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Abstract

Multi-objective model selection, which is an important aspect of Machine Learning, refers to the
problem of identifying a set of Pareto optimal models from a given ensemble of models. This paper
proposes SPRINT-Race, a multi-objective racing algorithm based on the Sequential Probability Ratio
Test with an Indifference Zone. In SPRINT-Race, a non-parametric ternary-decision sequential analogue
of the sign test is adopted to identify pair-wise dominance and non-dominance relationship. In addition,
a Bonferroni approach is employed to control the overall probability of any erroneous decisions. In the
fixed confidence setting, SPRINT-Race tries to minimize the computational effort needed to achieve
a predefined confidence about the quality of the returned models. The efficiency of SPRINT-Race is
analyzed on artificially-constructed multi-objective model selection problems with known ground-truth.
Moreover, SPRINT-Race is applied to identifying the Pareto optimal parameter settings of Ant Colony
Optimization algorithms in the context of solving Traveling Salesman Problems. The experimental results
confirm the advantages of SPRINT-Race for multi-objective model selection.

Keywords: Racing Algorithm, Model Selection, Multi-objective Optimization, Sequential Probability Ratio
Test

1 Introduction

Given an ensemble of models, the task of Model Selection (MS) is to identify a subset of models that are
optimal in terms of certain optimization criteria. There are a variety of MS problems, including feature
selection, algorithm and learning strategy selection, hyper-parameter selection, etc.

The problem of Single-Objective Model Selection (SOMS), in which only one optimization criterion is
considered, has received much attention in the literature of stochastic Multi-Armed Bandit (MAB) as best
arm(s) identification problem [8, 5]. Among them, Racing Algorithms (RAs) are regarded as an elimination-
type MAB, which tries to minimize the computational effort needed to achieve a predefined confidence about
the quality of the returned models (fixed confidence setting). A RA is an iterative procedure that starts off
with an initial ensemble of candidate models (candidate pool). The candidate models are evaluated by solving
randomly sampled problem instances in a sequential manner and their performances are measured according
to a single task-specific criterion of model optimality (e.g. prediction accuracy, convergence speed, etc).
Under-performing models are eliminated as soon as sufficient statistical evidence is amassed. Consequently,
a RA saves (unnecessary) computational cost spent on trying to exploit poor-performing models. In other
words, a RA trades off some computational effort with the likelihood that the model(s) returned by the
racing procedure is (are) indeed the optimal one(s).

Ever since the first RA was developed, RAs have been widely used in parameter tuning and configuration
[2, 16], algorithm design [11], and some industrial applications [1]. Several leading RAs for SOMS have been
proposed in the literature: Hoeffding Racing (HR) [17], BRACE [20], Bernstein Racing (BR) [19, 15], and
F-Race [3].

However, in real-world Machine Learning (ML) applications, model selection is often multi-objective
in nature [12]. In Multi-Task Learning, for instance, all task objectives should be optimized simultane-
ously. Moreover, in the context of evolutionary computation, computational cost is always considered as
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an additional selection criterion besides the quality of the best solution obtained. Model selection in terms
of multiple conflicting optimization criteria is referred to as Multi-objective Model Selection (MOMS). A
straightforward way of solving a MOMS problem is to convert it to a SOMS problem, either by consider-
ing the conic linear combination or the Chebyshev scalarization of all the objectives, or by adopting other
unary quality indicators [14] (e.g. hypervolume, epsilon indicator). However, Pareto optimality plays an
important role in MOMS. Optimizing any single optimization objective does not provide any insight into
the trade-offs among multiple conflicting objectives. The first Multi-objective Racing Algorithm (MORA),
namely S-Race, which addresses the problem of MOMS in the sense of Pareto optimality was put forward
by the seminal paper of Zhang et al. [25]. In S-Race, the probabilistic dominance relationship between two
models is statistically inferred by the non-parametric sign test based on the observed performance vectors.
Moreover, the total probability of not making any Type I errors (falsely rejecting the null hypothesis and
inferring pair-wise dominance) is strictly controlled by Holm’s step-down procedure, which is accomplished
by adjusting the significance level of each individual hypothesis in multiple comparisons. In the same paper,
S-Race was applied to selecting Support Vector Machines for binary-/ternary-classification. The obtained
experimental results demonstrated that S-Race is an efficient and effective algorithm for automatic model
selection.

Nevertheless, S-Race has certain limitations. First of all, in S-Race, unlike the total probability of not
committing any Type I errors, the probability of making any Type II errors (falsely inferring the absence of
dominance) is not strictly controlled. Moreover, the sign test adopted in S-Race can only identify dominance
relationships, i.e., whether model A dominates model B or the opposite. When two non-dominated models
are compared and no dominance relation is discerned, the comparison continues until the available problem
instances are exhausted. In other words, S-Race spends unnecessary computational cost on comparing
non-dominated models. Most important of all, the sign test employed in S-Race is not an optimum test
procedure, as explained in Section 2.2. If establishing dominance based on the sign test is good in terms
of error probability, replacing it by the optimal test procedure should yield a MORA with improved overall
sample complexity. Note that the sample complexity of a test comparing two models refers to the expectation
of the final size of the sample required to reach a decision.

To overcome these limitations of S-Race, here we introduce SPRINT-Race, a MORA based on the
Sequential Probability Ratio Test (SPRT) with an Indifference Zone. SPRINT-Race hinges on a ternary-
decision, sequential analogue of the sign test. The comparison between two models terminates, when either
dominance or non-dominance is established with certain confidence. As a result, SPRINT-Race is able to
stop automatically, when no more sampling is needed for further comparisons. In addition, both Type I and
Type II errors are strictly controlled via the SPRT. Therefore, SPRINT-Race is capable of strictly confining
the error probability of returning dominated models and, simultaneously, abandoning non-dominated models
at a predefined level. Moreover, the concept of an indifference zone is introduced in SPRINT-Race to aid in
reducing the possibility of miscategorizing Pareto optimal models by chance.

SPRINT-Race infers dominance or lack thereof between a pair of models based on a ternary-decision SPRT
procedure, namely dual-SPRT, which consists of two component SPRTs. Section 2 provides some necessary
background on the SPRT and introduces the proposed SPRINT-Race procedure. Furthermore, the analysis
of the overall error probability of SPRINT-Race, i.e., the total probability of any false discoveries, is discussed
in Section 2.4. The efficiency and effectiveness of SPRINT-Race for MOMS are evaluated via a series of
experiments described in Section 3. First, the performance of SPRINT-Race is evaluated on artificially-
constructed MOMS problems with known ground-truth solutions. Additionally, SPRINT-Race is applied to
selecting Pareto optimal parameter settings of Ant Colony Optimization (ACO) algorithms in the context
of Traveling Salesman Problems (TSPs). Overall, the experimental results confirm the potential advantages
of SPRINT-Race for addressing MOMS problems. Finally, key findings are summarized in Section 4.

2 SPRINT-Race Description

SPRINT-Race addresses the problem of MOMS in the sense of Pareto optimality. The (non-)dominance
relationship between a pair of models is determined via a ternary-decision SPRT procedure dubbed dual-
SPRT. Moreover, the error probability of SPRINT-Race, meaning the total probability of falsely retaining
any dominated model or removing any non-dominated model during the SPRINT-Race, is strictly controlled
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at a user-specified level.

2.1 Problem Formulation

SPRINT-Race assumes the following setting: the decision maker is in possession of an ensemble of M mod-
els {C1, C2, · · · , CM}, which are to be compared according to D optimization objectives {fi(C)}i=1,··· ,D.

Without loss of generality, we will assume that all the objectives are to be maximized. Let f(C) ,
[f1(C), f2(C), · · · , fD(C)] be the performance vector of a model C. Following traditional conventions [6],
f(C) � f(C ′) is defined as follows

fi(C) > fi(C
′) ∀ i ∈ {1, 2, · · · , D}

and ∃ j ∈ {1, 2, · · · , D} | fj(C) > fj(C
′)

(1)

There are three possible outcomes of a pairwise comparison between model C and C ′, namely C dominates
C ′, C ′ dominates C, and non-dominance. They are denoted as C � C ′, C ≺ C ′ and C ∼ C ′, respectively.
Given a model C, it is generally assumed that the objective value fi(C) is stochastic in nature. This
assumption reflects the models’ search process randomness or noisy performance measurements. Therefore,
SPRINT-Race decides that C � C ′ if Pr {f(C) � f(C ′)} > 1

2 ; C ≺ C ′ if Pr {f(C) � f(C ′)} < 1
2 ; and

C ∼ C ′ otherwise. If there is no model that dominates model C, model C is defined as Pareto optimal.
In the context of MOMS, in principle, one is interested in identifying the entire set of Pareto front models.
However, if desired or if mandated by practicalities, additional subjective criteria might be employed by a
decision maker to sub-sample the Pareto front and, potentially, identify a single model that reflects her/his
particular preference.

2.2 Sequential Probability Ratio Test

For any testing procedure, let us denote the probability of a Type I error by α ∈ [0, 1] and the probability
of a Type II error by β ∈ [0, 1]. Given α and β, the hypothesis test which minimizes the expected number
of required samples, over the entire parameter space, is called the uniformly most efficient test of the given
hypothesis test problem. It was shown that SPRT can be regarded as a locally most efficient test [23] in the
sense that its expected sample complexity is minimized for some proper subset of the parameter space, for all
practical purposes. Therefore, given a predefined maximum error probability, adopting SPRT for dominance
inference in a MORA should result in a superior algorithm that only necessitates a near-minimum sample
complexity.

Assume {x1, x2, · · · , xN} is a sequence of independent and identically distributed observations sampled
from an unknown distribution. Let gθ(xi) be the density of the ith sample parametrized by a parameter θ.
In a traditional fixed-sample test with two simple hypotheses, one of two possible decisions is made based on
the observed random samples: accept the null hypothesis H0 : θ = θ0, or accept the alternative hypothesis
H1 : θ = θ1. For a fixed-sample test, α is typically predetermined, but β, which is a function of α, is unknown
and left uncontrolled. Therefore, given the sample size N and α, the test procedure that minimizes β is
preferred; such a test is referred to as the uniformly most powerful test for the given hypothesis test problem
and parameter space. The Neyman-Pearson lemma [10, p.52] implies that the likelihood ratio test yields the
most powerful test for testing two simple hypotheses. To be more specific, the test statistic is computed as
the ratio of the likelihood of the data under H1 to their likelihood under H0.

λN =

N∏
i=1

g(xi|θ1)

g(xi|θ0)
(2)

Distinct from fixed-sample testing, there is a third possible action in sequential testing: neither accept
H0 nor accept H1 but continue sampling with the hope that gathering additional evidence may allow one
to decide between the two hypotheses. The sample size of a sequential test is not predetermined and the
samples are collected sequentially until either H0 or H1 is accepted. SPRT [23] is the first sequential testing
procedure proposed in the literature and it proceeds as follows: assume λt is the test statistic at step t.
Then, if λt ≤ B, H0 is accepted; if λt ≥ A, H1 is accepted; if B ≤ λt ≤ A, no decision is made and sampling
resumes. As suggested in [23], by choosing A = 1−β

α and B = β
1−α , the probabilities of Type I and Type II

errors does not exceed α and β respectively.

3



2.3 Dominance/Non-Dominance Inference

Due to the stochastic nature of the performance vectors, the dominance and non-dominance relationship
between a pair of models can only be established via a formal test of hypothesis. A pair-wise and non-
parametric test procedure is preferred due to its robustness. In a pair-wise test, each sample consists of
paired observations, which effectively reduces the variability caused by external factors (e.g. differences be-
tween problem instances). Moreover, non-parametric tests have the advantage of being free of distributional
assumptions. Therefore, a sequential analogue of the pair-wise non-parametric sign test [18] is adopted in
SPRINT-Race to establish dominance and non-dominance between a pair of candidate models. Its motiva-
tion is straightforward: if a racing based on the sign test is good in terms of error probabilities, replacing it
by the local optimal SPRT should improve it even further in terms of reducing the overall sample complexity.

Assume that a pair of candidate models Ci and Cj is compared, whose performances have been evaluated
on a series of problem instances. Let Nij (a random variable) denote the number of times that Ci dominates

Cj and let nij be its observed value. Moreover, let S , Nij +Nij and let its observed value be s , nij +nij .

If p , Pr {Nij = 1|S = 1}, then, obviously, Nij | {S = s} ∼ Binomial(s, p). Therefore, the relationship
between Ci and Cj is established in the following manner: if p < 1

2 , Ci is dominated by Cj ; if p = 1
2 , Ci

and Cj are non-dominated to each other; and if p > 1
2 , Ci dominates Cj . In other words, the problem of

inferring dominance and non-dominance between a pair of models translates to making a decision among
three mutually exclusive and exhaustive hypotheses

H0 : p < 1/2 H1 : p = 1/2 H2 : p > 1/2 (3)

Subsequently, if H0 is accepted, model Ci will be eliminated from racing; if H2 is accepted, model Cj will
eliminated; if H1 is accepted, both Ci and Cj will be retained by the racing procedure.

Moreover, the concept of indifference zone is introduced for practical considerations: i) in real world ap-
plications, a thorough investigation is usually uneconomical and one is willing to take near-optimal decisions;
and ii) it mitigates the possibility of omitting Pareto optimal models due to inaccurate performance mea-
surements (e.g. noise). More specifically, in SPRINT-Race, the following three hypotheses are considered:

H0 : p ≤ 1/2− δ H1 : p = 1/2 H2 : p ≥ 1/2 + δ (4)

where δ ∈ (0, 1/2) is chosen by the decision maker. The intervals (1/2 − δ, 1/2) and (1/2, 1/2 + δ) will be
referred to as indifference zones. When p ∈ (1/2 − δ, 1/2), we assume that we have no strong preference
between H0 and H1, but the rejection of H2 is strongly preferred. Similarly when p ∈ (1/2, 1/2+δ), no error
is committed if either H1 or H2 is considered. Note that the selection of δ is not a statistical problem, but
should be made based on practical concerns.

The previously described ternary-decision test, referred to as dual-SPRT, is constructed by combining two
component binary-hypothesis SPRT [22] as shown in Equation (5). The decision procedure of the dual-SPRT
is summarized in Table 1.

SPRT1 H1
0 : p ≤ 1

2 − δ H1
1 : p ≥ 1

2
SPRT2 H2

0 : p ≤ 1
2 H2

1 : p ≥ 1
2 + δ

(5)

Table 1: Testing procedure of dual-SPRT

SPRT 1 accepts SPRT 2 accepts dual-SPRT accepts
H1

0 : p ≤ 1
2 − δ H2

0 : p ≤ 1
2 H0 : p ≤ 1

2 − δ
H1

1 : p ≥ 1
2 H2

0 : p ≤ 1
2 H1 : p = 1

2
H1

1 : p ≥ 1
2 H2

1 : p ≥ 1
2 + δ H2 : p ≥ 1

2 + δ

Due to the monotonic likelihood ratio property of the binomial distribution, the component SPRTs
described in Equation (5) are equivalent to the following tests

SPRT1 H1
0 : p = 1

2 − δ H1
1 : p = 1

2
SPRT2 H2

0 : p = 1
2 H2

1 : p = 1
2 + δ

(6)
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Assume that, at the tth step, there are ntij times that Ci dominates Cj and ntji times that Cj dominates
Ci. In each component SPRT with H0 : p = p0 and H1 : p = p1, the test statistic is calculated as follows:

λt =
p
nt
ij

1 (1− p1)n
t
ji

p
nt
ij

0 (1− p0)n
t
ji

(7)

which leads to the following simple rules
if ntij ≤

logB
r−r̄ − (ntij + ntji)

r̄
r−r̄ , accept H0

if ntij ≥
logA
r−r̄ − (ntij + ntji)

r̄
r−r̄ , accept H1

otherwise, continue sampling

(8)

where A , 1−β
α , B , β

1−α , r , log p1
p0

, and r̄ , log 1−p1
1−p0 . Note that SPRINT-Race’s two component SPRTs

utilizes common α and β values in order to reduce the number of parameters that need to be specified.

2.4 SPRINT-Race and its Analysis

The whole SPRINT-Race procedure is illustrated in Algorithm 1. Initially, a dual-SPRT is established for
each pair of models, which means that a total of

(
M
2

)
dual-SPRTs are initialized at the beginning of the

race for M candidate models. During a single step of the race, a problem instance is randomly chosen from
the problem’s sampling space. The performances of the two models involved in each active dual-SPRT are
evaluated on the selected problem instance, and the resulting performance vectors are utilized to generate
a new sample for the corresponding dual-SPRT. The test statistics are computed and, hence, decisions are
made according to Equation (8). If H0 is accepted, Ci is identified as being dominated by Cj and, thus,
will be eliminated from the race. Consequently, all the dual-SPRTs involving Ci are stopped. On the other
hand, if H2 is accepted, Ci is identified as dominating Cj and, therefore, Cj is removed from the race. As a
result, all the dual-SPRTs containing Cj are stopped. If H1 is accepted, Ci and Cj are regarded as neither
dominating the other. The current dual-SPRT will be terminated since no more comparisons are needed to
verify the dominance relation between Ci and Cj . Otherwise, if no decision is made, the relevant dual-SPRT
will be reapplied in the next step. When all the dual-SPRTs are terminated, the race concludes.

For SPRINT-Race, being a fixed confidence model selection algorithm, the total probability of making
any erroneous discovery needs to be strictly controlled. In a ternary-decision dual-SPRT, there are multiple
erroneous decisions that can be made. Hence, a more careful analysis is warranted, when compared to the
case of a traditional binary-decision SPRT, which gives rise only to Type I and Type II errors. Similar to the
analysis in [4, 22], the probability of any incorrect decision of the dual-SPRT procedure, denoted by γ(p), is
provided in Table 2.

Table 2: Error probability analysis of dual-SPRT

Interval Wrong Decisions γ(p)
p ≤ 1

2 − δ accept H1 or H2 γ(p) ≤ α
1
2 − δ < p < 1

2 accept H2 γ(p) < α
p = 1

2 accept H0 or H2 γ(p) ≈ α+ β
1
2 < p < 1

2 + δ accept H0 γ(p) < β
p ≥ 1

2 + δ accept H0 or H1 γ(p) ≤ β

The maximum γ(p) over the interval [0, 1], denoted by γ∗, is called the true level of significance of the
dual-SPRT. According to Table 2, it follows that γ∗ , max

p∈[0,1]
γ(p) = max {α, α+ β, β} = α+ β.

We define the error probability Γ of SPRINT-Race to be the overall probability of falsely removing any
Pareto optimal model or failing to eliminate any dominated model. Obviously, Γ is dependent on the true
significance levels of a total of

(
M
2

)
dual-SPRTs, where M is the size of the initial candidate pool. Using the

Bonferroni inequality, we have

Γ ≤
(M

2 )∑
i=1

γ∗i =

(M
2 )∑
i=1

(αi + βi) (9)
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Algorithm 1 SPRINT-Race Pseudo-code

1: Initialize Pool← {C1, C2, · · · , Cm} (m ≥ 2)
2: Initialize t = 1
3: repeat
4: Randomly sample a problem instance from the problem pool
5: for each model Ci ∈ Pool do
6: for each model Cj ∈ Pool s.t. i < j do
7: if the corresponding dual-SPRT continues then
8: Evaluate Ci and Cj on the selected instance
9: Update ntij and ntji

10: if H0 is accepted then
11: Pool← Pool \ {Ci}
12: Stop all dual-SPRTs involving Ci
13: else if H2 is accepted then
14: Pool← Pool \ {Cj}
15: Stop all dual-SPRTs involving Cj
16: else if H1 is accepted then
17: Stop the dual-SPRT involving Ci and Cj
18: end if
19: end if
20: end for
21: end for
22: t = t+ 1
23: until All dual-SPRTs are terminated
24: return Pool

where αi and βi refers to the α and β values assigned for the ith dual-SPRT in SPRINT-Race. To further
reduce the number of parameters involved in SPRINT-Race, we set αi = βi = ε for all i = 1, 2, · · · ,

(
M
2

)
.

Then, Equation (9) reduces to

Γ ≤ 2

(
M

2

)
ε = M(M − 1)ε (10)

Equation (10) suggests a way of strongly controlling the error probability of SPRINT-Race by properly
assigning the ε value. Let Γmax denote the maximum error probability allowed for SPRINT-Race. From
Equation (10), we have

ε =
Γmax

M(M − 1)
. (11)

Obviously, the smaller Γmax is, the smaller the ε value will be. Consequently, more samples are required
to reach a decision in each component SPRT. On the contrary, larger Γmax allows for less computational
effort, but also more error. Therefore, the selection of the desired Γmax value represents a trade-off between
the probability of returning a final ensemble of models that matches as close as possible to the true Pareto
front and the computational effort exerted by SPRINT-Race.

3 Experiments

In this section, the performance of SPRINT-Race 1 is first investigated by selecting the Pareto optimal
models based on artificially-generated data. To further demonstrate its performance, SPRINT-Race was
applied to selecting the Pareto optimal parameter settings of ACO algorithm for solving TSPs. Note that
SPRINT-Race and S-Race are incomparable because (i) the concept of indifference zone of SPRINT-Race is

1MATLABr code of SPRINT-Race is available at https://github.com/watera427/SPRINT-Race_v1. If you have
any queries, please contact the primary author via email.
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not employed in S-Race, (ii) the maximum number of steps is known in S-Race but unknown in SPRINT-
Race, and (iii) the probability of making any Type II errors is not strictly controlled by S-Race. Therefore,
it is meaningless to compare SPRINT-Race and S-Race in neither the fixed confidence setting nor the fixed
sample complexity setting.

3.1 Performance Metrics

Two performance metrics were considered to measure the quality of SPRINT-Race, retention R and excess
E [25], which are defined as follows:

R ,
|PR ∩ PPF |
|PPF |

(12)

E ,
|PR \ PPF |
|PR|

= 1− |PR ∩ PPF |
|PR|

(13)

where PR is the set of models returned by SPRINT-Race, and PPF is the ensemble of models constituting
the true Pareto front.

Just as their names imply, R measures SPRINT-Race’s ability of retaining Pareto optimal models. Mean-
while, E measures its ability of identifying and eliminating dominated models that do not belong to PPF .
Ideally, we would like to have R = 1 and E = 0, which means SPRINT-Race is able to return exactly the
ensemble of Pareto front models. However, in practice, a SPRINT-Race yielding high R and low E values is
acceptable, when contrasted to the savings in computational cost. As discussed in Section 2.4, the R and E
values are dependent on Γmax, the predefined maximum error probability of SPRINT-Race.

R and E focus on the quality of the final ensemble identified by SPRINT-Race. Aside from these
quantities, the sample complexity T , which is measured as the total number of samples used, is also considered
as a performance measurement of SPRINT-Race. Note that the number of samples used by a dual-SPRT in
SPRINT-Race equals the total number of times the candidate models are evaluated.
Regarding the computational complexity of SPRINT-Race, it is easy to show that SPRINT-Race takes

O(D V M
2
) pair-wise comparisons for D-objectives model selection, where M is the average number of

models competing throughout the entire race, and V is the average sample complexity of a dual-SPRT. In
reality since pair-wise comparisons between models will be terminated once sufficient statistical evidence is
collected, it is expected that M � M and V � V , where V is the sample complexity of a corresponding
ternary-decision fixed-sample test for dominance and non-dominance relationship inference.

3.2 Artificially Constructed MOMS Problems

We consider a few simple experiments here to illustrate the efficiency of SPRINT-Race. Assume that there are
M initial models for each experiment of D objectives, represented by M randomly generated D-dimensional
vectors. Subsequently,

(
M
2

)
Bernoulli distributions are constructed and all relevant p values are stored in

a matrix P . Pi,j(j > i) is drawn from a uniform distribution on the open interval (0.5,1), if the ith D-
dimensional vector dominates the jth D-dimensional vector. If neither dominates the other, Pi,j is set to 0.5.
Otherwise, Pi,j is selected from (0, 0.5), where Pi,j = 1− Pi,j . Finally, Pi,j is set to 0.5, if i = j. This way,
PPF , the Pareto front models, are known in advance. After P is constructed, SPRINT-Race commences
and, whenever a new sample is needed to be used for a dual-SPRT, the new sample is randomly generated
from a Bernoulli distribution with the corresponding Pi,j entry of P .

3.2.1 Impact of Number of Objectives

In this set of experiments, we fixed M at 100, δ at 0.05 and Γmax = 0.1, but varied the number of objectives
D from 2 to 14. Each experiment was repeated for 30 runs. The average R and E values for SPRINT-Race
are presented in Table 3. Moreover, the average sample complexity T and the average Pareto front size
|PPF | are presented as well.

The corresponding R values are all close to 1, which means that all Pareto optimal models are kept and
returned by the racing procedure. From Table 3, we also observe that the E values are all smaller than
0.1, indicating that SPRINT-Race is able to successfully identify and eliminate almost all dominated models
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Table 3: Average retention R, excess E, sample complexity T and the size of the Pareto front
|PPF | for varying D values over 30 runs

D R E T |PPF|
2 1.000 0.075 1.65e4 5.4
3 1.000 0.061 3.13e4 15.1
4 1.000 0.053 5.25e4 29.05
5 1.000 0.040 7.47e4 44.05
6 1.000 0.027 1.00e5 60.85
7 1.000 0.019 1.18e5 71.55
8 0.999 0.010 1.31e5 81.75
9 0.999 0.010 1.44e5 90.00
10 0.998 0.008 1.46e5 92.55
11 0.999 0.003 1.52e5 96.25
12 1.000 0.002 1.52e5 97.45
13 0.999 0.001 1.55e5 99.00
14 1.000 0.001 1.55e5 99.55

based on the predefined confidence level. Hence, SPRINT-Race returns almost exactly the problem’s true
Pareto front. As defined in Section 3.1, 1−R measures the probability of falsely removing any non-dominated
models in SPRINT-Race, while E measures the probability of mistakenly retaining any dominated models
in SPRINT-Race. Therefore, as we discussed before, the desired significant level Γmax of SPRINT-Race,
which was set to be 0.1 in this experiment, implicitly controls 1 − R + E. It is observed that the sum of
1 − R and E is strictly below 0.1 as expected. However, most of them are far less than 0.1, implying that
SPRINT-Race may be too conservative.

From Table 3, we also notice that when the number of objectives increases, more models are deemed
Pareto optimal, as indicated by |PPF |. When D = 14, almost all the models are on the Pareto front; this
explains why E values decrease in this case. Also, T increases monotonically with growing D. Generally,
in SPRINT-Race, it takes longer to identify non-dominated models than dominated ones. When most of
the models are non-dominated, it is expected that SPRINT-Race will require more samples to discover
non-dominant ones. However, the growth rate of T as a function of D is not dramatic, since, once sufficient
statistical evidence is collected indicating a non-dominance relation, no more sampling is needed. In Figure 1,
the sample complexity of each step in several runs of SPRINT-Race with D = 2 is depicted. As generally
observed, the sample complexity falls rapidly between the 100th step and the 190th step. After about 200
steps, only less than 10% of the initial models are still racing for a fine comparison.
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Figure 1: The number of samples needed at each step in several runs of SPRINT-Race with
binary-objective
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3.2.2 Impact of δ Values

The value of δ determines the size of the indifference zone of each ternary-decision SPRT in SPRINT-Race.
In this set of experiments, we aim at understanding how δ influences the performance of SPRINT-Race.
The parameter settings were M = 10, Γmax = 0.1, δ ∈ {0.01, 0.02, . . . , 0.1} and D ∈ {2, 3} since binary-
objective and ternary-objective MS are common in real world problem settings. Note that each experiment
was repeated for 30 runs.
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Figure 2: Changes of sample complexity T with varying δ

It is observed that δ has a significant impact on the sample complexity T (see Figure 2). In Figure 2, the
average values of T over 30 runs are depicted for the 2-objective and 3-objective MS problem. The sample
complexity of SPRINT-Race decreases with increasing δ. Such trend is expected because larger values of δ
result in wider indifference zone and, when the indifference zone is broad, it is easier for the test procedure to
reach a decision. As noticed in Figure 3, the error of SPRINT-Race, measured by 1−R+E, grows slightly
with increasing δ. Because when δ grows, more dominated models will be regarded as Pareto optimal. As a
result, the distinction between PR of SPRINT-Race and PPF becomes more significant.
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Figure 3: Changes of 1−R+ E with varying δ

3.2.3 Impact of Γmax Values

In this set of experiments, the impact of the Γmax value to the performance of SPRINT-Race was studied.
The parameter settings were M = 10, Γmax ∈ {0.01, 0.05, 0.1, 0.15, 0.2}, D ∈ {2, 3} and δ = 0.01. As
the experimental results demonstrate, decreasing Γmax will definitely increase the computational cost of
SPRINT-Race, since more samples are required to infer any pair-wise model dominance or lack thereof.
However, the R and E values only slightly varied within a reasonable range, which reflects SPRINT-Race’s
conservativeness.
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In conclusion, the selection of δ and Γmax, which are the only parameters of SPRINT-Race, results in a
trade-off between the probability of returning a final ensemble of models that matches the true Pareto front
and the computational effort exerted by SPRINT-Race. There is no generally-accepted “optimal” setting of
the two aforementioned parameters; the determination of the exact δ and Γmax values is totally depended
on the user’s preference pertaining to this trade-off.

3.3 ACO Selection for TSPs

In this section, we experimentally evaluated the performance of SPRINT-Race in terms of selecting the
Pareto optimal parameter settings of ACO as TSP solvers. The ACO system [7] was first introduced in 1992
and is one of the most popular swarm intelligence algorithms. Ever since its inception, ACO and its variations
have been widely used in a variety of combinatorial optimization problems, including scheduling problems,
vehicle routing problems, assignment problems and set cover problems. Just like other swarm intelligence
algorithms, the performance of ACO depends largely on its parameter settings, and, consequently, the effect
of its parameters has been studied extensively in the literature of ACO [9, 21]. However, the parameter
tuning process of ACO is time-consuming, when considering ever larger ensembles of parameter settings
assessed on ever larger problem sets. RAs play an important role in ACO selection [2, 3] to maintain a
certain level of confidence in retaining the optimal ACOs, while mitigating the computational burden. On
the other hand, the TSP is one of the most famous NP-hard combinatorial optimization problems, it has
been extensively studied in the literature and often serves as a standard benchmark problem. In this work, a
bi-objective ACO parameter selection problem was considered. In specific, the task in question is to identify
Pareto optimal ACOs, which serve as TSP solvers. An ACO parameter setting is deemed optimal, if it
minimizes both the TSP tour length and the actual computation time to find this tour.

In this experiment, the ACOTSPJava [24] software was used, in which several ACO algorithms are imple-
mented for solving TSPs. Prior to the race, a pool of 125 candidate models were initialized with diverse
configurations in terms of different combinations of three parameters as shown in Table 4: i) αACO, the
influence of pheromone trials; ii) βACO, the influence of heuristic information; and iii) ρACO, the pheromone
trail evaporation rate. The other parameters were set to the default values used in ACOTSPJava. Moreover,
the TSP instances were all generated by the DIMACS TSP instance generator [13]. At each step, a random
TSP instance was generated and the performance of each remaining models was evaluated by solving the
generated TSP problem. Correspondingly, a new performance vector of each remaining model was collected,
containing the length of the best tour found and the time spent of finding the best tour. SPRINT-Race was
applied at each step, aiming at removing dominated models and stopping unnecessary comparison of a pair
of Pareto optimal models as early as possible. 30 races were performed using Γmax = 0.01 and δ = 0.05.

Table 4: ACO Parameter Description

parameter values
αACO {0.01, 1.01, 2.01, 3.01, 4.01}
βACO {0.1, 2.1, 4.1, 6.1, 8.1}
ρACO {0.1, 0.3, 0.5, 0.7, 0.9}

The resulting average R, E, T and |PR| values over 30 runs were 1.000, 0.001, 4.46e5 and 17.933,
respectively. It is observed that the R value is about 1 and the E value is close to 0, which illustrates that
SPRINT-Race is able to retain exactly the ensemble of Pareto front models. Note that in this experiment
the true PPF is unknown. So the probability of dominance between pairs of models was estimated based
on the collected performance vectors and the resulting ensemble of non-dominated models were regarded as
PPF . To illustrate the accuracy of SPRINT-Race, we depicted the minimum probability of dominance of
each model in Figure 4 of one run. For each model Ci, the minimum probability of dominance is calculated as
mini 6=j Pr {Ci � Cj}. Considering δ = 0.05, the minimum probability of dominance of any non-dominated
models returned by SPRINT-Race should be no smaller than 0.45. Moreover, all the models with the
minimum probability of dominance larger than 0.5 are expected to be returned by SPRINT-Race as Pareto
optimal models. In Figure 4, a blue circle (◦) represents a dominated model and a red bullet (•) stands
for a non-dominated model returned by SPRINT-Race. As shown in Figure 4, SPRINT-Race performs well
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and returns all the Pareto optimal models as expected without erroneously including any dominated model.
Furthermore, we compared the performance of the Pareto optimal models selected by SPRINT-Race and the
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Figure 4: Models’ Minimum Probability of Dominance

rest of models, which were identified as dominated models on a test set containing 2500 randomly generated
TSP instances. The average normalized values of their performance vectors are displayed in Figure 5. It is
observed that the Pareto optimal models are concentrated at the bottom left and right corners, where either
the first objective or the second objective is minimized. In other words, the experimental results demonstrate
that the Pareto optimal models selected based on the validation set of TSP instances are also Pareto optimal
for the unseen set of TSP instances.
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Figure 5: Performance comparison of dominated and non-dominated models returned by
SPRINT-Race on a test set

4 Conclusions

In this paper, a new Multi-objective Racing Algorithm (MORA) for Multi-objective Model Selection (MOMS),
na-med SPRINT-Race, was proffered. SPRINT-Race addresses the problem of MOMS in the proper sense of
Pareto optimality by employing probabilistic dominance. Identifying dominated and non-dominated models
is accomplished via a ternary-decision process, that is the sequential analogue of the non-parametric sign
test. Moreover, in the fixed confidence setting of SPRINT-Race, the total probability of falsely retaining
any dominated model and removing any non-dominated model is strictly controlled at a user-specified level.
The racing procedure automatically stops, when sufficient statistical evidence is collected to make decisions.
A key characteristic of SPRINT-Race is that it is able to balance the need for retaining all Pareto optimal
models with high probability and computational cost limitations.
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Experimental results were provided to illustrate the efficiency and effectiveness of SPRINT-Race. These
results show that SPRINT-Race is able to return almost exactly the true Pareto front but at a reduced
cost. The impact of SPRINT-Race’s parameter values on its performance was analyzed on model selection
problems, whose Pareto optimal solution was known beforehand. It was observed that the selection of δ and
Γmax results in a trade-off between the probability of returning a final ensemble of models that matches the
true Pareto front and the computational effort exerted by SPRINT-Race. In addition, SPRINT-Race was
applied to selecting the Pareto optimal parameter settings of Ant Colony Optimization (ACO) algorithms
for solving Traveling Salesman Problems (TSPs). SPRINT-Race performs well and retains all the Pareto
optimal models as expected with little error probability of including any dominated model. Overall, the
experimental results confirm the potential of SPRINT-Race in MOMS.

It is worth pointing out that, while our work was singularly focused on MOMS problems, SPRINT-Race
is readily applicable to optimal model initialization and configuration problems along the lines investigated
in [3]; it is our intention to examine this possibility in one of our future works.
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