclic evaluation is proportional to the total number
of rows updated or upserted in a cycle (seeauto-acyclicalgorithm
in Section 5). After assigning levels to formulas a cyclic subgraph is
dependent on, the cyclic subgraph can be broken by removing
formulas from the subgraph and assigning them to individual levels
in the same order until the subgraph is exhausted.

For spreadsheets with sequential order of evaluation, the
dependency edges created always point from the earlier formula to
the latter formula. A spreadsheet graph can therefore never be
cyclic. We still generate levels in order to group the independent
formulas together and hence, minimize the number of scans that are
required for computation of aggregates and existential rules in the
spreadsheet.

Pruning Formulas: We expect that, to encapsulate common
computations, applications will generate views containing
spreadsheets with thousands of formulas. Users querying these
views will likely require only a subset of the result, putting
predicates over the views. This gives us an opportunity to prune
formulas that compute cells discarded by these predicates. For
example:

SELECT * FROM
(SELECT r, p, t, s FROM f
 SPREADSHEET PBY(r) DBY (p, t) MEA (s) UPDATE
 (
 F1: s[’dvd’,2000]=s[’dvd’, 1999]*1.2,
 F2: s[’vcr’,2000]=s[’vcr’,1998]+s[’vcr’,1999],
 F3: s[’tv’, 2000]=avg(s)[’tv’, 1990<t<2000]
 ) v
)
WHERE p in (’dvd’, ’vcr’, ’video’);

The evaluation of the formula F3 is unnecessary as the outer
query filters out the cell that F3 evaluates. The above formulas are
independent, which makes the pruning process simple. If, however,
we had a formula that depends on F3, for example,

F4: s[’video’,2000]=s[’vcr’,2000]+s[’tv’,2000]

then F3 cannot be pruned as it is referenced by F4.
The evaluation of a formula becomes unnecessary when

following conditions are satisfied:
• The cells it updates are not used in evaluation of any oth

formula in the spreadsheet.
• The cells updated by the formula are filtered out in the out

query block or the measure updated by the formula is nev
referenced in the outer query block.

Identification of formulas that can be pruned is done by th
following algorithm based on the dependency graph G. Letsinkbe
a formula with no outgoing edge, i.e., one no other formula depen
on.

PruneFormulas(G)
{

Find a set FS of all SINKS
WHILE (FS is not empty) {

Pick a formula Fi from FS,
FS = FS - {Fi} /* remove Fi from FS */

If (all the cells referenced on the left
        side of Fi are filtered out in the outer
        query block

OR
the measure updated by the left side
of Fi is not referenced in the outer

query block)
     {

F = F - {Fi} /* delete Fi from list F */
E = E - {all incoming edges into Fi},

If deletion of F generates new ’sink’
       nodes, insert them into the set FS

 }
}

}

Rewriting Formulas. Pruning formulas alone is not sufficient to
avoid unnecessary computations during spreadsheet evaluation
some cases, the results computed by a formula may be parti
filtered out in the outer query block. Consider the following quer
which predicts the sale of all products in 2002 to be twice the co
of the same product in 2002, and then selects the sale and
values for ‘dvd’ and ‘vcr’ for years > = 2000.

SELECT * FROM
(SELECT r, p, t, s FROM f
 SPREADSHEET PBY(r) DBY (p, t) MEA (s,c) UPDATE
 (
   F1: s[*,2002]=c[cv(p), 2002]*2,
 ) v
)
WHERE p in (’dvd’,’vcr’) and t >= 2000;

The formula F1 cannot be pruned away as part of its result
needed in the outer query block. Still, we do not need to compu
the s values for all products in 2002 as the outer query filters out
the rows except for products ‘dvd’ and ‘vcr’. Hence we rewrite th
left side of formula F1 as follows to avoid unnecessar
computation:

F1’: s[p in (’dvd’,’vcr’),2002]= c[cv(p), 2002]*2

The rewriting of formulas is done with a small extension of th
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algorithm PruneFormulas. In the newPruneFormulas, we try to
rewrite the formulas in all sink nodes that we cannot prune. Note
that similar to pruning of a formula, the rewrite of a formula may
also change the dependency graph (some incoming edges of the
formula might be deleted) possibly leading to generation of new
sink nodes, so it is only natural that both rewrite and pruning of
formulas are handled in the same process.

Rewriting of formulas that are not sink nodes is also possible but
the rewrite in that case is complicated as it is not only based on
outer predicates, but also on the reference predicates of the other
formulas that depend on the formula being rewritten.

Pushing predicates through spreadsheet clauses. Pushing
predicates into an inner query block [15], [13] and its generalization
’predicate move-around’ [12] is an important optimization and has
been incorporated into queries with spreadsheets. We perform three
types of pushing optimization: pushing on PBY and independent
DBY dimensions, pushing based on bounding rectangle analysis
and pushing through reference spreadsheets.

Pushing predicates through the PBY expressions in or out of the
query block is always correct as they filter entire partitions. For
example, in:

SELECT * FROM
(SELECT r, p, t, s FROM f
 SPREADSHEET PBY(r) DBY (p, t) MEA (s) UPDATE
  (

F1:s[’dvd’,2000]=s[’dvd’,1999]+s[’dvd’,1997],
    F2:s[’vcr’,2000]=s[’vcr’,1998]+s[’vcr’,1999]
  )
) v
WHERE r = ’east’ and t = 2000 and p = ’dvd’;

we push the predicate r = ’east’ through the spreadsheet clause into
the WHERE clause of the inner query.

Pushing can be extended to independent dimensions. A
dimension d is called an independent dimensionif, for every
formula, the value ofd referenced on the the right side is the same
as the value ofd on the left side. For example, in the above
spreadsheet, the left side of F1 refers to the same values ofp as the
right side. The same is true for formula F2 as well, thereby making
p an independent dimension.t, however is not an independent
dimension. Observe that in the absence of UPSERT rules,
independent dimensions are functionally equivalent to the
partitioning dimensions and can moved from the DBY to the PBY
clause. For example, in the above spreadsheet, we could replace
PBY/DBY clauses with

SPREADSHEET PBY(r, p) DBY (t) MEA (s) UPDATE

Consequently, we can push predicate p = ‘dvd’ into the inner
query.

We also pull predicates on PBY and independent DBY
expressions out of the query to effect predicate move around of
[12].

The outer predicates on the DBY expressions which are not
independent can be also pushed in but we need to extend them so
they do not filter out the cells referenced by the right sides of the
formulas. For each formula we construct a predicate defining the
rectangle bounding the referenced cells. For example for F2 these
predicates arep=’vcr’ andt in (1998, 1999)and for F1p=’dvd’ and
t in (1997, 1999). Then a bounding rectangle for the entire
spreadsheet is obtained using methods described in [8], [3] which is

a union of bounding rectangles for each formula. This in our case
p in (’vcr’, ’dvd’) andt in (1997, 1998, 1999). Then the predicates
on DBY columns from the outer query are extended with th
corresponding predicates from the spreadsheet bounding rectan
and these are pushed into the query. In our example we extend
outer predicatet = 2000 with t in (1997, 1998, 1999)which results
in pushingt in (1997, 1998, 1999, 2000). The predicates on DBY
expressions in the outer query block are kept in place unless
pushdown filter is the same as the outer filter and there are no up
formulas in the spreadsheet.

A challenging scenario arises when the bounding rectangle fo
formula cannot be determined at optimization time since it m
depend on a subqueryS whose bounds are known only after S’s
execution. This is common in OLAP queries which frequent
inquire about the relationship of a measure at a child level to that
its parent (e.g., sales of a state as a percentage of sales of a coun
or inquire about a prior value of a measure (e.g., sales in Marc
2002 vs. sales the same month a year ago or a quarter ago). T
relationships are obtained by querying dimension tables. F
example, assume that the primary key of time dimensiontime_dtis
month m and the tabletime_dtstores the corresponding month a
year ago asm_yago,and the corresponding month a quarter ago
m_qago.Note that quarter ago means the same month in t
previous quarter, so quarter ago of 1999-01 is 1998-10(see Table 1)

An analyst wants to compute for a product ‘dvd’ and month
(1999-01, 199-03) the ratio of that month’s sales to the sales
corresponding months a year and quarter ago respectively (r_yago
and r_qago). Using SQL spreadsheet, this query is:

S1
SELECT p, m, s, r_yago, r_qago  FROM
 (SELECT p, m, s FROM f GROUP BY p, m
  SPREADSHEET
    REFERENCE prior ON
     (SELECT m, m_yago, m_qago FROM time_dt)
      DBY(m) MEA(m_yago, m_qago)
   PBY(p) DBY (m) MEA (sum(s) s,r_yago,r_qago)
  (
  F1: r_yago[*] = s[cv(m)] / s[m_yago[cv(m)]],
  F2: r_qago[*] = s[cv(m)] / s[m_qago[cv(m)]]
  ) v
)
WHERE p = ’dvd’ and m IN (1999-01, 1999-03);

The reference spreadsheet serves as a one-dimensional loo
table translating monthm into the corresponding month a year ag
m_yagoand a quarter agom_qago. An alternative formulation of
the query using ANSI SQL requires the joinsf >< time_dt>< f ><
f, where the first join gives the month values a year and a quar
ago for each row in fact table and the other two joins give the sa
values in the same month, a quarter ago and an year a

Table 1: Mapping between m and y_ago/m_qago

m m_yago m_qago

1999-01 1998-01 1998-10

1999-02 1998-02 1998-11

1999-03 1998-03 1998-12
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respectively. Thus, using reference spreadsheet, the number of joins
is reduced to one.

The predicate p = ‘dvd’ on the PBY column can be pushed into
the inner block. However,m is neither an independent dimension
nor can bounding rectangles be determined for it as the values
m_yagoandm_qagoare unknown. Consequently, a restriction onm
cannot be pushed-in resulting in all time periods pumped to the
spreadsheet out of which all except 1999-01 and 1999-03 are
subsequently discarded in the outer query. Let’s call a dimensiond
a functionally independent dimensionif for every formula, the value
of d referenced on the right side is either the same as the value ofd
on the left side or a function of the value ofd on the left side via a
reference spreadsheet. In query S1,m is a functionally independent
dimension, as the right side usesmdirectly or uses a function of the
value ofmon the left side:m_yago[cv(m)] andm_qago[cv(m)].

We experimented with three transformations to push predicates
through functionally independent dimensions. In the first, called
ref-subquery pushing, we add into the inner block a subquery
predicate which selects all values needed by the spreadsheet and the
outer query. The transform is similar to the magic set
transformation [14] which pushes a query derived from outer
predicates into the inner block. In the above case, the outer query
needsm IN (1999-01, 1999-03), and the spreadsheet needs these
values plus their correspondingm_yagoand m_qagovalues from
the reference spreadsheet. These values can be obtained by
constructing a subquery over the reference spreadsheet:

S2
WITH ref_subquery AS
  (SELECT m, m_yago, m_qago FROM time_dt
   WHERE m IN (1999-01, 1999-03))
SELECT m AS m_value FROM ref_subquery
UNION
SELECT m_yago AS m_value FROM ref_subquery
UNION
SELECT m_qago AS m_value FROM ref_subquery

and then pushing it into the inner block of the query:

SELECT p, m, s, r_yago, r_qago  FROM
 (SELECT p, m, s FROM f
  WHERE m IN (SELECT m_value FROM S2)
  GROUP BY p, m
  SPREADSHEET
  <.. as above in query S1 .. >
)
WHERE p = ’dvd’ and m IN (1999-01, 1999-03);

In the second transformation, calledextended pushing, we
construct the pushed-in predicates by executing the reference
spreadsheet query, obtaining the referenced values and building
predicates on the dimension, and finally disjuncting them with the
outer predicates. In the above case we execute

SELECT DISTINCT m_yago, m_qago FROM time_dt
WHERE m IN (1999-01, 1999-03)

to obtain the values form_yagoandm_qagocorresponding tom IN
(1999-01, 1999-03). Let’s assume that the correspondingm_yagois
(1998-01, 1998-03) andm_qagois (1998-10, 1998-12) i.e., the first
and third month of the previous quarter. Finally we push this
predicate into the inner query:

SELECT p, m, s, r_yago, r_qago  FROM
 (SELECT p, m, s FROM f

WHERE m IN (1999-01, 1999-03, /* outer preds */
              1998-01, 1998-03, /* prev year */
              1998-10, 1998-12) /* prev quart */
  GROUP BY p, m
  SPREADSHEET
  <.. as above in query S1 .. >
)
WHERE p = ’dvd’ and m IN (1999-01, 1999-03);

In the third transformation, calledformula unfolding, we
transform the formulas by replacing the reference spreadsheet w
its values. Similarly to the second transformation, we execu
reference spreadsheet and obtain its measure for each of
dimension values requested by the outer query. These values
then used to unfold the formulas. For example, form = 1999-01,
value ofm_yago= 1998-01, andm_qago= 1998-10, and form =
1999-03, value ofm_yago= 1998-03, andm_qago= 1998-12. Thus
formulas are unfolded as:

SELECT p, m, s, r_yago, r_qago  FROM
 (SELECT p, m, s FROM f GROUP BY p, m
  SPREADSHEET
    REFERENCE prior ON
     (SELECT m, m_yago, m_qago FROM time_dt)
      DBY(m) MEA(m_yago, m_qago)
   PBY(p) DBY (m) MEA (sum(s) s,r_yago,r_qago)
  (

F1: r_yago[1999-01] = s[1999-01] / s[1998-01],
F1’: r_yago[1999-03] = s[1999-03] / s[1998-03],
F2: r_qago[1999-01] = s[1999-01] / s[1998-10],

  F2’: r_qago[1999-03] = s[1999-01] / s[1998-12]
  ) v
)
WHERE p = ’dvd’ and m IN (1999-01, 1999-03);

Following formula flattening we perform analysis of the
bounding rectangles described above and push the resul
bounding predicate into the inner query.

In our experiments, see Section 6, theextended pushingand
formula unfoldingtransformations, resulted in similar performanc
as in most cases they push-in the same predicates. In compari
the ref-subquery pushtransform had inferior performance. The us
of ref-subquerygives the optimizer a choice of picking either inde
nested loop join, hash join, or sort join between the subquery a
the main query block. The optimizer is more likely to mak
mistakes with subquery predicates than with simple qualified ind
predicates. And, in the ref-subquery case, the optimizer sometim
picks up a wrong join method, thereby slowing down the query (s
experimental results in Section 6 on page 10).

5 SQL Spreadsheet Execution

Access structures. For efficient access to single cells (like
s[p=’dvd’, t=2000]), we build a two-level hash access structure. I
the first level, data is hash partitioned on the PBY columns, and
the second level, a hash table is built on the PBY and DBY colum
within each first level partition. The formulas are evaluated for on
spreadsheet partition at a time. A spreadsheet partition contains
rows with the same PBY column values. Hence, one spreadsh
partition lies completely within one first level hash partition of th
access structure. Therefore, if the second level hash tables of e
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of the first level partitions fit in memory, we altogether avoid
spilling to disk for evaluating the formulas. To further minimize
size and build time of hash tables, we build this access structure
only on rows required by the formulas as defined by the spreadsheet
bounding rectangle (see Section 4).

Hash access structure supports operations like probe, update,
upsert, insert and scan of all records within a spreadsheet partition.
The hash access structure maintains records within a hash bucket
clustered on PBY and DBY column values, thereby making the
scan and probe on a spreadsheet partition efficient.

The number of first level partitions is chosen based on estimated
size of data to be inserted into the access structure and the amount
of available memory. The goal is to fit second level hash tables for
each first level partition in memory. However, the spreadsheet
partitions may be really big and we may not have enough memory
to fit a partition. In such cases, we build a disk based hash table
employing a weighted LRU scheme for block replacement,and
pointer swizzling to make references lightweight.

Execution. Formulas in SQL spreadsheet operate in automatic
order or sequential order. Figure 1 classifies the spreadsheet based
on the evaluation order and dependency analysis and identifies the
execution algorithm. There are three algorithms:Auto-Acyclic,
Auto-Cyclic& Sequential.

Figure 1Classification of Spreadsheet

Automatic Order . The order of evaluation of formulas in an
automatic order spreadsheet is given by their dependencies (see
Section 4 on page 4). We have two methods of its execution.

The Auto-Acyclic algorithm is taken when a complete and
accurate dependency graph can be built and no cycles are detected
in the dependency graph.

Auto-Acyclic()
{
  for each partition P in the spreadsheet

  {
for level L i from L 1 to L n
{

     /* LS i  = set of formulas in Li with
      * single cell refs on left side

* LE i  = set of formulas in Li with exist-
* ential conditions on left side

      *
* First, evaluate all aggregates in set

      * LS i , then all formulas in that set
      */

for each record r in P  - (I)
for each aggregate A in LS i

apply r to A;
for each formula F in LS i

evaluate F;

 /* Evaluate all formulas in LE i  */
      for each record r in P - (II)

   {
find all formulas EF in LE i  to be

          evaluated for r
for each record r’ in P - (III)

for each aggregate A in EF
apply r’ to A;

for each formula EF
evaluate EF;

}
  }

 }
}

Notice that all the aggregates at any level are computed bef
evaluation of formulas at that level so they are available for t
formulas. This requires a scan of records in the partition for ea
level. In the absence of existential formulas, and presence of o
those aggregate functions for which an inverse is defined (
example, SUM, COUNT etc.), the aggregates for all the levels a
computed in a single scan. And, with each formula we store a list
aggregates dependent on the cell being upserted (or updated) b
It is possible to determine such a list because there are only sin
cell references on the left side. So, if a formula changes the value
a measure, the corresponding dependent aggregates are updat
applying the current value and inverse of the old value of th
measure. In the above algorithm, we can also combine the scan
with the scan (II) or scan (III).

An example of an acyclic spreadsheet:

SELECT r, p, t, s
FROM f
SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(
  s[’tv’, 2002] =s[’tv’, 2001] * 1.1,

s[’vcr’,2002] =s[’vcr’, 1998] + s[’vcr’, 1999],
s[’dvd’,2002] =(s[’dvd’,1997]+s[’dvd’,1998])/2,

  s[*,    2003] =s[cv(p), 2002] * 1.2
)

The above query makes sales forecasts for years 2002 and 2
The formulas are split into 2 levels. The first level consists of th
first 3 formulas, projecting sales for 2002, and the second lev
dependent on the first level, consists of the last formula, project
sales for 2003. The algorithmAuto-Acyclicevaluates formulas in
the first level before evaluating formulas in the second level.

Spreadsheet

Automatic Order
Forced Order
(with/without iterate)

only single cell
refs on left side

existential loops
on left side

complete depen-
dency graph

partial or no dep-
endency graph

acyclic cyclic or cycle not

Auto-Acyclic Auto-Cyclic Sequential

known

algorithm algorithm algorithm
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Auto-Cyclic Algorithm. There are also automatic order
spreadsheets which are either cyclic, or have complex predicates
that make the existence of cycles indeterminate. In such cases
(Section 4 on page 4), the dependency analysis approximately
groups the formulas into levels by finding sets of formulas
comprising strongly connected components (SCCs -- the largest
union of intersecting cycles), and assigning the formulas in an SCC
to consecutive levels. TheAuto-Cyclic algorithm evaluates
formulas that are not contained in SCCs as in the acyclic case, but
when formulas in SCCs are encountered, it iterates over the
consecutive SCC formulas until a fixed point is reached, but only
upto a maximum of ‘N’ iterations where N = number of cells
upserted (or updated) in the first iteration. If the spreadsheet was
actually acyclic, the formulas will converge after at most ’N’
iterations. In the worst case, if the formulas were evaluated in
exactly the opposite order of (real) dependency, each iteration will
propagate one correct value to another formula, hence requiring ’N’
iterations. Therefore, to evaluate all acyclic spreadsheets which
could not be classified as acyclic and limit the number of iterations
for cyclic spreadsheets, the maximum number of iterations for
evaluation of formulas is fixed at ’N’. If the spreadsheet does not
converge in ’N’ iterations, an error is returned to the user. To
determine if the spreadsheet has converged after an iteration, a flag
is stored with the measure. This flag can be set whenever the
measure is referenced while evaluating a formula. Later, update of a
measure, which the flag set, to a different value indicates that
additional iterations are required to reach a fixed point. Similarily
an insert of a new cell (by an UPSERT formula) signals additional
iterations. This technique will require resetting flags for each
measure after each iteration - an expensive proposition. Hence,
instead of a single flag, two flags are stored, each one being used in
alternate iterations - as one of the flags is set, the other one can be
cleared.

Sequential Order. In a sequential order spreadsheet, formulas
are evaluated in the order they appear in the spreadsheet clause. The
dependency analysis still groups the formulas into levels consisting
of independent formulas so that the number of scans required for
computation of aggregate functions is minimized. The algorithm is
similar to Auto-Acyclic, but there may be multiple iterations as
specified in the spreadsheet processing option - ’ITERATE’.

Parallel Execution of SQL Spreadsheet.We execute the
spreadsheet scalably by evaluating the formulas over partitions in
parallel. The data is distributed to Processing Elements (PE) based
on the PBY columns so that each PE can work on partitions
independent of other PEs. The distribution of partitions to PEs can
be hash or range based on PBY columns. The work of PEs is
coordinated by a single process called thequery coordinator. For
example, the following spreadsheet query can be evaluated by hash
partitioning the data on r:

  SPREADSHEET PBY(r) DBY(p, t) MEA(s)
  (
    s[’dvd’, 2000] = 1.2*s[’dvd’, 1999]
  )

In some cases, data partitioning on just the PBY columns limits
the degree of parallelization and hence the scalability. That is the
case when there are no PBY columns, or PBY columns have very

small cardinality as in PBY(gender) where only two partition
(’male’ and ’female’) exist.

In such cases, we can include, in addition to PBY columns, so
DBY columns for data partitioning. For example, the following
query:

S3
SPREADSHEET PBY(r) DBY(p, t) MEA(s) UPDATE
(
  F1: s[*,2002]=

avg(s)[cv(p), t in (1998,2000)],
  F2: s[*,2003]=

avg(s)[cv(p), t in (1999,2001)]
)

is changed to

SPREADSHEET PBY(r, p) DBY(t) MEA(s) UPDATE
(
    s[2002] = avg(s)[t in (1998, 2000)],
    s[2003] = avg(s)[t in (1999, 2001)]
)

as formulas are independent of the dimension columnp. This can
be done for any independent dimension - see Section 4.

Higher granularity of partitioning results in better load balancin
and processor utilization as parallelization takes place on bothr and
p. All PEs execute the same set of formulas but with different da
sets. If the column corresponding to an independent dimension
the left side doesn’t qualify all values of that dimension, (i.e., in o
notation is not a “*”), it will not be possible to promote the
independent dimension to PBY. This is because promoting to PB
would incorrectly update all values for that dimension. Instead, w
will duplicate the independent dimension in the PBY clause as w
to get better parallelization. For example:

S4
SPREADSHEET PBY(r) DBY(p, t) MEA(s) UPDATE
(
  s[p != ‘bike’,2002]= avg(s)[cv(p),t<2001]
)

is rewritten by optimizer for parallelization to:

SPREADSHEET PBY(r, p) DBY(p, t) MEA(s) UPDATE
(

s[p != ‘bike’,2002]= avg(s)[cv(p),t<2001]
)

Complex scenarios exist where different PEs need to exec
different sets of formulas. One such scenario is the presence
UPSERT option as in:

SPREADSHEET PBY(r) DBY(p, t) MEA(s) UPSERT
(
  F1:  s[’dvd’,2002] = sum(s)[’dvd’, t<1999]
              + avg(s)[’dvd’,1999<=t<= 2001],
  F2 :   s[’vcr’,2002] = avg(s)[’vcr’, t <= 2001],
  F3:  s[*, 2003] = 1.2*s[cv(p), 2002]
)

In this spreadsheet,p is again an independent dimension. Bu
because of the UPSERT option, usingp as a partitioning column
with all PEs evaluating the same set of formulas can lead to
incorrect result. Assume that products ’dvd’ and ’vcr’ get assign
to different PEs: PE1 and PE2 respectively. If the same formulas
executed by both PEs, the result would have spurious rows -
example, PE1 working on product ’dvd’ would introduce a row fo
’vcr’ while this row might already exist in the data set passed
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PE2. In such cases, spreadsheet formulas need to be grouped and
assigned to PEs based on data distribution so that the formula F is
assigned to PE iff PE is processing data which F touches. For
example, PE1 might evaluate formulas F1 and F3 while PE2
evaluates formulas F2 and F3.

This process of grouping formulas cannot be done at compile
time as it is data dependent. Instead this is done by passing an extra
condition to each PE, indicating the data set for which the formulas
should be evaluated. In this case, if data is distributed to PEs by
HASH partitioning, the extra condition is of the form:

WHERE HASH(p) = hash_value_of_P_for_this_PE.

The value forhash_value_of_P_for_this_PEis passed to each
PE by the query coordinator. Then each PE, before evaluating a
non-existential formula, i.e., one which explicitly qualifies all
dimensions would find the value forp and verify that the triggering
condition holds. If so, the formula is executed, otherwise it is
skipped. The HASH(p) is the hash function used for data
partitioning. For existential formulas we do not need to evaluate the
condition as they never generate new rows operating only in the
update mode. So in the above spreadsheet assume that
HASH(‘dvd’) = 1 andHASH(‘vcr’) = 2, and PE1 and PE2 operate
in hash partitions 1 and 2 correspondingly. Then PE1 evaluates F1
and F3 while PE2 evaluates formulas F2 and F3.

6 Experimental Results

We conducted experiments on the APB benchmark [1] populated
with 0.1 density data. The APB schema has a fact table with 4
hierarchical dimensions: channel with 2 levels, time with 3 levels,
customer with 3 levels and product with 7 levels. We constructed a
cube over the fact table and materialized it inapb_cubetable.
Similar to the fact table, the cube has 4 dimensions -t(ime),
p(roduct), c(ustomer),h(channel), each represented as a single
column with all hierarchical levels encoded into a single value. The
cube had bitmap indexes on the dimensions and had 22,721,998
rows. The experiments were conducted on a 12 CPU, 336 Mhz,
shared memory machine with a total of 12 GB of memory. Per
commercial product, only relative units of time are reported.

Pushing predicates experiment. We used a spreadsheet query
which calculates ratio of sales for every product level to its 1st, 2nd
and 3rd parent in the product hierarchy. APB product hierarchy has
7 levels:prod, class, group, family, line division, andtop. Thus for a
product in theprod level, we calculate the share of its sales relative
to its correspondingclass, groupand family levels. Assuming that
the parent information of a product is stored in a dimension table
product_dtwith columnsp, parent1, parent2, parent3(product, its
parent, grand parent and great-grand parent respectively), the query
has the form:

S5
  SELECT
    s, share_1, share_2, share_3, p, c, h, t,
  FROM
    apb_cube
  SPREADSHEET
    REFERENCE ON
       (SELECT p, parent1, parent2, parent3
        FROM product_dt)
       DBY (p) MEA (parent1, parent2, parent3)

    PBY (c,h,t)  DBY (p)
    MEA (s, 0 share_1, 0 share_2, 0 share_3)
  RULES UPDATE
  (
  F1:  share_1[*] = s[cv(p)] / s[parent1[cv(p)]]
  F2:  share_2[*] = s[cv(p)] / s[parent2[cv(p)]]
  F3:  share_3[*] = s[cv(p)] / s[parent3[cv(p)]]
  )

The analyst indicates products of interest via a predicate onp in
the outer query. We studied three algorithms (namely thesubquery,
extended-pushingandformula-unfolding) for pushing predicates by
changing the selectivity (fraction of rows selected) of the predicat

Figure 2Pushing Predicates

As shown in Figure 2, we observed 5 to 20 times improvement
the query response time (serial execution) by pushing predicate
compared to not pushing them at all. In general, the improvem
can be arbitrarily large. Theextended-pushingand formula-
unfoldingalgorithms performed almost identically as expected a
their response times were predictable (Figure 2 shows only
former). Thesubquery pushingalgorithm offered a surprise as the
response time curve was not smooth. For low selectivity of t
predicates (up to 0.006) the optimizer chose nested loop jo
between the subquery and theapb_cube (see thesubquery-nested
loop curve). This was not the optimal choice and caused line
degradation in performance up to 3 times over the extende
pushing method. Beyond the 0.006 selectivity, the optimizer cho
more optimal hash join. However, the response time was still 20
worse than the response time for the extended-pushing meth
When we forced the optimizer to always chose hash join betwe
the subquery andapb_cube (seesubquery-forced hashgraph), the
response time for the subquery method was about 20% worse t
extended-pushing for the entire range of investigated selectivitie

Hash-Join vs. SQL Spreadsheet experiment. Many SQL
Spreadsheet operations can be expressed with standard ANSI
using joins and UNIONs. For example, query S5 can be expres
using joins three self joins ofabp_cube and a join toproduct_dt:

SELECT
   s, a1.s/a2.s AS share_1, a1.s/a3.s AS share_2,
   a1.s/a4.s AS share_3, p, c, h, t,
FROM
   apb_cube a1, apb_cube a1, apb_cube a3,
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   apb_cube a4,  product_dt p
WHERE
 a1.p=p.p &

a2.p=p.parent1 & a2.c=a1.c & a2.h=a1.h & a3.t=a1.t
a3.p=p.parent2 & a3.c=a1.c & a3.h=a1.h & a3.t=a1.t
a4.p=p.parent3 & a4.c=a1.c & a4.h=a1.h & a4.t=a1.t

The number of self joins is equal to the number formulas (sayN)
and all joins to the originalapb_cube(a1) are right outer joins. For
hash joins this requires construction ofN hash tables while our SQL
Spreadsheet needs only one hash access structure per spreadsheet.
Consequently there is a break even point Ni, when the cost of the
spreadsheet access structure is amortized, and spreadsheet
outperforms ANSI hash-join formulation as shown in Figure 4. In
the above query, Ni, is 3 (i.e, 3 rules). Above 14 rules, spreadsheet
execution is twice as fast as that using joins. In the experiment joins
and spreadsheet were processed serially and the access structures
for both fit in memory.

Figure 3Hash Join vs. SQL Spreadsheet function of # rules

Access Method - Hash Table.We tested the scalability of our
execution methods as a function of the number of formulas, and
memory available for the hash structure.

Figure 4 Scalability with number of formulas

Figure 4 shows an almost linear scalability between the response
time of a spreadsheet and the number of formulas. Each formula
came from query S5, and simulated a double joinapb_cube><

product_td>< apb_cube. In the experiment, the physical memory
was large enough to accommodate every individual partition of t
apb_cubewhich in our case was a maximum of 15MB - about 20%
of the cube. The formulas were processed in parallell (1
processors) with close to linear (about 80%) parallel efficiency.

Figure 5Scalability with size of physical memory

Figure 5 shows the performance of our access structure a
function of available memory. The memory size is expressed a
percentage of the size required to fit the largest partition of data
the hash access structure in physical memory. Recall from Sec
5, that we first partition the data on the PBY columns, and proce
one partition at a time to execute the formulas. In the experime
we executed a single formula, F1, from query S5:

  F1:  share_1[*] = s[cv(p)] / s[parent1[cv(p)]]

The formula accesses, within each PBY (c,h,t ) partition, sales
for a product and its parent. If a partition does not fit in memory w
incur an I/O if a referenced cell is not cached. In a severe case
memory shortage, each reference may be a cache miss, redu
our access method to an un-cached, nested loop join. In the cas
formula F1 which references a product and its parent, this occ
when the available memory is less than 30% of the largest partit
- see Figure 5. Thus our method works very well and outperform
equivalent simulations of formulas with joins (for hash, sort an
nested loop join methods) when the PBY partitions fit in memory
in those cases, we reduce the number of required joins. Note
the equivalent simulations must preformabp_cube >< product_dt
>< abp_cube, while with spreadsheet we effectively build acces
structure for only one joinabp_cube >< product_dt.For extreme
cases of memory shortage, we degrade to the equival
performance of simulation with nested loop joins. Observe that
these cases, hash join simulations would not perform better as t
would have to spill to disk all of its data.

7 Conclusions and future research

This paper extends SQL with a computational clause whi
allows us to treat a relation as a multi-dimensional array a
specify a set of formulas over it. The formulas replace multip
joins and UNION operations which must be performed fo
equivalent computation with current ANSI SQL. This not onl
allows for ease of programming, but also offers the RDBMS a
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opportunity to perform better optimizations as there are fewer
complex query blocks to optimize - an Achilles heel of many
RDBMSs. We also create a single run time access structure which
replaces multiple hash or sort structures needed for equivalent joins
and UNIONs. Our intent is an eventual migration of computations
from classical spreadsheets into the RDBMS. Such migration
would offer an unprecedented integration of business models which
are currently distributed among thousands of incompatible and
incomparable spreadsheets. In our model, the result of an SQL
Spreadsheet is a relation with well defined semantics and can easily
be compared to other SQL spreadsheets via joins, unions, and other
relational operations. The SQL Spreadsheet can be stored in a
relational view and hence, become known to tools through the
RDBMS catalog, thereby enhancing their cooperation.

There are several topics we are now investigating:
Materialized Views. A SQL Spreadsheet can be stored in a

materialized view [4], [5], [7] and providing incremental refresh on
this view would offer an automatic what-if analysis. Modification to
detail data would be incrementally propagated through the formulas
allowing us to observe the change. A rollback operation would
remove it. A significant performance improvement could be
achieved if a query with an SQL Spreadsheet were rewritten with
an MV containing another spreadsheet. In general this is an
undecidable problem; however, there are practical restrictions on
the formulas which make the problem solvable.

Parametric Models. ANSI SQL doesn’t provide a good
separation between data and computation. ANSI SQL views, which
could store SQL Spreadsheet, do not allow us to pass data to the
formulas during view invocation. We are working on extending the
SQL View model, such that tables or subqueries could be passed as
parameters to the SQL Spreadsheet formulas. Conversely, SQL
Spreadsheet could be passed to views as subqueries with an
important advantage of performing dynamic optimizations (see
Section 4).

Automatic Migration of Classic Spreadsheet to the RDBMS.
We would like to support all the classical spreadsheet functions in
the RDBMS so that it is easy to migrate classic spreadsheets into
the RDBMS. Another problem is that Classic Spreadsheets are very
unstructured with data intermixed with formulas and the latter
expressed in unreadable row-column references, which makes user
assisted translation necessary.

Access Models.Our initial implementation of the access method
was based on a B-tree supported by our RDBMS. This proved more
expensive than the current hash table mostly due to code path
length for the B-Tree. We are investigating a very light B-Tree
structure that could be useful as an alternate access method for
formulas which need ordering - see the ORDER BY formula clause
in Section 2. We are also investigating methods of reducing IO
when a hash partition cannot fit in the available memory, and the
formulas resemble these in query S5, i.e., scenarios in Figure 5. In
many of these cases there is a correlation between dimension values
on the left and right side, so re-clustering or ordering the data using
existing hash or sort merge join methods would reduce physical IO.
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