"Sprites, Elves and Intense Lightning Discharges"

edited by

Martin Füllekrug

Centre for Space Atmospheric and Oceanic Science, University of Bath, United Kingdom

Eugene A. Mareev

Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russian Federation

and

Michael J. Rycroft

CAESAR Consultancy, Cambridge, United Kingdom

Published in cooperation with NATO Public Diplomacy Division

Contents

~

••

Contributi	ng Authors	XI
Preface		xiii
INTRODU LIGH	JCTION TO THE PHYSICS OF SPRITES, ELVES AND INTENSE INING DISCHARGES	1
Michael J.	Rycroft	
1.1	Basic Properties of the Atmosphere	1
	1.1.1 Global Scale Variations (Horizontal Scale greater than 10 ⁴ km)	1
	1.1.2 Regional Variations (Horizontal Scale between 30 and 300 km)	3
1.2	Basic Theory of Electrical Phenomena Occurring in the Atmosphere	3
	1.2.1 Introduction	3 3 4 5 6 7
	1.2.2 The DC Global Atmospheric Electric Circuit	4
	1.2.3 The AC Circuit	5
	1.2.4 Thundercloud Charges and their Screening	6
	1.2.5 Spatial and Temporal Variations of the Global Circuit	7
1.3	The Properties of Sprites, Elves and Intense Lightning Discharges	7
	1.3.1 Observations and their Interpretation – An Overview	8
	1.3.2 ELF Radiation by Sprites	10
	1.3.3 Summary of Observations	11
1.4	Introduction to Theories and Numerical Modelling of Sprites	12
1	1.4.1 Basic Physical Concepts	12
	1.4.2 Computer Modelling Results	12
1.5	Conclusions	13
Acknowle	dgments	13
THE MET	EOROLOGY OF TRANSIENT LUMINOUS EVENTS-	
AN IN	TRODUCTION AND OVERVIEW	19
Walter A.		
2.1	Introduction	19
	2.1.1 Scales of Atmospheric Motion	19
	2.1.2 Basic Concepts of Atmospheric Vertical Stability	21
	2.1.3 Convective Cloud Nomenclature	22
2.2	Observations of Convective Phenomema	24
	2.2.1 Conventional Convective Storm Monitoring	25
	2.2.2 Lightning Observation Techniques and Terminology	26
2.3	A Brief History of TLE Observations	30
2.4	Characteristics of TLE-Parent Lightning and Storms	34
	2.4.1 The Phenomenology of TLEs	34
	2.4.2 Convective Storm Types and TLEs	39
2.5	Research Frontiers	41

	2.5.1 2.5.2	Importance Outstanding Research Questions	42 43
Acknowle	dgments		44
		SICAL AND ELECTRICAL PROPERTIES OF SPRITE- THUNDERSTORMS	57
Earle Will	iams an	d Y. Yair	
3.1	Introdu	ction	57
3.2	The No	n-Inductive Charging Process in Thunderclouds	58
3.3	Cloud Scale Charge Structure Possible with the Non-Inductive Mechanism 6		
3.4	The Electrical Structure Inside Sprite-Producing Storms in Summertime 6		
3.5	The Electrical Structure inside Sprite-Producing Storms in Wintertime 6		
3.6	Gaps in	Knowledge and Future Needs	73
Acknowle	dgments		74
GLOBAL Colin Pric		DERSTORM ACTIVITY	85
4 .1		th's Energy Delence	05
4.1		rth's Energy Balance	85
		neral Circulation of the Atmosphere	87
4.3		Thunderstorms in Mid-Latitude Regions	90
4.4		Observations of Lightning	92
4.5		obal Atmospheric Electric Circuit	93
4.6	Future	Directions	96
			101
Thomas H		T. Neubert and S. Laursen	
5.1	Introdu	ction to Low Light Imaging	101
	5.1.1		102
	5.1.2		102
	5.1.3		104
	5.1.4		105
	5.1.5	5	106
5.2			107
	5.2.1		107
	5.2.2		108
	5.2.3 5.2.4		$\frac{112}{114}$
			114
	5.2.5 5.2.6		115 115
	5.2.0		117
			117
5.3	Conclu		118
5.5	5.3.1		118
	5.3.2		120
SPACECR	AFT BA	ASED STUDIES OF TRANSIENT LUMINOUS EVENTS	123

Stephen B. Mende, Y. S. Chang, A. B. Chen, H. U. Frey, H. Fukunishi, S. P. Geller, S. Harris, H. Heetderks, R. R. Hsu, L. C. Lee, H. T. Su and Y. Takahashi

6.1 Introduction

vi

124

Contents

6.2	FORMOSAT-2 Satellite and the ISUAL Instrument 6.2.1 The FORMOSAT-2 Satellite	124 125
	6.2.2 The ISUAL Imager	127
	6.2.3 The Spectrophotometer	131
	6.2.4 Data Interpretation of the Spectrophotometer	136
	6.2.5 The Array Photometers	138
6.3	Initial Observations with ISUAL	140
6.4	Summary	144
Acknowl	edgments	146
	ATIONS OF SPRITES FROM SPACE AT THE NADIR: THE LSO HTNING AND SPRITE OBSERVATIONS) EXPERIMENT	
	BOARD OF THE INTERNATIONAL SPACE STATION	151
Elisabeth	a Blanc, T. Farges, D. Brebion, A. Labarthe and V. Melnikov	
7.1	Introduction	152
7.2	Spectral Differentiation of Sprite and Lightning Emissions	153
7.3	Experiment	153
7.4	Observations	156
7.5	Perspectives	160
REMOT	E SENSING OF THE UPPER ATMOSPHERE BY VLF	167
	Rodger and R. J. McCormick	107
8.1	Ionospheric Conductivity	167
8.2	Sources of VLF Electromagnetic (EM) Waves	167
0.2	8.2.1 Thunderstorms and Lightning	168
	8.2.2 Man-Made VLF Radiation	169
8.3	VLF Propagation in the Earth-Ionosphere Waveguide	169
0.5	8.3.1 Variations in Subionospheric Propagation	170
	8.3.2 TLE Associated Perturbations on VLF Transmissions	172
8.4	Relaxation of High-Altitude Ionospheric Modifications	181
0.4	8.4.1 Temperature Relaxation	181
	8.4.2 Ionization Relaxation	181
8.5	Summary	183
6.5	Summary	165
	REMENTS OF LIGHTNING PARAMETERS FROM REMOTE CTROMAGNETIC FIELDS	191
	Cummer	
9.1	Background and Motivation	191
9.2	Remote Lightning Parameter Measurements	195
9.3	Data Analysis Techniques	193
9.5	9.3.1 Electromagnetic Field Modeling	200
	9.3.2 Data Inversion	200
9.4	Summary	202
7.4	Summary	205
LOCATI	ON AND ELECTRICAL PROPERTIES OF SPRITE-PRODUCING ITNING FROM A SINGLE ELF SITE	211
	Hobara, M. Hayakawa, E. Williams, R. Boldi and E. Downes	211
10.1	Introduction	212
10.1		212
	10.1.1 Lightning Activity 10.1.2 Terrestrial ELF Electromagnetic Signals	212
	10.1.3 Sprites and Elves and Causative Lightning Properties	212
	10.1.4 Contents of this Chapter	214

10.2	Locating Distant ELF Sources and Quantifying their Electrical Properties	215
		215
		218
10.3	1 8 8 9	220
	10.3.1 Winter Thunderstorm Activity and TLEs in the Hokuriku	220
	10.3.2 ELF Radiation Associated with the Hokuriku TLEs and the	224
	10.3.3 Atmosphere-Mesosphere-Ionosphere Coupling	227
10.4	Conclusion	228
Acknowled	lgments	229
CALIBRA	TED RADIANCE MEASUREMENTS WITH AN AIR-FILLED	
	DISCHARGE TUBE: APPLICATION TO SPRITES IN THE	
		237
	iams, M. Valente, E. Gerken and R. Golka	
11.1		237
11.2	Methodology	238
11.3	- r	240
11.4		242
11.5		243
11.6		244
11.7	Conclusion	247
Acknowle	dgments	247
THEORE	FICAL MODELING OF SPRITES AND JETS	253
Victor P. P.		
12.1		253
	12.1.1 Phenomenology of Sprites	254
		255
12.2		256
	12.2.1 Concept of Electrical Breakdown	256
	12.2.2 Classification of Breakdown Mechanisms in Terms of pd Values	257
	12.2.3 Classification of Breakdown Mechanisms in Terms of Applied	251
	Electric Field	261
	12.2.4 Similarity Relations	265
12.3	Physical Mechanism and Numerical Modeling of Sprites	267
		267
	12.3.2 Altitude Structuring of Optical Emissions	271
	12.3.3 Large Scale Fractal Models of Sprites	272
	12.3.4 Modeling of Small-scale Sprite Streamer Processes and Photoionization Effects	274
	12.3.5 Optical Emissions Associated with Sprite Streamers	277
12.4	Physical Mechanism and Numerical Modeling of Blue Jets, Blue	
	Starters and Gigantic Jets	279
	12.4.1 Blue Jets as Streamer Coronas	280
	12.4.2 Thundercloud Charge and Current Systems Supporting Blue Jets, Blue Starters and Gigantic Jets	283
	12.4.3 Numerical Simulation of Blue Jets and Blue Starters	285
	12.4.4 Modeling of Optical Emissions from Blue Jets and Blue	-00
	Starters	286

viii

Contents

12.5		ed Problems	287
		Relationship of Sprites and Jets to High Air Pressure Leader Processes	287
		Initiation of Sprite Streamers in Low Applied Fields	288
		Propagation of Sprite Streamers	289
		Branching of Sprite Streamers	291
	12.5.5	Thermal Runaway Electrons in Streamer Tips in Sprites	292
Acknowled	lgments		293
		ING OF SPRITES AND SPRITE-PRODUCING CLOUDS	
		BAL ELECTRIC CIRCUIT	313
4.		A. A. Evtushenko and S. A. Yashunin	
13.1	Introdu		314
13.2		ependent Electric Field in the Conducting Atmosphere	315
13.3		ng of the Lower Positive Charge Layer in the Stratified Region	
13.4		Electric Circuit Implications	330
13.5	Conclus	sion and Outlook for Promising Future Work	335
Acknowled	igments		335
ACTUAL	PROBL	EMS OF THUNDERCLOUD ELECTRODYNAMICS	341
Victor Y. Th	rakhteng	erts and Dmitry I. Iudin	
14.1	Introdu		341
14.2	Electric	Field Generation in an Atmospheric Convective Cell	343
		The Case of a Cylindrical Convective Cell	343
		Some Generalizations	346
	14.2.3	Dynamics of the Large-Scale Electric Field in a Convective Cloud	348
14.3	Fine St	ructure of Electric Fields in a Thundercloud	351
	14.3.1	Multi-Flow Electrical Instability in a TC	351
		A Mechanism of Electric Field Fast Growth during the TC Mature Stage	353
	1433	Fractal Dynamics of Micro-Discharges in a TC	356
14.4		ration of Relativistic Electrons during a Thunderstorm	360
1-1-1		Runaway Breakdown in a Constant Electric Field	360
		Acceleration by Stochastic Electric Fields	365
14.5	Conclu	-	369
Acknowled			370
POSTER A	-		377
T. Farges	4D31 K/	AC15	511
15.1	Introdu	ction	377
15.2	Observa	ations from the Ground	377
	15.2.1	Automated, Remote-Controlled Optical Observation Systems in TLE Research	377
	15.2.2	Observation of Schumann Resonance Transients at Nagycenk, Hungary	378
	15.2.3	Post Filtering of Unwanted Powerline and Lightning Effects	
	1504	in VLF	378
		Infrasonic Signatures of Thunder On the Absorption of ELF Signals in the Earth-Ionosphere	379
	19.4.9	Waveguide	379

ix

	15.2.6	A Global Lightning Location Algorithm Based on Electro- magnetic Signatures in the Schumann Resonance Band	381
	15.2.7	Neutral and Charged Particles at Low Latitudes. Is their	501
	10.2.7	Connection with Thunderstorms Possible ?	381
	15.2.8	Sprites Observed over France on 23 July 2003 in Relation to	
		their Parent Thunderstorm System	382
			383
		VLF Signatures Associated with Sprites	383
	15.2.11	Stratospheric Electric Field, Magnetic Field and Conductiv- ity Measurements Above Thunder- storms: Implications for	
		Sprite Models	384
	15.2.12	Triggering of Positive Lightning and High-Altitude Atmo- spheric Discharges	384
15.3	Observ	ations from Space	385
	15.3.1	Transient Luminous Events Explored by the ROCSAT-2/ISUA	
		Instrument: Observation with the Array Photometer	385
	15.3.2	Fractal Analysis Method Applicability to Terrestrial Gamma-	
		Ray Flashes	386
	15.3.3	Searching for Lightning-Induced Terrestrial Gamma Ray Burst on CORONASF Satellite	ts 387
	15.3.4	Seismo-electromagnetic Emissions	388
	15.3.5	First Results of Transient Luminous Event Observations by ISUAL	389
	15.3.6	Detection of Terrestrial Gamma-ray Flashes with the RHESSI Spacecraft	389
	15.3.7	ÉNVISAT Capabilities of Observing High Altitude Optical	
		Phenomena	390
15.4	Theore	tical Modelling	391
	15.4.1	Do sprites Impact Climate? An atmospheric Coupling Ap-	201
	15 4 0	proach.	391
	15.4.2	The Sodankylä Ion Chemistry model: Application of Cou- pled Ion-neutral Chemistry Modelling	391
	15.4.3	Simulation of Streamer Propagation Using a PIC-MCC Code:	391
	15.4.5	Application to Sprite Ignition	392
	15.4.4	Characteristics of Transient Luminous Event Streamers in	
		Weak Electric Fields	392
	15.4.5	Three-Dimensional Subionospheric VLF Electro- magnetic	
		Field Scattering by a Highly Conducting Cylinder and Its	
	1	Application to the Trimpi Effect Problem	393
	15.4.6	Changes of the Lower Ionospheric Electron Concentration	204
		due to Solar Cosmic Rays	394
Index			395