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SPRINGER CORRESPONDENCE FOR THE SPLIT SYMMETRIC PAIR

IN TYPE A

TSAO-HSIEN CHEN, KARI VILONEN, AND TING XUE

Abstract. In this paper we establish Springer correspondence for the symmetric pair
(SL(N), SO(N)) using Fourier transform, parabolic induction functor, and a nearby cy-
cle sheaves construction due to Grinberg. As applications, we obtain results on cohomology
of Hessenberg varieties and geometric constructions of irreducible representations of Hecke
algebras of symmetric groups at q = −1.

1. Introduction

In [CVX1] we have initiated a study of Springer correspondence for symmetric spaces, in
particular, in the split case of type A. There we compute Fourier transforms of IC sheaves
supported on certain nilpotent orbits using resolutions of singularities of nilpotent orbit
closures. In this paper we study the problem in general in the split case of type A replacing
the resolutions with a nearby cycle sheaves construction due to Grinberg [G1, G2]. We have
obtained partial results in [CVX1, CVX2].

Let us call an irreducible IC sheaf supported on a nilpotent orbit a nilpotent orbital
complex. We show that the Fourier transform gives a bijection between nilpotent orbital
complexes and certain representations of (extended) braid groups. We identify these repre-
sentations of (extended) braid groups and construct them explicitly in terms of irreducible
representations of Hecke algebras of symmetric groups at q = −1. This bijection can be
viewed as Springer correspondence for the symmetric pair (SL(N), SO(N)). Let us note
that the fact that representations of (affine) Hecke algebras at q = −1 arise in this situation
was already observed by Grojnowski in his thesis [Gr].

The proof of our main result, Theorem 4.1, makes use of a nearby cycle sheaves con-
struction due to Grinberg [G1, G2] and smallness property of maps associated to certain
θ-stable parabolic subgroups. In more details, Grinberg’s nearby cycle sheaves and their
twisted version produce IC sheaves whose Fourier transforms are supported on the nilpotent
cone. Those IC sheaves behave like “cuspidal sheaves” in the sense that they do not appear
as direct summands of parabolic inductions. On the other hand, the smallness property
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mentioned above implies a simple description of the images of parabolic induction functors
(Proposition 3.1, Proposition 3.2). Those results together with a counting lemma (Lemma
4.2) imply Theorem 4.1. As corollaries, we obtain criteria for nilpotent orbital complexes to
have full support Fourier transforms (Corollary 4.8, Corollary 4.9) and results on cohomology
of Hessenberg varieties (Theorem 5.1).

Our method appears to be applicable to general symmetric pairs or polar representations
studied in [G2] and we hope to return to this in future work.

Let us mention that in [LY], the authors show that one can obtain all nilpotent orbital
complexes using spiral induction functors introduced in [LY] (in fact, they consider more
general cyclically graded Lie algebras settings). Using their results and Theorem 4.1, we show
that all irreducible representations of Hecke algebras of symmetric groups at q = −1 appear
in the intersection cohomology of of Hessenberg varieties, with coefficient in certain local
systems (see Theorem 6.1). This gives geometric constructions of irreducible representations
of Hecke algebras of symmetric groups at q = −1 and provides them with a Hodge structure.

The paper is organized as follows. In Section 2 we recall some facts about symmetric pairs
and introduce a class of representations of equivariant fundamental groups. In Section 3 we
study parabolic induction functors for certain θ-stable parabolic subgroups. In Section 4,
we prove Theorem 4.1: the Fourier transform defines a bijection between the set of nilpo-
tent orbital complexes and the class of representations of equivariant fundamental groups
introduced in Section 2. In Section 5 and Section 6, we discuss applications of our results
to cohomology of Hessenberg varieties and representations of Hecke algebras of symmetric
groups at q = −1. Finally, in Section 7, we propose a conjecture that gives a more precise
description of the bijection in Theorem 4.1.

Acknowledgements. We thank Misha Grinberg for helpful conversations and for pro-
viding a proof of Theorem 4.4; an extension of his earlier work in [G2]. TC thanks Cheng-
Chiang Tsai for useful discussions and thanks the Institute of Mathematics Academia Sinica
in Taipei for support, hospitality, and a nice research environment. KV and TX thank the
Research Institute for Mathematical Sciences in Kyoto for support, hospitality, and a nice
research environment.

2. Preliminaries

2.1. Notations. For e ≥ 2, a partition λ of a positive integer k is called e-regular if the
multiplicity of any part of λ is less than e. In particular, a partition is 2-regular if and only
if it has distinct parts. Let us denote by P(k) the set of all partitions of k and by P2(k) the
set of all 2-regular partitions of k.

We denote by Hk,−1 the Hecke algebra of the symmetric group Sk with parameter −1.
More precisely, Hk,−1 is the C-algebra generated by Ti, i = 1, . . . , k − 1, with the following
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relations

TiTj = TjTi if |i− j| ≥ 2, i, j ∈ [1, k − 1], TiTi+1Ti = Ti+1TiTi+1, i ∈ [1, k − 2],

T 2
i = q + (q − 1)Ti, where q = −1, i ∈ [1, k − 1].

It is shown in [DJ] that the set of isomorphism classes of irreducible representations of Hk,−1

is parametrized by P2(k). For µ ∈ P2(k), we write Dµ for the irreducible representation of
Hk,−1 corresponding to µ.

For a real number a, we write [a] for its integer part.

2.2. The split symmetric pair (SL(N), SO(N)). Let G = SL(N) and θ : G → G an
involution such that K = Gθ = SO(N) and write g = LieG. We have g = g0 ⊕ g1, where
θ|gi = (−1)i. The pair (G,K) is a split symmetric pair. We also think of the pair (G,K)
concretely as (SL(V ), SO(V )), where V is a vector space of dimension N equipped with a
non-degenerate quadratic formQ such that SO(V ) = SO(V,Q). We write the non-degenerate
bilinear form associated to Q as 〈 , 〉.

Let grs denote the set of regular semisimple elements in g and let grs1 = g1∩grs. Similarly,
let greg denote the set of regular elements in g and let greg1 = g1 ∩ greg.

Let N be the nilpotent cone of g and let N1 = N∩g. When N is odd, the set of K-orbits in
N1 is parametrized by P(N). When N is even, the set of O(N)-orbits in N1 is parametrized
by P(N), moreover, each O(N)-orbit remains one K-orbit if λ has at least one odd part,
and splits into two K-orbits otherwise. For λ ∈ P(N), we write Oλ for the corresponding
nilpotent K-orbit in N1 when λ has at least one odd part, and write OI

λ and OII
λ for the

corresponding two nilpotent K-orbits in N1 when λ has only even parts.

Let a be a maximal abelian subspace of g1. We have the “little” Weyl group

W = NK(a)/ZK(a) = SN .

2.3. Equivariant fundamental group and its representations. As was discussed in
[CVX1], the equivariant fundamental group

πK
1 (grs1 )

∼= ZK(a)⋊ BN
∼= (Z/2Z)N−1 ⋊BN ,

where BN is the braid group of N strands and it acts on

ZK(a) ∼= {(i1, . . . , iN) ∈ (Z/2Z)N |
N∑

k=1

ik = 0} ∼= (Z/2Z)N−1

via the natural map BN → SN . For simplicity we write

B̃N = (Z/2Z)N−1 ⋊ BN and IN = (Z/2Z)N−1.

It is easy to see that the action of BN on I∨N has [N/2] + 1 orbits. We choose a set of
representatives χm ∈ I∨N , 0 ≤ m ≤ [N/2], of the BN -orbits as follows. Let τ ′i ∈ (Z/2Z)N be



4 TSAO-HSIEN CHEN, KARI VILONEN, AND TING XUE

the element with all entries 0 except the i-th position. Then {τi = τ ′i+τ
′
i+1, i = 1, . . . , N−1},

is a set of generators for IN . For 0 ≤ m ≤ [N/2], we define a character χm as follows:

(2.1) χm(τm) = −1 and χm(τi) = 1 for i 6= m.

For χ ∈ I∨N , we set
Bχ = StabBN

χ.

Let si, i = 1, . . . , N − 1, be the simple reflections in W = SN . It is easy to check that

(2.2)
StabSN

(χm) = 〈si, i 6= m〉 ∼= Sm × SN−m if m 6= N/2, and

StabSN
(χm) contains Sm × Sm as an index 2 normal subgroup if m = N/2.

Let us define

Bm,N−m = the inverse image of Sm × SN−m
∼= 〈si, i 6= m〉 under the map BN → SN .

Then it follows from (2.2) that

(2.3)
Bχm

= Bm,N−m when m 6= N/2,

and Bχm
contains Bm,N−m as an index 2 normal subgroup when m = N/2.

Let σi, i = 1, . . . , N − 1, be the standard generators of BN which are lifts of the si’s under
the map BN → SN . Then Bm,N−m is generated by σi, i 6= m, and σ2

m. We have a natural
quotient map

(2.4) C[Bm,N−m] ։ Hm,−1 ×HN−m,−1
∼= C[Bm,N−m]/〈(σi − 1)2, i 6= m, σ2

m − 1〉.

Let us write Hm,−1 ×HN−m,−1 = Hχm,−1. We consider a family of representations of B̃N

as follows. For 0 ≤ m ≤ [N/2], we define

(2.5) Lχm
:= Ind

C[BN ]
C[Bm,N−m]Hχm,−1

∼= C[BN ]⊗C[Bm,N−m] Hχm,−1

where in the tensor product C[Bm,N−m] acts on Hχm,−1 via the quotient map (2.4) and on

C[BN ] by right multiplication. The module Lχm
has a natural B̃N -action defined as follows.

We let BN act on Lχm
by left multiplication and we let IN act on Lχm

via a.(b ⊗ v) =
((b.χm)(a)) (b⊗v) for a ∈ IN , b ∈ BN and v ∈ Hχm,−1. We will view Lχm

as a representation

of the equivariant fundamental group B̃N in this manner.

We will next identify the composition factors of the modules Lχm
. Let µ1 ∈ P2(m) and

µ2 ∈ P2(N −m), m ∈ [0, [N/2]]. Proceeding just as in the definition of Lχm
, one obtains the

following representation of B̃N :

(2.6) Vµ1,µ2 := Ind
C[BN ]
C[Bm,N−m](Dµ1 ⊗Dµ2) ∼= C[BN ]⊗C[Bm,N−m] (Dµ1 ⊗Dµ2).

Using (2.3), one readily checks that Vµ1,µ2 is an irreducible representation of B̃N when m 6=
N/2, or when m = N/2 and µ1 6= µ2. When m = N/2 and µ1 = µ2, Vµ1,µ2 breaks into

the direct sum of two non-isomorphic irreducible representations of B̃N , which we denote by
V I
µ1,µ2 and V II

µ1,µ2 , i.e., we have

(2.7) Vµ,µ ∼= V I
µ,µ ⊕ V II

µ,µ.
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Moreover,

when m 6= N/2, Vµ1,µ2
∼= Vν1,ν2 if and only if (µ1, µ2) = (ν1, ν2);

when m = N/2, Vµ1,µ2
∼= Vν1,ν2 if and only if

either (µ1, µ2) = (ν1, ν2) or (µ1, µ2) = (ν2, ν1).

As the Dµ1 ⊗Dµ2 are the composition factors of Hχm,−1 we conclude:

Lemma 2.1. The composition factors of Lχm
consist of the Vµ1,µ2, µ1 6= µ2, µ1 ∈ P2(m),

µ2 ∈ P2(N − m), and when N = 2m we have two additional composition factors V I
µ,µ and

V II
µ,µ for µ ∈ P2(m).

3. Maximal θ-stable parabolic subgroups and parabolic induction

Let L be a θ-stable Levi subgroup contained in a θ-stable parabolic subgroup P ⊂ G. We
write

l = LieL, p = LieP , LK = L ∩K, PK = P ∩K, l1 = l ∩ g1, p1 = p ∩ g1.

We will make use of the parabolic induction functor Indg1
l1⊂p1

: DLK
(l1) → DK(g1) defined in

[H, L].

In this section, we study the induction functor with respect to a chosen family of Lm ⊂ Pm,
1 ≤ m < N/2, and two more pairs Ln,ω ⊂ P n,ω, ω = I, II, if N = 2n, where Pm (resp. P n,ω)
is a maximal θ-stable parabolic subgroup and Lm (resp. Ln,ω) is a θ-stable Levi subgroup of
Pm (resp. P n,ω) defined as follows.

Fix a basis {ei, 1 ≤ i ≤ N} of V such that 〈ei, ej〉 = δi+j,N+1.

For 1 ≤ m < N/2, we define Pm to be the parabolic subgroup of G that stabilizes the flag

0 ⊂ V 0
m ⊂ V 0⊥

m ⊂ CN ,

where V 0
m = span{ei, 1 ≤ i ≤ m}. We define Lm to be the θ-stable Levi subgroup of Pm

which consists of diagonal block matrices of sizes m,N − 2m,m.

When N = 2n, for ω = I, II, we define P n,ω to be the parabolic subgroup of G that
stabilizes the flag

0 ⊂ V ω
n ⊂ V ω⊥

n ⊂ C2n,

where V I
n = span{ei, 1 ≤ i ≤ n} and V II

n = span{ei, 1 ≤ i ≤ n − 1, en+1}. Let Ln,ω be a
θ-stable Levi subgroup of P n,ω.

According to [BH], every maximal θ-stable parabolic subgroup of G is K-conjugate to one
of the above form.

Let pm = Lie Pm, pm1 = pm∩g1, and (nPm)1 = nPm∩g1, where nPm is the nilpotent radical
of pm, etc.

Proposition 3.1. We have:
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(1) The map
πN
m : K ×Pm

K (nPm)1 → N1, (k, x) 7→ Adk(x)

is a small map onto its image, generically one-to-one.
(2) The map

π̌N
m : K ×Pm

K pm1 → g1, (k, x) 7→ Adk(x).

is a small map onto its image, generically one-to-one.

The same holds for the two maps π2n,ω
n and π̌2n,ω

n defined using P n,ω, ω = I, II.

We define

(3.1) gm1 = Im π̌N
m , 1 ≤ m < N/2, gn,ω1 = Im π̌2n,ω

n , ω = I, II.

For m < N/2, gm1 consists of elements in g1 with eigenvalues a1, a1, . . . , am, am, aj, j ∈

[2m+ 1, N ], where
∑m

k=1 2ak +
∑N

j=2m+1 aj = 0. Let

Y r
m = {x ∈ g

reg
1 | x has eigenvalues a1, a1, . . . , am, am, aj, j ∈ [2m+ 1, N ],

where ai 6= aj for i 6= j}.

One checks readily that Y r
m = gm1 .

Consider the case m = N/2 = n. For ω = I, II, let

Y r,ω
n = {x ∈ g

reg
1 | x has eigenvalues a1, a1, . . . , an, an, where ai 6= aj for i 6= j,

and the nilpotent part of x lies in the orbit Oω
2n},

where Oω
2n is the nilpotent orbit given by the partition 2m and defined by the equation

Im π2n,ω
n = Ōω

2n . Then Y
r,ω
n is an open dense subset in g

n,ω
1 .

Let (pm1 )
r = pm1 ∩ Y r

m and (lm1 )
rs = lm1 ∩ (lm)rs.

Proposition 3.2. (1) There is a natural surjective map

(3.2) πK
1 (Y r

m) ։ π
Lm
K

1 ((lm1 )
rs) ∼= Bm × B̃N−2m

such that for an Lm
K-equivariant local system T on (lm1 )

rs associated to a π
Lm
K

1 ((lm1 )
rs)-

representation E, we have

Indg1
lm
1
⊂pm

1
IC(lm1 ,T)

∼= IC(gm1 ,T
′),

where T′ is the K-equivariant local system on Y r
m associated to the representation of

πK
1 (Y r

m) which is obtained from E by pull-back under the map (3.2).

(2) We have a natural surjective map

(3.3) πK
1 (Y r,ω

n ) ։ π
Ln,ω
K

1 ((ln,ω1 )
rs
) ∼= Bn, ω = I, II,

such that for an Ln,ω
K -equivariant local system T on (ln,ω1 )rs associated to a π

Ln,ω
K

1 ((Ln,ω
1 )rs)-

representation E, we have

Indg1
l
n,ω
1

⊂p
n,ω
1

IC(ln,ω1 ,T) ∼= IC (gn,ω1 ,T′) ,
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where T′ is the K-equivariant local system on Y r,ω
n associated to the representation of

πK
1 (Y r,ω

n ) which is obtained from E by pull-back under the map (3.3).

3.1. Proof of Proposition 3.1. We begin with the proof of (1). Consider the following
projection

τNm : {(x, 0 ⊂ Vm ⊂ V ⊥
m ⊂ V = CN) | x ∈ g1, xVm = 0, xV ⊥

m ⊂ Vm} → N1.

When m 6= N/2, the map τNm can be identified with the map πN
m . When N = 2m, the image

of the map τ 2mm has two irreducible components, i.e., closures of the two orbits OI
2m and OII

2m .
The two maps πN,I

m and πN,II
m can be identified with the map τ 2mm restricted to the inverse

image of ŌI
2m and ŌII

2m respectively. Thus it suffices to show that

(3.4) the map τNm is small over its image and generically one-to-one.

When m 6= N/2, one can check that the image of τNm is as follows

Im τNm = Ō3m1N−3m if N ≥ 3m, Im τNm = Ō3N−2m23m−N if N < 3m.

Assume that N ≥ 3m and x ∈ O3m1N−3m . Then (τNm )−1(x) = Im x2. Assume that N < 3m
and x ∈ O3N−2m23m−N . Then (τNm )−1(x) = ker x. This proves that τNm is generically one-to-
one.

Let x ∈ O3i2j1N−3i−2j ⊂ Im τNm . We assume that 3i2j1N−3i−2j 6= 3m1N−3m if N ≥ 3m, and
3i2j1N−3i−2j 6= 3N−2m23m−N if N < 3m. It suffices to show that

dim(τNm )−1(x) < codimIm τNm
O3i2j1N−3i−2j/2.

Let x0 ∈ O2j1N−3i−2j ⊂ Im τN−3i
m−i . (Note that τN−3i

m−i is defined since m− i ≤ (N −3i)/2.) One
checks readily that

(τNm )−1(x) ∼= (τN−3i
m−i )−1(x0) and codimIm τNm

O3i2j1N−3i−2j = codimIm τN−3i
m−i

O2j1N−3i−2j .

Thus it suffices to show that

dim(τN−3i
m−i )−1(x0) < codimIm τN−3i

m−i
O2j1N−3i−2j/2.

Let us write

ΩN
m,j = (τNm )−1(ζj) for ζj ∈ O2j1N−2j ⊂ Im τNm

and aNm,j = codimIm πN
m
O2j1N−2j = m(2N − 3m)− j(N − j).

To prove that the map τNm is small, we are reduced to proving that

(3.5) dimΩN
m,j <

aNm,j

2
.

To prove this we recall the partitioning of ΩN
m,j into Ω

N,k
m,j given in [CVX2, Section2] as follows:

ΩN,k
m,j = {(0 ⊂ Vm ⊂ V ⊥

m ⊂ V = CN) | dim(Vm ∩ ζjV ) = k}.

We have

ΩN,k
m,j 6= ∅ ⇔ max{m+ j −N/2, j/2} ≤ k ≤ min{j,m}.
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Recall that we have a surjective map ΩN,k
m,j → OGr(j−k, j)×OGr(m−k,N−2j) with fibers

being affine spaces A(m−k)(j−k). We have

dimΩN,k
m,j = −2k2 + (−N + 3j + 2m+ 1) k +mN −mj −

j2 + 3m2 + j +m

2
.

One checks that

if j ≥ N − 2m, dimΩN,k
m,j is maximal when k = m+ j − [

N

2
],

if j < N − 2m, dimΩN,k
m,j is maximal when k = [

j + 1

2
].

Thus a direct calculation shows that

dim(πN
m)−1(ζj) =





aNm,j

2
+ j+m−N

2
if j ≥ N − 2m and N even, or j < N − 2m and j odd

aNm,j

2
− m

2
if j ≥ N − 2m and N odd, or j < N − 2m and j even.

This proves (3.5) (note that m + j < N). The proof of (3.4) is complete. This finishes the
proof of the claim (1) in the proposition.

It then follows that we have

(3.6) (πN
m)∗C[−] ∼= IC(Ōλ,C), (resp. ((π

N
N/2)

ω)∗C[−] ∼= IC(Ōω
λ ,C), ω = I, II, )

where
λ = 3m1N−3m if N ≥ 3m, λ = 3N−2m23m−N if N < 3m.

Note that K ×Pm
K pm1 is the orthogonal complement of K ×Pm

K (nPm)1 in the trivial bundle
K × g1 over K/Pm

K . By the functoriality of Fourier transform, we have that

(3.7) F
(
(πN

m)∗C[−]
)
∼= (π̌N

m)∗C[−].

Since Fourier transform sends simple perverse sheaves to simple perverse sheaves, we can
conclude from (3.6) and (3.7) that

(π̌N
m)∗C[−] ∼= IC(Im π̌N

m ,C).

This proves the claim (2) of the proposition. The argument for (π̌2n
n )ω, ω = I, II, is the same.

The proof of the proposition is complete.

3.2. Proof of Proposition 3.2. Recall that the parabolic induction functor

Indg1
l1⊂p1

: DLK
(l1) → DK(g1)

can be defined as follows ([H, L]). Let

pr : p1 = l1 ⊕ (nP )1 → l1

be the natural projection map, where nP is the nilpotent radical of p. Consider the diagram

(3.8) l1 p1
pr

oo K × p1
p1

oo
p2

// K ×PK p1
π̌

// g1 .

The maps in (3.8) are K ×PK-equivariant, where K acts trivially on l1, p1, by left multipli-
cation on the K-factor on K×p1 and on K×PK p1, and by adjoint action on g1, and PK acts
on l1 by a.l = pr(Ad a(l)), by adjoint action on p1, by a.(k, p) = (ka−1,Ad a(p)) on K × p1,
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trivially on K ×PK p1 and on g1. Let A be a complex in DLK
(l1). Then (pr ◦p1)

∗A ∼= p∗2A
′

for a well-defined complex A′ in DK(K ×PK p1). Define

Indg1
l1⊂p1

A = π̌!A
′[dimP − dimL].

It is shown in [H, L] that the induction functor commutes with Fourier transform, i.e.,

(3.9) F(Indg1
l1⊂p1

A) ∼= Indg1
l1⊂p1

(F(A)).

Note that we have that

(3.10) Lm
K
∼= GL(m)× SO(N − 2m) and (lm)1 ∼= gl(m)⊕ sl(N − 2m)1.

To ease notations, let us write now that L = Lm, P = Pm, and π̌ = π̌N
m etc.

We first show that

(3.11)
The map π̌ (resp. π̌ω

n), when restricted to π̌−1(Y r) (resp. π̌−1(Y r,ω
n )),

is one-to-one.

Each element in Y r is K-conjugate to an element x0 ∈ p1 (see [KR, Theorem 7]), where

(3.12)

x0ei = aiei, x0eN+1−i = ei + aieN+1−i for i ∈ [1, m],

x0ej = bjej + cjeN+1−j, x0e2n+2−j = cjej + bjeN+1−j for j ∈ [m+ 1, [N/2]]

x0e(N+1)/2 = b(N+1)/2e(N+1)/2 if N is odd

and the numbers ai, i = 1, . . . , m, bj + cj , bj − cj , j = m+ 1, . . . , [N/2], b(N+1)/2 are distinct.

It suffices to show that π̌−1(x0) consists of one point. Note that π̌−1(x0) consists of x0-
stable m-dimensional isotropic subspaces of V . It is clear that U0 := span{e1, . . . , em} ∈
π̌−1(x0). Assume that Um ∈ π̌−1(x0). We can extend Um to a complete flag that is x0-stable.
Since x0 is regular, all x0-stable flags are in one W -orbit. Thus there exists w ∈ W such that
Um = wU0. If Um 6= U0, then there exists a ei, i ∈ [1, m], such that wei = ej and j /∈ [1, m].
Then we have either 〈x0ej , ej〉 6= 0 or 〈ej , ej〉 6= 0. But both x0ej and ej are in Um. This
contradicts the fact that Um is isotropic. This proves (3.11) for π̌m, m < N/2. The proof for
π̌ω
n is entirely similar and omitted.

Now we show that

(3.13) The image of pr1 under the map pr : p1 → l1 is lrs1 .

Let x ∈ pr1. By the above proof of (3.11) we can assume that Ad(k)x = x0 for some k ∈ K,
where x0 is as in (3.12). Thus (k, x) ∈ π̌−1(x0). It follows from (3.11) that (k, x) = (1, x0) ∈
K ×PK p1. Hence k ∈ PK . Assume that k = lu where l ∈ LK and u ∈ UK = U ∩ K (U
is the unipotent radical of P ). Then we have pr(x) = pr(Ad(u−1l−1)x0) = pr(Ad(l−1)x0) =
Ad(l−1) pr(x0). It is clear that pr(x0) ∈ lrs. Thus (3.13) follows.

By (3.11) and (3.13), we have the following diagram, when restricting (3.8) to Y r,

lrs1 pr1
pr

oo K × pr1
p1

oo
p2

// K ×PK pr1
π̌

// Y r .
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Using (3.11), we see that

πK
1 (Y r) ∼= πK×PK

1 (Y r) ∼= πK×PK

1 (K ×PK pr1)
∼= πK×PK

1 (K × pr1)
∼= πPK

1 (pr1).

Finally, the canonical map πPK

1 (pr1) → πPK

1 (lrs1 )
∼= πLK

1 (lrs1 ) is surjective. We see this as
follows. First, the canonical map above can be identified with the canonical map πPK

1 (pr1) →
πPK

1 (pr−1(lrs1 )). Now, because pr1 is an open subset in pr−1(lrs1 ), which is smooth, the map
π1(p

r
1) → π1(pr

−1(lrs1 )) is a surjection. To conclude that this property persists when we pass
to the equivariant fundamental group it suffices to remark that the equivariant fundamen-
tal group is always a quotient of the ordinary fundamental group as long as the group is
connected. We now conclude the argument making use of Proposition 3.1.

4. Fourier transform of nilpotent orbital complexes for (SL(N), SO(N))

Consider the symmetric pair (G,K) = (SL(N), SO(N)). Let us write AN for the set of
all simple K-equivariant perverse sheaves on N1 (up to isomorphism), that is, the set of
IC complexes IC(O,E), where O is a K-orbit in N1 and E is an irreducible K-equivariant
local system on O (up to isomorphism). An IC complex in AN is called a nilpotent orbital
complex.

Let n = [N/2]. We set

ΣN = {(ν;µ1, µ2) | 0 ≤ m ≤ n, ν ∈ P(m)

0 ≤ k ≤ n−m, µ1 ∈ P2(k), µ
2 ∈ P2(N − 2m− k)} .

In the case when N is even, we identify the triple (ν;µ1, µ2) with (ν;µ2, µ1) if |µ1| = |µ2|
and µ1 6= µ2, and the triples (ν;µ, µ) attain two labels I and II.

Given a triple (ν;µ1, µ2) ∈ ΣN (resp. (ν;µ, µ)ω ∈ ΣN , ω = I, II), where |ν| = m < N/2,
we define an irreducible K-equivariant local system T(ν;µ1, µ2) (resp. T(ν;µ, µ)ω) on Y r

m

(here we write Y r
0 = grs1 ) as follows. We obtain a map

τ : πK
1 (Y r

m) → Bm × B̃N−2m → Sm × B̃N−2m

by composing the map in (3.2) with the natural map Bm×B̃N−2m → Sm×B̃N−2m. Note that
the map τ is surjective. Then T(ν;µ1, µ2) (resp. T(ν;µ, µ)ω) is the irreducible local syste
associated to the irreducible representation of πK

1 (Y r
m) given by pulling back the irreducible

representation ρν ⊠ Vµ1,µ2 (resp. ρν ⊠ V ω
µ,µ) via the map τ ; here ρν ∈ S∨

m is the irreducible
representation of Sm corresponding to ν ∈ P(m) and Vµ1,µ2 (resp. V ω

µ,µ) is the irreducible

representation of B̃N−2m defined in (2.5) (resp. (2.7)).

Assume now that N = 2n. Given a triple (ν; ∅, ∅)ω ∈ ΣN , ω = I, II, we define the
irreducible K-equivariant local system T(ν; ∅, ∅)ω on (Y r

n )
ω as the local system associated

to the representation of πK
1 ((Y r

n )
ω) obtained by pulling back the representation ρν ∈ S∨

n

corresponding to ν ∈ P(n) under that map

πK
1 ((Y r

n )
ω) ։ Bn ։ Sn .
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Now we are ready to formulate our main result:

Theorem 4.1. The Fourier transform F : PervK(g1) → PervK(g1) induces a bijection

F : AN
∼
−→
{
IC
(
gm1 ,T(ν;µ

1, µ2)
)
|
(
ν;µ1, µ2

)
∈ ΣN , µ

1 6= µ2, |ν| = m < N/2
}

∪{IC (gm1 ,T(ν;µ, µ)
ω) | (ν;µ, µ)ω ∈ ΣN , ω = I, II, |ν| = m < N/2} (if N is even),

∪{IC (gn,ω1 ,T(ν; ∅, ∅)ω) | (ν; ∅, ∅)ω ∈ ΣN , ω = I, II, |ν| = n = N/2} (if N is even),

where g01 = g1, g
m
1 and g

n,ω
1 are defined in (3.1).

4.1. Proof of Theorem 4.1. Let p(k) denote the number of partitions of k and let q(k)
denote the number of 2-regular partitions of k. We write p(0) = q(0) = 1. Let us define

(4.1) d(k) =
k∑

s=0

q(s)q(2k + 1− s),

(4.2) e(k) =

k−1∑

s=0

q(s) q(2k − s) +
q(k)2 + 3q(k)

2
.

Lemma 4.2. We have

(4.3) |A2n+1| =
n∑

k=0

p(n− k)d(k) = |Σ2n+1|

(4.4) |A2n| =
n∑

k=0

p(n− k)e(k) = |Σ2n|.

Proof. Note that

(4.5)
∑

k≥0

p (k) xk =
∏

s≥1

1

1− xs
and

∑

k≥0

q(k)xk =
∏

s≥1

(1 + xs) .

Let p(l, k) denote the number of partitions of l into (not necessarily distinct) parts of exactly
k different sizes. We have (see for example [GS])

(4.6)
∑

l,k≥0

p(l, k)xlyk =
∏

s≥1

(
1 +

yxs

1− xs

)
.

Assume first that N = 2n+ 1. Note that if λ is a partition of N with parts of k different
sizes, then the component group AK(x) of the centralizer ZK(x) for x ∈ Oλ is (Z/2Z)k−1.
Thus there are 2k−1 irreducible K-equivariant local systems on Oλ (up to isomorphism).
Hence using (4.6), we see that

|A2n+1| =
∑

k≥0

p (2n + 1, k) 2k−1 = Coefficient of x2n+1 in
1

2

∏

s≥1

(
1 + xs

1− xs

)
.
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Using (4.5), we see that

(4.7)
∏

s≥1

(
1 + xs

1− xs

)
=

(
∑

k≥0

p (k)x2k

)(
∑

k≥0

q (k)xk

)2

.

It then follows that |A2n+1| is the desired number. The fact that |Σ2n+1| equals the same
number is clear from the definition. Thus (4.3) holds.

Assume now that N = 2n. Suppose that λ is a partition of N with parts of exactly k
different sizes. If λ has at least one odd part, then there are 2k−1 irreducible K-equivariant
local systems on Oλ (up to isomorphism). If λ has only even parts, then there are 2k

irreducible K-equivariant local systems on each Oω
λ (up to isomorphism), ω = I, II.

Thus we have that

|A2n| =
∑

k≥0

p(2n, k) 2k−1 +
∑

k≥0

p(n, k) 3 · 2k−1

= Coefficient of x2n in
1

2

∏

s≥1

(
1 + xs

1− xs

)
+ Coefficient of xn in

3

2

∏

s≥1

(
1 + xs

1− xs

)

=
1

2

(
n∑

k=0

p(n− k)

(
2

k−1∑

s=0

q(s)q(2k − s) + q(k)2

))
+

3

2

n∑

k=0

p(n− k)q(k) =

n∑

k=0

p(n− k)e(k).

Here we have used (4.7) and the following equation

∏

s≥1

(
1 + xs

1− xs

)
=

(
∑

k≥0

p (k)xk

)(
∑

k≥0

q (k)xk

)
.

Again the fact that |Σ2n| equals the desired number is clear from the definition.

�

Note that the IC sheaves appearing on the right hand side of the Fourier transform map
F in Theorem 4.1 are pairwise non-isomorphic. Thus, in view of Lemma 4.2, Theorem 4.1
follows from:

Proposition 4.3. Let (ν;µ1, µ2) ∈ ΣN (resp. (ν;µ, µ)ω ∈ ΣN , ω = I, II) and write m = |ν|.
The Fourier transform of IC(gm1 ,T(ν;µ

1, µ2)) (resp. IC(gm1 ,T(ν;µ, µ)
ω), IC(gn,ω1 ,T(ν; ∅, ∅)ω))

is supported on a K-orbit in N1.

Proof. Let n = [N/2]. We begin the proof by showing that for (∅;µ1, µ2) ∈ ΣN (resp.
(∅;µ, µ)ω ∈ ΣN , ω = I, II)

(4.8)
The Fourier transform of IC

(
g1,T

(
∅;µ1, µ2

))
(resp. IC (g1,T (∅;µ, µ)ω))

is supported on a K-orbit in N1.

Recall that T(∅;µ1, µ2)) (resp. T (∅;µ, µ)ω) is the irreducible K-equivariant local system on
grs1 corresponding to Vµ1,µ2 (resp. V ω

µ,µ).
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We make use of a slight extension of Grinberg’s work [G1, G2]. This extension is due to
Grinberg who communicated it to us. Consider the adjoint quotient map f : g1 → g1 �K ∼=
a/W . The elements χ ∈ I∨N correspond to K-equivariant local systems Lχ on grs1 . Let us
write Pχ ∈ PervK(N1) for the nearby cycle sheaf for the family f : g1 → g1 �K ∼= a/W with
coefficients in the local system Lχ. Note that in order to perform this construction we have
to pass to a cover of a/W if χ is non-trivial. Also, observe that Pχ

∼= Pb.χ for b ∈ BN .

Let us consider the χm, 0 ≤ m ≤ n, defined in (2.1). We write Lχm
for the K-equivariant

local system on grs1 corresponding to the representation Lχm
of πK

1 (grs1 ) = B̃N defined in (2.6).

Theorem 4.4. (Grinberg) We have

(4.9) F(Pχm
) ∼= IC(g1,Lχm

) .

In [G2, Theorem 6.1] this statements is proved when m = 0, i.e., in the case of the trivial
local system Lχ0

. To treat the general case only a few changes to the argument are necessary.
We explain these modification briefly. Note that in [G2] Grinberg works in the more general
context of polar representations. In this context [G2, Theorem 6.1] is a direct application
of [G2, Theorem 5.2] and an explicit, well-known, calculation in the case of quadrics in Ck,
i.e. the case of SO(k) acting on Ck. In our case k = 2. To extend this argument to local
systems Lχm

we have to insert the local system into the Picard-Lefschetz construction of an
explicit basis of F(Pχm

)ℓ at a chosen base point ℓ ∈ grs1 as in section 4 of [G2]. Once this is
done we can again reduce the result to an explicit calculation in the case of SO(2) acting on
C2 but this time with a −1-local system on the the regular semisimple points.

By Lemma 2.1 the IC sheaves IC(g1,T(∅;µ
1, µ2)) and IC (g1,T (∅;µ, µ)ω) are composition

factors of the IC(g1,Lχm
). Hence (4.8) follows from (4.9).

Now let (ν;µ1, µ2) ∈ ΣN with |ν| = m > 0. Let

K(ρν ⊠ Vµ1,µ2) denote the irreducible LK-equivariant local system on lrs1

associated to the irreducible representation of πLK

1 (lrs1 ) obtained as a pullback

of ρν ⊠ Vµ1,µ2 via the map πLK

1 (lrs1 )
∼= Bm × B̃N−2m ։ Sm × B̃N−2m.

By Proposition 3.2, we have that

(4.10) IC
(
gm1 ,T(ν;µ

1, µ2)
)
= Indg1

lm
1
⊂pm

1
IC (l1,K(ρν ⊠ Vµ1,µ2)) .

Since Fourier transform commutes with induction (see (3.9)), it suffices to show that
the Fourier transform of IC (l1,K(ρν ⊠ Vµ1,µ2)) is supported on an LK-nilpotent orbit in l1.
This follows from the classical Springer correspondence for gl(m) and (4.8) applied to the
symmetric pair (SL(N − 2m), SO(N − 2m)) (see (3.10)).

The proof for IC(gm1 ,T(ν;µ, µ)
ω), IC(gn,ω1 ,T(ν; ∅, ∅)ω) proceeds in the same manner; in the

latter case one uses the corresponding θ-stable Levi and parabolic subgroups. We omit the
details.

�
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4.2. More on induction. Let (ν;µ1, µ2) ∈ ΣN . Assume that |ν| = m > 0. Let Lm ⊂ Pm

be as in §3. Recall that = Lm
K
∼= GL(m)× SO(N − 2m) and lm1

∼= gl(m)⊕ sl(N − 2m)1.

A nilpotent Lm
K-orbit in lm1 is given by a nilpotent orbit in gl(m) and a nilpotent SO(N −

2m)-orbit in sl(N − 2m)1. Thus the nilpotent Lm
K-orbits in lm1 are parametrized by P(m)×

P(N − 2m), with extra labels I and II for partitions in P(N − 2m) with all parts even. For
α ∈ P(m) and β ∈ P(N − 2m), we denote by Oα,β (or Oω

α,β) the nilpotent Lm
K-orbit in lm1

given by the nilpotent orbit Oα in gl(m) and the nilpotent SO(N − 2m)-orbit Oβ (or Oω
β ) in

sl(N − 2m)1.

In the following we will omit the labels I and II with the understanding that everything
should have corresponding labels, for example, Oω

λ = Indg1
lm
1
⊂pm

1
Oω

α,β etc.

Proposition 4.5. Let α ∈ P(m) and β ∈ P(N − 2m). Let Oλ = Indg1
lm
1
⊂pm

1
Oα,β, i.e.,

λi = βi + 2αi. Assume that u ∈ Oα,β and v ∈ Oλ ∩ (u + (nPm)1). We have a natural
surjective map

ψ : AK(v) ։ ALm
K
(u).

Moreover, let C ⊠ E be an Lm
K-equivariant irreducible local system on Oα,β and let Ẽ be the

K-equivariant local system on Oλ obtained from C⊠E via the map ψ above. Then IC(Oλ, Ẽ)
is a direct summand of Indg1

lm
1
⊂pm

1
IC(Oν,µ,C⊠ E).

Corollary 4.6. If moreover (Oµ,E) ∈ AN−2m is a pair such that F(IC(Oµ,E)) has full
support, then we have

Indg1
lm
1
⊂pm

1
IC(Oν,µ,C⊠ E) ∼= IC(Oλ, Ẽ).

As before let us now write L = Lm and P = Pm etc. We begin the proof of the above
proposition with the following lemma.

Lemma 4.7. The map
γ : K ×PK (Ōα,β + (nP )1) → Ōλ

is generically one-to-one.

Proof. Let x0 ∈ Oλ. We can and will assume that x0 ∈ Oα,β + (nP )1. We show that γ−1(x0)

is a point. Assume that γ(k, x) = x0. i.e. Ad k(x) = x0. Then x ∈ Oα,β + (nP )1. Let Õλ

(resp. Õα,β) be the (unique) G-orbit (resp. L-orbit) in g (resp. l) that contains Oλ (resp.
Oα,β). We have that

Õλ = Indg
l Õα,β

in the notation of Lusztig and Spaltenstein [LS]. By [LS, Theorem 1.3], we have Z0
G(x0) ⊂

P . In fact, we have that ZG(x0) ⊂ P . This can be seen by enlarging the group G to
GL(N) and using the fact that ZGL(N)(x0) is connected. Thus ZK(x0) ⊂ PK . Furthermore,

Õλ ∩ (Õα,β + nP ) is a single orbit under P . Thus there exists p ∈ P such that Ad p(x) = x0.
It follows that k−1p ∈ ZG(x0) ⊂ P . Thus k ∈ P ∩ K = PK . Now we have that (k, x) =
(1,Ad k(x)) = (1, x0).

�
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Proof of Proposition 4.5. Note that the proof of the above lemma shows that ZG(v) = ZP (v).
We have ZP (v) ⊂ ZL(u)UP . Thus ZK(v) = ZPK

(v) ⊂ ZLK
(u)(UP ∩K). It follows that we

have a natural projection map

ZK(v)/Z
0
K(v) = ZPK

(v)/Z0
PK

(v) → ZLK
(u)/Z0

LK
(u).

We show that this gives us the desired map ψ. Following [LS], we have that ZLK
(u)(UP ∩K)

has a dense orbit, i.e. the orbit of v, in the irreducible variety u+(nP )1. Thus ZPK
(v) = ZK(v)

meets all the irreducible components of ZLK
(u)(UP ∩K), which implies that ψ is surjective.

It is easy to see that

(4.11) supp
(
Indg1

l1⊂p1
IC(Oα,β,C⊠ E)

)
= Ōλ.

The proposition follows from the definition of parabolic induction functor and Lemma 4.7.

�

Remark 4.1. The proof of Lemma 4.7 and the existence and surjectivity of the map ψ works
for any θ-stable Levi contained in a θ-stable parabolic subgroup.

Proof of Corollary 4.6. Note that the assumption implies that F (IC(Oα,β,C⊠ E)) has full
support, i.e. IC(Oα,β ,C⊠ E) = IC(l1,G) for some irreducible LK-equivariant local system G

on lrs1 . We have that

F
(
Indg1

l1⊂p1
IC(Oα,β ,C⊠ E)

)
= Indg1

l1⊂p1
F (IC(Oα,β ,C⊠ E)) = Indg1

l1⊂p1
IC(l1,G).

It suffices to show that Indg1
l1⊂p1

IC(l1,G) is irreducible. This follows from the definition of
the induction functor and Proposition 3.1.

�

Corollary 4.8. The Fourier transform of a nilpotent orbital complex IC(O,E) ∈ AN has full
support, i.e., suppF(IC(O,E)) = g1, if and only if it is not of the form Indg1

l1⊂p1
IC(O′,E′)

where suppF(IC(O′,E′)) = l1, and L ⊂ P is a pair chosen as in §3.

Proof. The only if part follows from the facts that Fourier transform commutes with par-
abolic induction and that supp Indg1

l1⊂p1
A ( g1. The if part follows from (4.10), (4.6) and

Theorem 4.1.

�

Corollary 4.9. Let λ = (λ1 ≥ λ2 ≥ · · · ) ∈ P(N).

(1) If λi − λi+1 ≥ 3 for some i, then suppF(IC(Oλ,E)) 6= g1 for any K-equivariant local
system E on Oλ. The same holds for Oω

λ if λ has only even parts.
(2) Suppose that λi − λi+1 ≤ 2 for all i. Let fλ be the number of different sizes of parts

of λ, and gλ the number of i’s such that λi − λi+1 = 2.
(a) If at least one part of λ is odd, then there are 2fλ−1−gλ irreducible K-equivariant

local systems E on Oλ such that suppF(IC(Oλ,E)) = g1.
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(b) If all parts of λ are even, then there is exactly one irreducible K-equivariant local
system Eω on each orbit Oω

λ , ω = I, II, such that suppF(IC(Oω
λ ,E

ω)) = g1.
In particular, if λi − λi+1 ≤ 1 for all i, then suppF(IC(Oλ,E)) = g1 for any K-
equivariant local system E on Oλ.

Proof. (1) Assume that λi0 − λi0+1 ≥ 3. Let m = i0, α = 1i0 , β = (λ1 − 2, . . . , λi0 −
2, λi0+1, . . .). Then Oλ = Indg1

lm
1
⊂pm

1
Oα,β . Let u ∈ Oα,β and v ∈ Oλ ∩ (u + (nPm)1). Note

that AK(v) ∼= ALm
K
(u). It then follows from Proposition 4.5 that for each irreducible K-

equivariant local system E on Oλ, IC(Oλ,E) is a direct summand of Indg1
lm
1
⊂pm

1
IC(Oα,β,E0)

for some irreducible LK-equivariant local system E0 on Oα,β. As before, this shows that
F(IC(Oλ,E)) has smaller support.

In the case when λ has only even parts, we let Oω
λ = Indg1

lm
1
⊂pm

1
Oω

α,β , if m < N/2, and we

let Oω
λ = Indg1

l
n,ω
1

⊂p
n,ω
1

Oα,β, if m = N/2 = n, where ω = I, II. The proof for Oω
λ then proceeds

in the same way.

(2) We argue by induction on gλ. If gλ = 0, then (2) follows from (4.11) and Corollary 4.8.
Assume by induction hypothesis that (2) holds for all µ with gµ < gλ.

Assume first that λ has at least one odd part. Suppose that i1, . . . , ik are such that
λij − λij+1 = 2, where k = gλ.

Let a = (a1 ≥ a2 ≥ · · · ≥ ak ≥ 0) be a partition such that a 6= ∅, ak ≤ 1, and
al ≤ al+1 − 1. Note that the number of such partitions is 2k − 1. Consider a partition µ(a)
such that µl = λl − 2aj for l ∈ [ij−1 + 1, ij]. Then µ(a) satisfies that µ(a)i − µ(a)i+1 ≤ 2
and gµ(a) < gλ. Moreover, µ has at least one odd part, and fλ − gλ = fµ(a) − gµ(a). Let

m =
∑k

j=1 ij . We have that

Indg1
lm
1
⊂pm

1
Oa,µ(a) = Oλ.

By induction hypothesis, there are 2fλ−gλ−1 irreducible K-equivariant local systems E on
Oa,µ(a) such that F(IC(Oa,µ(a),E) has full support. By Corollary 4.6, we have that

Indg1
lm
1
⊂pm

1
IC(Oa,µ(a),E) = IC(Oλ, Ẽ).

This gives rise to (2k−1)·2fλ−gλ−1 = 2fλ−1−2fλ−gλ−1 irreducible K-equivariant local systems

Ẽ on Oλ such that F(IC(Oλ, Ẽ) has smaller support (with a varying).

The case when all parts of λ even can be argued in the same way. Note that in this case
gλ = fλ.

Let us write mλ (resp. mω
λ , ω = I, II) for the number of irreducible K-equivariant local

systems Ẽ on Oλ (resp. Oω
λ) such that F(IC(Oλ, Ẽ) (resp. F(IC(O

ω
λ , Ẽ)) has full support when

at least one part of λ is odd (resp. when all parts of λ are even).



SPRINGER CORRESPONDENCE 17

We conclude from the discussion above that

(4.12)
mλ ≤ 2fλ−gλ−1 if λ has at least one odd part,

resp. mω
λ ≤ 1 if all parts of λ are even.

Theorem 4.1 implies that the number of pairs IC(O,E) ∈ AN such that suppF(IC(O,E)) = g1
is d(n) (see (4.1)), when N = 2n + 1, and e(n) (see (4.2)), when N = 2n. In view of (4.12)
and claim (1) of the corollary, it suffices to show that

(4.13)
∑

λ∈P(2n+1)
λi−λi+1≤2

2fλ−gλ−1 = d(n),
∑

λ∈P(2n),λi−λi+1≤2,
not all parts of λ even

2fλ−gλ−1 + 2q(n) = e(n).

This can be seen as follows. Note that when N is even, the number of orbits of the form Oω
λ ,

where all parts of λ are even and λi − λi+1 ≤ 2, is 2q(n). We know that

d(n) = Coefficient of x2n+1 in
1

2

∏

s≥1

(1 + xs)2.

e(n) =
3

2
q(n) + Coefficient of x2n in

1

2

∏

s≥1

(1 + xs)2.

A partition λ satisfies that λi − λi+1 ≤ 2 if and only if each part of the transpose partition
λ′ has multiplicity at most 2. We have fλ = fλ′ and gλ equals the number of parts in λ′ with
multiplicity 2. It is easy to see that each λ′ whose parts have multiplicity at most 2 appears
in
∏

s≥1(1 + xs)2 exactly 2fλ−gλ times. Hence (4.13) follows.

�

Remark 4.2. In [CVX1, Conjecture 1.2], we conjectured that one can obtain all nilpotent
orbital complexes by induction from those of smaller groups whose Fourier transforms have
full support. This conjecture follows from Corollary 4.8.

5. Cohomology of Hessenberg varieties

Hessenberg varieties, defined generally in [GKM], arise naturally in our setting (for details,
see [CVX2]). In particular, they arise as fibers of maps π and π̌ in the following diagram

K/PK × g1

K ×PK E

π

��

77♦♦♦♦♦♦♦♦♦♦

K ×PK E⊥

π̌

��

gg❖❖❖❖❖❖❖❖❖❖❖

N1 g1

where PK is a parabolic subgroup ofK, E is a PK-stable subspace of g1 consisting of nilpotent
elements, and E⊥ is the orthogonal complement of E in g1 via a K-invariant non-degenerate
form on g. The generic fibers of maps π̌ are Hessenberg varieties.
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In this section we discuss an application of our result to cohomology of Hessenberg vari-
eties. Let us fix s ∈ grs1 and consider the corresponding Hessenberg variety

Hess := π̌−1(s) = {gPK ∈ K/PK | g−1sg ∈ E⊥}.

The centralizer ZK(s) acts naturally on Hess and it induces an action of the component
group π0(ZK(s)) ∼= IN on the cohomology groups H∗(Hess,C). Let

H∗(Hess,C) =
⊕

χ∈I∨
N

H∗(Hess,C)χ

be the eigenspace decomposition with respect to the action of IN .

Definition 5.1. The stable part H∗(Hess,C)st of H∗(Hess,C) is the direct summand
H∗(Hess,C)χtriv

where χtriv ∈ I∨N is the trivial character.

For simplicity we now assume π̌ is onto. In this case π̌ is smooth over gs1 (e.g. see
[CVX2, Lemma 2.1]) and the equivariant fundamental group πK

1 (grs1 , s)
∼= IN ⋊ BN acts on

H∗(Hess,C) by the monodromy action. Recall that for χ ∈ I∨N , Bχ stands for the stabilizer
of χ in BN . Clearly, each summand H∗(Hess,C)χ is stable under the action of Bχ. Let
χm ∈ I∨N , Bχm

, and Bm,N−m be as in §2.3. Assume that χ is in the BN -orbit of χm. Then for
any b ∈ BN with b.χ = χm we have an isomorphism ιb : Bχ

∼= Bχm
, u → bub−1. Note that

χtriv = χ0 and Bχm
= Bm,N−m except when N is even and m = N/2. In that case, Bm,N−m

is an index two subgroup of Bχm
.

Recall the algebra Hχm,−1 = Hm,−1 × HN−m,−1 and their representations Dµ1 ⊗ Dµ2 in-
troduced in §2.3. Each Hχm,−1 is a quotient of the group algebra C[Bm,N−m] and Hχ0,−1 =
Hχtriv,−1 = HN,−1 is the Hecke algebra of SN at q = −1.

Theorem 5.1. (1) Let χm ∈ I∨N be the representatives of BN -orbtis in §2.3. To every χ ∈
I∨N in the orbit of χm and an element b ∈ BN satisfying b(χ) = χm, the monodromy
action of b on H∗(Hess,C) induces an isomorphism H∗(Hess,C)χ ∼= H∗(Hess,C)χm

compatible with the actions of Bχ

ιb∼= Bχm
on both sides.

(2) The action of C[Bm,N−m] on H∗(Hess,C)χm
factors through the algebra Hχm,−1 and

the resulting representation is a direct sum of Dµ1⊗Dµ2 , µ1 ∈ P2(m), µ2 ∈ P2(N−m).
In particular, the stable part H∗(Hess,C)st is generated by irreducible representations
of the Hecke algebra of SN at q = −1.

Proof. Part (1) is clear. To prove part (2) we proceed as follows. By the decomposition
theorem π∗C is a direct sum of shifts of nilpotent orbital complexes. Since F(π∗C) ∼= π̌∗C (up
to shift), Theorem 4.1 implies that a generic stalk of π̌∗C, which is isomorphic toH∗(Hess,C),

is a direct sum of the local systems Vµ1,µ2 = Ind
C[BN ]
C[Bm,N−m]Dµ1

⊗Dµ2
introduced in (2.6). Since

IN acts on Vµ1,µ2 by the formula a.(b ⊗ v) = ((b.χm)(a)) (b ⊗ v) for a ∈ IN , b ∈ BN and
v ∈ Dµ1

⊗Dµ2
, we have (Vµ1,µ2)χ ∼= Dµ1

⊗Dµ2
. The theorem follows.

�
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Example 5.1. Let C be the hyper-elliptic curve with affine equation y2 =
∏N

j=1(x− aj) (here

ai 6= aj for i 6= j). Assume N = 2n + 2 is even. Then according to [CVX3, Section 2.3] the
Jacobian Jac(C) is an example of Hessenberg variety and the monodromy action of π1(g

rs
1 , s)

factors through BN , that is, H
∗(Jac(C),C) = H∗(Jac(C),C)st. Let µk = (N − k, k) ∈ P2(N)

and Dµk
be the corresponding representation of HN,−1. Using [A], one can check that the

induced action of the group algebra C[BN ] on Hi(Jac(C),C) factors through HN,−1 and for
i ≤ n the resulting representation of HN,−1 is isomorphic to

Hi(Jac(C),C) ∼=

[i/2]⊕

j=0

Dµi−2j

with the primitive part Hi(Jac(C),C)prim ∼= Dµi
.

Remark 5.2. It would be nice to have an explicit decomposition of H∗(Hess,C)χm
into ir-

reducible representations of Hχm,−1. For this one needs finer information for the bijection
in Theorem 4.1 (see Section 7). In [CVX1, CVX3], we establish an explicit bijection for
certain nilpotent orbital complexes and together with other results, we work out an explicit
decomposition in the case when the Hessenberg varieties are isomorphic to Fano varieties of
k-planes in smooth complete intersections of two quadrics in projective space.

6. Representations of HN,−1

In this section we show that all irreducible representations of the Hecke algebra HN,−1

come from geometry. Indeed they all appear in intersection cohomology of a Hessenberg
variety with coefficient in a local system. In particular, this shows that all irreducible repre-
sentations of HN,−1 carry a Hodge structure. In particular, the irreducible representations
of HN,−1 can be viewed as variations of Hodge structure.

Let O be a nilpotent K-orbit on g1 and L an irreducible K-equivariant local system on O.
We call (O,L) a nilpotent pair. Following [LY], we associate to each nilpotent pair (O,L)

two families of Hessenberg varieties HessL,±1 → g1 together with local systems L̂±1 on open

subsets
◦

HessL,±1 ⊂ HessL,±1.

Let x ∈ g1 be a nilpotent element in O. Choose a normal sl2-triple {x, h, y} and let

g(i) = {v ∈ g|[h, v] = iv}, g0(i) = g(i) ∩ g0, and g1(i) = g(i) ∩ g1.

For any N ∈ Z we write N ∈ {0, 1} for its image in Z/2Z. Define

pxN =
⊕

k≥2N

gN(k), l
x
N = gN(2N), and lx =

⊕

N∈Z

lxN .

One can check that lx ⊂ g is a graded Lie subalgebra of g and x ∈ lx1 = g1(2). Let L
x
0 ⊂ K

be the reductive subgroup with Lie algebra lx0 = g0(0). By [LY, 2.9(c)], the restriction

L′
1 := L|lx

1

is an irreducible Lx
0-equivariant local system on the unique open Lx

0-orbit
◦

lx1 on lx1 .
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According to [L1], there exists a graded parabolic subalgebra q =
⊕

N∈Z qN of lx, a Levi
subalgebra m =

⊕
N∈Z mN of q, and a cuspidal local system L1 on the open M0-orbit

◦

m1 of
m1 (here M0 is the reductive subgroup of Lx

0 with Lie algebra m0) such that

some shift of the IC-complex IC(lx1 ,L
′
1) is a direct summand of Ind

lx
1

m1⊂q1 IC(m1,L1).

In addition, we have
F(IC(m1,L1)) ∼= IC(m−1,L−1)

where L−1 is a cuspical local system on the unique open orbit
◦

m−1 ⊂ m−1.

Define q̂N to be the pre-image of qN under the projection map pxN → lxN . Let QK ⊂ K be

the parabolic subgroup with Lie algebra q̂0. Denote by
◦

q̂±1 the preimage of
◦

m±1 under the

projection map q̂±1 → q±1 → m±1. The group QK acts naturally on q̂±1 and
◦

q̂±1 and we
define

HessL,±1 := K ×QK q̂±1,
◦

HessL,±1 := K ×QK
◦

q̂±1.

Let
πL,±1 : HessL,±1 → g1, (x, v) → xvx−1

and let
◦

πL,±1 be its restriction to
◦

HessL,±1. For any s ∈ g1, we denote by HessL,±1,s and
◦

HessL,±1,s the fiber of πL,±1 and
◦

πL,±1 over s, respectively.

There are natural maps

hL,±1 : HessL,±1 → [m±1/M0],
◦

hL,±1 :
◦

HessL,±1 → [
◦

m±1/M0]

sending (k, v) ∈ HessL,±1 = K ×QK q̂±1 to v̄, the image of v ∈ q̂±1 under the map q̂±1 →
m±1 → [m±1/M0]. We define the following local system

L̂±1 := (
◦

hL,±1)
∗L±1

on
◦

HessL,±1. Here we view the M0-local systems L±1 as sheaves on [
◦

m±1/M0].

Example 6.1. Consider the nilpotent pair (O,L = Ltriv) where Ltriv is the trivial local system
on O. Using [L1, Proposition 7.3] one can check that in this case q = ⊕N∈ZqN is a Borel
subalgebra of lx and m = ⊕N∈ZmN is a Cartan subalgebra. Moreover the grading on m is
concentrated in degree zero, i.e., m = m0, and the cuspidal local system L±1 is the skyscraper

sheaf supported on m±1 = {0}. It follows that in this case HessLtriv,±1 =
◦

HessLtriv,±1 and L̂±1

is the constant local system.

In [LY, §7], the authors prove the following:

(6.1) (πL,−1)∗ IC(HessL,−1, L̂−1) is the Fourier transform of (πL,1)∗ IC(HessL,1, L̂1).

(6.2)
Some shift of IC(Ō,L) (resp. the Fourier transform of IC(Ō,L)) appears in

(πL,1)∗ IC(HessL,1, L̂1) (resp. (πL,−1)∗ IC(HessL,−1, L̂−1)) as a direct summand.

Assume from now on that πL,−1 : HessL,−1 → g1 is surjective. Then the sheaf

(πL,−1)∗ IC(HessL,−1, L̂−1) is smooth over grs1 . One sees this as follows. According to the first
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statement of (6.1) the characteristic variety of (πL,−1)∗ IC(HessL,−1, L̂−1) coincides with that

of (πL,1)∗ IC(HessL,1, L̂1) as they are Fourier transforms of each other. But

(πL,1)∗ IC(HessL,1, L̂1) is K-equivariant and supported on the nilpotent cone. A straight-

forward calculation then shows the smoothness of (πL,−1)∗ IC(HessL,−1, L̂−1) on grs1 . Thus,
by the decomposition theorem, we conclude that:

(6.3) (πL,−1)∗ IC(HessL,−1, L̂−1)) is a direct sum of shifts of irreducible local systems .

In addition, the IC(HessL,−1, L̂−1) and hence (πL,−1)∗ IC(HessL,−1, L̂−1) has a canonical struc-
ture as a Hodge module and thus the direct summands are IC-extensions of irreducible
variations of pure Hodge structure, see, [S].

We fix a generic s ∈ grs1 and then

(6.4) H∗((πL,−1)∗ IC(HessL,−1, L̂−1))s = IH*(HessL,−1,s, L̂−1) .

Thus we obtain an action of the fundamental group πK
1 (grs1 , s) on IH*(HessL,−1,s, L̂−1) and

by the discussion above this action breaks into a direct sum of irreducible representations
which are also variations of Hodge structure.

The component group π0(ZK(s)) ∼= IN acts on IH*(HessL,−1,s, L̂−1) and we write

IH*(HessL,−1,s, L̂−1) =
⊕

χ∈I∨
N

IH*(HessL,−1,s, L̂−1)χ

for the corresponding eigenspace decomposition.

Definition 6.1. The stable part IH*(HessL,−1,s, L̂−1)st of IH
*(HessL,−1,s, L̂−1) is the direct

summand IH*(HessL,−1,s, L̂−1)χtriv
where χtriv ∈ I∨N is the trivial character.

Observe that IH*(HessL,−1,s, L̂−1)st is stable under the monodromy action of πK
1 (g1, s).

Moreover, the action factors through the braid group BN via the quotient map πK
1 (g1, s) →

BN .

For every irreducible representation Dµ of HN,−1, let Vµ be the local system on grs1 as-
sociated to Dµ. By Theorem 4.1, there exists a unique nilpotent pair (Oµ,Lµ) such that
F(IC(Ōµ,Lµ)) ∼= IC(g1, Vµ).

Theorem 6.1. Let Dµ be an irreducible representation of HN,−1 and let (Oµ,Lµ) be the
associated nilpotent pair as above. We have

(1) The map πLµ,−1 is onto, the action of the braid group BN on IH*(HessLµ,−1,s, L̂µ,−1)st
factors through the Hecke algebra HN,−1 and IH*(HessLµ,−1,s, L̂µ,−1)st is a direct sum
of irreducible representations of HN,−1.

(2) Dµ appears in IH*(HessLµ,−1,s, L̂µ,−1)st with non-zero multiplicity.

Proof. Since for every irreducible subrepresentation W of IH*(HessLµ,−1,s, L̂µ,−1)st the corre-
sponding Fourier transform F(IC(g1,W)) is supported on the nilpotent cone (here W is the
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local system on grs1 associated to W ), the same argument as in the proof of Theorem 5.1
implies part (1). Part (2) follows from (6.1), (6.2), and (6.4).

�

7. Conjecture on more precise matching

In Theorem 4.1 we show that the Fourier transform establishes a bijection between two
sets of intersection cohomology sheaves. In this section we formulate a conjecture which
refines the bijection in Theorem 4.1. We also relate the conjecture to our earlier conjectures
in [CVX2]. Our conjecture is not strong enough to produce and exact matching. The exact
description of the bijection is crucial for applications, for example, computing cohomologies
of Hessenberg varieties as explained in Section 5.

We begin with associating to each nilpotent orbit Oλ (resp. Oω
λ , ω = I, II) a subset

Σλ ⊂ ΣN (resp. Σω
λ ⊂ ΣN), if λ ∈ P(N) has at least one odd part (resp. has only even

parts).

Let λ be a partition of N and let λ′ be the transpose partition of λ. Suppose that

(7.1) λ′ = (λ′1)
2m1 · · · (λ′l)

2ml(λ′l+1)
2ml+1−1 · · · (λ′k)

2mk−1,

where mi ≥ 1, i = 1, . . . , k. Here and in what follows we write the parts in a partition in the
order which is most convenient for us. In parcticular, in (7.1) we place the parts with even
multiplicity before the parts with odd multiplicity.

Let δi ∈ {0, 1} for i ∈ [1, l] and let

ν(δ1, . . . , δl) = (λ′1)
m1−δ1 · · · (λ′l)

ml−δl(λ′l+1)
ml+1−1 · · · (λ′k)

mk−1,

µ(δ1, . . . , δl) = (λ′1)
2δ1 · · · (λ′l)

2δl(λ′l+1) · · · (λ
′
k).

Note that 2|ν(δ1, . . . , δl)|+ |µ(δ1, . . . , δl)| = N . Let

J ⊂ J0 := {l + 1, . . . , k} such that
∑

j∈J

λ′j <
∑

j∈J0−J

λ′j.

We define

µ1(δ1, . . . , δl; J) = (λ′1)
δ1 · · · (λ′l)

δl(λ′j1) · · · (λ
′
js), J = {j1, . . . , js}.

µ2(δ1, . . . , δl; J) = (λ′1)
δ1 · · · (λ′l)

δl(λ′i1) · · · (λ
′
ik−l−s

), J0 − J = {i1, . . . , ik−l−s}.

Note that λ′l+1 = 0 if and only if all parts of λ are even. In this case, J0 = ∅ = J and
µ1(δ1, . . . , δl; J) = µ2(δ1, . . . , δl; J) and we write µ(δ1, . . . , δl) = µi(δ1, . . . , δl; J), i = 1, 2.

If λ has at least one odd part, then let

Σλ := {
(
ν(δ1, . . . , δl);µ

1(δ1, . . . , δl; J), µ
2(δ1, . . . , δl; J)

)
| δi ∈ {0, 1}, i = 1, . . . , l,

J ⊂ {l + 1, . . . , k}, such that
∑

j∈J

λ′j <
∑

j∈J0−J

λ′j}.
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If all parts of λ are even (in which case λ′l+1 = 0), then let

Σω
λ = {(ν(δ1, . . . , δl);µ(δ1, . . . , δl), µ(δ1, . . . , δl))

ω | δi ∈ {0, 1}, i = 1, . . . , l}, ω = I, II.

We have |Σλ| = 2k−1 (resp. |Σω
λ | = 2l), which equals the number of non-isomorphic irre-

ducible K-equvariant local systems on Oλ (resp. Oω
λ).

Conjecture 7.1. Let λ be a partition of N .

(1) If λ has at least one odd part, then the Fourier transform F induces the following
bijection

F : {IC(Oλ,E) |E irreducible K-equivariant local system on Oλ (up to isomorphism)}

∼
−→ {IC

(
g
|ν|
1 ,T

(
ν;µ1, µ2

))
| (ν;µ1, µ2) ∈ Σλ}.

Moreover,

F (IC(Oλ,C)) = IC
(
g
|ν0|
1 ,T

(
ν0;µ

1
0, µ

2
0

))

where (ν0;µ
1
0, µ

2
0) ∈ Σλ is the unique triple such that |ν0| = max{|ν|, (ν, µ1, µ2) ∈ Σλ}

and the parts of µ1
0 and the parts of µ2

0 have the opposite parity (in particular, all
parts of µi

0 have the same parity).

(2) If all parts of λ are even, then the Fourier transform induces the following bijection

F : {IC(Oω
λ ,E) |ω = I, II, E irreducible K-equivariant local system on Oω

λ (up to isom)}

∼
−→ {IC

(
g
|ν|
1 ,T (ν;µ, µ)ω

)
|ω = I, II, (ν;µ, µ)ω ∈ Σω

λ , µ 6= ∅}

∪ {IC (gn,ω1 ,T (ν; ∅, ∅)) |ω = I, II, (ν; ∅, ∅) ∈ Σω
λ} .

Moreover,

F (IC(Oω
λ ,C)) = IC (gn,ω1 ,T (ν0; ∅, ∅))

where |ν0| = n and (ν0; ∅, ∅) ∈ Σλ.

Note that F(IC(Oλ,E)) has full support if and only if ν(δ1, . . . , δl) = ∅. Thus we see that
the Conjecture is compatible with Corollary 4.9.

Let us relate the conjecture above to our previous conjectures in [CVX2]. In [CVX2]

we constructed local systems E2n+1
i,j and Ẽ2n+1

i,j on grs1 . In terms of the parametrization
introduces in this paper, we have

E2n+1
i,j = T(∅; (2i− j, j), (2n+ 1− 2i))

Ẽ2n+1
i,j = T(∅; (2i− 1− j, j), (2n+ 2− 2i)).

Thus we see that Conjecture 7.1 applied to E2n+1
i,j agrees with Conjectures 6.1 and 6.3 in

[CVX2]. Applied to Ẽ2n+1
i,j , Conjecture 7.1 implies that the supports of F(IC(g1, Ẽ

2n+1
i,j )) are
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as follows:

O3j22i−2j−112n+3−4i+j if 4i− j ≤ 2n+ 3,

O3j22n+2−2i−j14i−j−2n−3 if 2i+ j ≤ 2n+ 2 and 4i− j ≥ 2n+ 3

O32n−2i+222i+j−2n−212i−2j−1 if 2i+ j ≥ 2n+ 2.

Note that the above orbits are all of even dimensional and each of the even-dimensional
orbits appears twice there.
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