
SPRT for SPIT: Using the Sequential

Probability Ratio Test for Spam
in VoIP Prevention

Tobias Jung, Sylvain Martin, Damien Ernst, and Guy Leduc

Montefiore Institute, University of Liège, Belgium
{tjung,sylvain.martin,dernst,guy.leduc}@ulg.ac.be

Abstract. This paper presents the first formal framework for identify-
ing and filtering SPIT calls (SPam in Internet Telephony) in an outbound
scenario with provable optimal performance. In so doing, our work de-
viates from related earlier work where this problem is only addressed
by ad-hoc solutions. Our goal is to rigorously formalize the problem in
terms of mathematical decision theory, find the optimal solution to the
problem, and derive concrete bounds for its expected loss (number of mis-
takes the SPIT filter will make in the worst case). This goal is achieved
by considering a scenario amenable to theoretical analysis, namely SPIT
detection in an outbound scenario with pure sources. Our methodology
is to first define the cost of making an error, apply Wald’s sequential
probability ratio test, and then determine analytically error probabili-
ties such that the resulting expected loss is minimized. The benefits of
our approach are: (1) the method is optimal (in a sense defined in the
paper); (2) the method does not rely on manual tuning and tweaking
of parameters but is completely self-contained and mathematically jus-
tified; (3) the method is computationally simple and scalable. These are
desirable features that would make our method a component of choice
in larger, autonomic frameworks.

1 Introduction

SPIT is an acronym for spam in internet telephony and refers to unsolicited
calls that, when answered by a human, would deliever a pre-recorded message
(e.g., advertisement or phishing attempts). Similar to spam in emails, SPIT ex-
ploits the openness of the existing infrastructure (e.g., no strongly authenticated
identities) together with the fact that VoIP calls can be easily generated au-
tomatically and at zero costs. Unlike with spam in emails however, where the
content consists of text and can be analyzed before it is delivered, the content
of a phone call (a voice stream) is only available when the call is answered.
Thus many of the defensive measures that are effective against email spam do
not directly translate to SPIT mitigation. Previously, some first ideas have al-
ready been suggested to address this problem. They range from reputation-based
[3,1] and call-frequency based [10] dynamic black-listing, fingerprinting [15], to
challenging suspicious calls by captchas [9,11,8], or the use of standard machine
learning such as anomaly detection [6,4], clustering [14], or decision trees [5].

R. Sadre et al. (Eds.): AIMS 2012, LNCS 7279, pp. 74–85, 2012.
c© IFIP International Federation for Information Processing 2012

SPRT for SPIT 75

These methods provide interesting building blocks, but, in our opinion, suffer
from two main shortcomings. First, they do not provide performance guarantees
in the sense that it is difficult to get an estimate of the number of SPIT calls
that will go through and the number of regular calls they will erroneously stop.
Second, they require a lot of hand-tuning for working well, which cannot be
sustained in future’s networks.

Our initial motivation for this paper was to explore whether there would be
ways to design SPIT filters that would not suffer from these two shortcomings.
For this, we start by considering an abstracted scenario amenable to theoretical
analysis where we make essentially two simplifying assumptions: (1) we are deal-
ing with pure source SPIT detection in an outbound scenario; (2) we can extract
features from calls (such as, for example, call duration) whose distribution for
SPIT and regular calls is known in advance. Here, “outbound scenario” means
that our SPIT detector will be located in, or at the egde of, the network where
the source resides, and will check all outgoing calls originating from within the
network. Technically, this means that we are able to easily map calls to sources
and that we can observe multiple calls from each source. By “pure source” we
mean that a source either produces only SPIT or only NON-SPIT calls for a
certain observation horizon. Under these assumptions, we have been able to de-
sign a SPIT filter which requires no tuning and no user feedback and which is
optimal in a sense that will be defined later in this paper. Note that in the paper
we will introduce this SPIT filter from a theoretical point of view and, due to the
lack of the space, will have to omit most of the issues pertaining to a real-world
deployment.

The paper is structured as follows: we start in Section 2.1 with describing
precisely and in mathematical terms the context for which we will design the
SPIT filter. In Section 2.2 we then show how it is possible to design from a simple
statistical test a SPIT filter with the desired optimality guarantees and for which
in Section 2.3 we can provide analytical expressions to bound its worst-case
performance. In Section 2.4 we then give a concrete example and study the case
where the distribution of the relevant call features is an exponential distribution
(which would be the case if we chose call duration as feature). Finally, in Section 3
we examine the performance of the SPIT filter with some real-world data and
compare the empirical performance with what the theory predicts.

2 A SPIT Filter with Theoretically Optimal Performance

2.1 Problem Statement

The SPIT filter is placed in the outbound network and monitors outgoing calls
originating from a source within the protected network. (The sources correspond
to known users.) We assume that sources are independent and over a certain
observation horizon will either only produce regular calls (if it is a human) or
only produce SPIT calls (if the source is compromised by a SPIT bot). The
purpose of the SPIT filter then is to decide, for each source individually, if it is
a regular user or a SPIT bot.

76 T. Jung et al.

Calls are processed sequentially. Every time a new call arrives at the filter,
it can do one of two things: (i) accept the call and pass it on to the recipient
or (ii) block the call. Each call is associated with certain features; we assume
that the features which are relevant are only observable after a call is accepted
(e.g., call duration). Furthermore, the distribution over the features shall be
different depending on whether the call is SPIT or not. Finally we assume that
these distributions are known in advance. Our goal is to decide for a source,
after observing a few calls from it, whether or not the source sends out SPIT.
More precisely, we look for a decision policy that initially accepts all calls, thus
refining the belief about whether or not the source is SPIT, and then at some
point decides to either block or accept all future calls from the source. Seen
as a single-state decision problem over time, the SPIT filter has three possible
actions: (1) accept the next call, which reveals its features and thus refines the
belief about the type of the source, (2) block all future calls, and (3) accept all
future calls. The last two actions immediately stop the decision-making process
and, if the decision was wrong (that is, deciding to accept when in truth the
source is SPIT, or deciding to block when in truth the source is NON-SPIT),
will incur a terminal loss proportional to the number of remaining calls. In
addition, we also have a per step cost during the initial exploration if the source
is of type SPIT (for erroneously accepting SPIT calls). In doing so, we arrive
at a well defined concept of loss. Within the framework outlined above, every
conceivable SPIT filter algorithm will have a performance number: its expected
loss. The particular SPIT filter that we are going to describe below will be one
that minimizes this expected loss.

To address the problem mathematically, we employ Wald’s sequential proba-
bility ratio test for simple hypotheses introduced in [12]. The sequential proba-
bility ratio test (SPRT) has the remarkable property that among all sequential
tests procedures it minimizes the expected number of samples for a given level
of certainty and regardless of which hypothesis is true (the optimality of SPRT
was proved in [13]). In addition, the SPRT comes with bounds for the expected
stopping time and thus allows us to derive concrete expressions for the expected
loss as a function of the characteristics of the particular problem (meaning we
can express the loss as a function of the parameters of the distribution for SPIT
or NON-SPIT). Finally, SPRT requires only simple algebraic operations to carry
out and thus is easy to implement and computationally cheap to run.

2.2 SPIT Detection via the SPRT

To model the SPIT detection problem with the SPRT, we now proceed as follows:
Assume we can make sequential observations from one source of a priori unknown
type SPIT or NON-SPIT. Let xt denote the features of the t-th call we observe,
modeled by random variable Xt. The Xt are i.i.d. with common distribution
(or density) pX . The calls all originate from one source which can either be of
type SPIT with distribution pSPIT(x) = p(x|source=SPIT) or of type NON-
SPIT with distribution pNON-SPIT(x) = p(x|source=NON-SPIT). Initially, the
type of the source we are receiving calls from is not known; in absence of other

SPRT for SPIT 77

information we have to assume that both types are equally likely, thus the prior
would be p(SPIT) = p(NON-SPIT) = 1

2 . In order to learn the type of the source,
we observe calls x1, x2, . . . and test the hypothesis

H0 : pX = pSPIT versus H1 : pX = pNON-SPIT. (1)

At time t we observe xt. Let

λt :=
p(x1, . . . , xt|NON-SPIT)

p(x1, . . . , xt|SPIT) =

t∏

i=1

p(xi|NON-SPIT)

p(xi|SPIT) (2)

be the ratio of the likelihoods of each hypothesis after t observations x1, . . . , xt.
Since the Xi are independent we can factor the joint distribution on the left
side to obtain the right side. In practice it will be more convenient for numerical
reasons to work with the log-likelihoods. Doing this allows us to write a particular
simple recursive update for the log-likelihood ratio Λt := logλt, that is

Λt := Λt−1 + log
p(xt|NON-SPIT)

p(xt|SPIT) . (3)

After each update we examine which of the following three cases applies and act
accordingly:

A < λt < B =⇒ continue monitoring (4)

λt ≥ B =⇒ accept H1 (decide NON-SPIT) (5)

λt ≤ A =⇒ accept H0 (decide SPIT) (6)

Thresholds A and B with 0 < A < 1 < B < ∞ depend on the desired accuracy
or error probabilities of the test:

α :=P{accept H1 |H0 true} = P{decide NON-SPIT | source=SPIT} (7)

β :=P{reject H1 |H1 true} = P{decide SPIT | source=NON-SPIT}. (8)

Note that α and β need to be specified in advance such that certain accuracy
requirements are met (see next section where we consider the expected loss of
the procedure). The threshold values A and B and error probabilities α and β
are connected in the following way

β ≤ A(1− α) and α ≤ (1− β)/B. (9)

Note that the inequalities arise because of the discrete nature of making ob-
servations (i.e., at t = 1, 2, . . .) which results in λt not being able to hit the
boundaries exactly. In practice we will neglect this excess and treat the inequal-
ities as equalities:

A = β/(1− α) and B = (1− β)/α. (10)

Let T be the random time at which the sequence of the λt leaves the open
interval (A,B) and a decision is made that terminates the sampling process.

78 T. Jung et al.

(Note that stopping time T is a random quantity due to the randomness of the
sample generation.) The SPRT provides the following pair of equalities for the
expected stopping time in both cases (cf. [12], Eqs.(4.80),(4.81))

EXi∼pSPIT [T] =
1

κ0

(
α log

1− β

α
+ (1− α) log

β

1− α

)
(11)

EXi∼pNON-SPIT [T] =
1

κ1

(
β log

β

1− α
+ (1− β) log

1− β

α

)
. (12)

The constants κi with κ0 < 0 < κ1 are the Kullback-Leibler information numbers
defined by

κ0 = Ex∼pSPIT

[
log

p(x|NON-SPIT)

p(x|SPIT)
]

(13)

κ1 = Ex∼pNON-SPIT

[
log

p(x|NON-SPIT)

p(x|SPIT)
]
. (14)

The constants κi can be interpreted as a measure of how difficult it is to distin-
guish between pSPIT and pNON-SPIT. The smaller they are the more difficult is
the problem.

2.3 Theoretical Performance of the SPIT Filter

We will now look at the performance of our SPIT filter and derive expressions
for its expected loss. Let us assume we are going to receive a finite number N of
calls and that N is sufficiently large such that the test will always stop before
the calls are exhausted.

How does the filter work? At the beginning all calls are accepted until the
test becomes sufficiently certain about its prediction. Once the test becomes
sufficiently certain, based on the outcome the filter implements the following
simple policy: if the test returns that the source is SPIT then all future calls
from it will be blocked. If the test says that the source is NON-SPIT then all
future calls from it will be accepted. Since the decision could be wrong, we define
the following costs: c0 > 0 is the cost for erroneously accepting a SPIT call, and
c1 > 0 is the cost for erroneously blocking a NON-SPIT call. Let L denote the
loss incurred by this policy (note that L is a random quantity). To compute
the expected loss, we have to divide N into two parts: the first part from 1 to
T corresponds to the running time of the test where all calls are automatically
accepted (T < N being the random stopping time with expectation given in
Eqs. (11)-(12)), the second part from T + 1 to N corresponds to the time after
the test.

If H0 is true, i.e., the source is SPIT, the loss L will be the random quantity

L|source=SPIT = c0T + αc0(N − T) (15)

where c0T is the cost of the test, α the probability of making the wrong decision,
and c0(N − T) the cost of making the wrong decision for the remaining calls.
Taking expectations gives

SPRT for SPIT 79

EXi∼pSPIT [L] = αc0N + c0(1− α)EXi∼pSPIT [T]. (16)

Likewise, if H1 is true, i.e., the source is NON-SPIT, our loss will be the random
quantity

L|source=NON-SPIT = 0 · T + βc1(N − T) (17)

where 0 is the cost of the test (because accepting NON-SPIT is the right thing
to do), β the probability of making the wrong decision, and c1(N − T) the cost
of making the wrong decision for the remaining calls. Taking expectation gives

EXi∼pNON-SPIT [L] = βc1(N − EXi∼pNON-SPIT [T]). (18)

The total expected loss takes into consideration both cases and is simply

E[L] = p(SPIT) ·EXi∼pSPIT [L] + p(NON-SPIT) ·EXi∼pNON-SPIT [L]. (19)

For the case that both priors are equal, we have

E[L] =
1

2

{
N(αc0 + βc1) + log

1− β

α

(c0α(1 − α)

κ0
− c1β(1 − β)

κ1

)

+ log
β

1− α

(c0(1− α)2

κ0
− c1β

2

κ1

)}
. (20)

Looking at Eq. (20) we see that, given all the other information, the expected
loss will be a function of α, β. In practice, one way of choosing α, β would be to
look for that setting α∗, β∗ that will minimize the expected loss under the given
problem specifications (i.e., distributions pSPIT, pNON-SPIT and cost c0, c1).

2.4 Example: Exponential Duration Distribution

For the following numerical example we assume that pSPIT and pNON-SPIT are
both exponential distributions with parameters λ0, λ1 > 0, that is, are given by

p(x|SPIT) = λ0 exp(−λ0x), p(x|NONSPIT) = λ1 exp(−λ1x) (21)

for x > 0. While this example is primarily meant to illustrate the behavior
of a SPRT-based SPIT filter theoretically, it is not an altogether unreasonable
scenario to assume for a real world SPIT filter. For example, one could assume
that a possible relevant feature of calls is their duration (see Section 3). In this
case SPIT calls will have a shorter duration than regular calls because after a
callee answers the call, they will hang up as soon as they realize it is SPIT. The
majority of regular calls on the other hand will tend to have a longer duration.
While this certainly simplifies the situation from the real world, we can imagine
that both durations can be modeled by an exponential distribution with an
average (expected) length of SPIT calls of 1/λ0 minutes and an average length
of NON-SPIT calls of 1/λ1 minutes (1

λ1
> 1

λ0
).

80 T. Jung et al.

First, let us consider the expected stopping time from Eqs. (11)-(12). From
Eqs. (13)-(14) we have that the Kullback-Leibler information number for Eq. (21)
is given by

κ0 =

∞∫

0

log

[
λ1 exp(−λ1x)

λ0 exp(−λ0x)

]
· λ0 exp(−λ0x)dx

= log
λ1

λ0

∞∫

0

λ0 exp(−λ0x)dx+ (λ0 − λ1)

∞∫

0

x · λ0 exp(−λ0x)dx

= log
λ1

λ0
+ 1− λ1

λ0
. (22)

(On the second line, the first integral is an integral over a density and thus is
equal to one; the second integral is the expectation of pSPIT and thus is equal to
1/λ0.) Similarly we obtain for κ1 the expression

κ1 = log
λ1

λ0
− 1 +

λ0

λ1
. (23)

Note that for more complex forms of distributions we may no longer be able to
evaluate κi in closed form.

As we can see, κi only depends on the ratio λ1/λ0. Thus for fixed accuracy
parameters α, β the expected stopping time in Eqs. (11)-(12) will also only de-
pend on the ratio λ1/λ0. The closer the ratio is to zero, the fewer samples will
be needed (the problem becomes easier); the closer the ratio is to one, the more
samples will be needed (the problem becomes harder). Of course this result is
intuitively clear: the ratio λ1/λ0 determines how similar the distributions are.

In Table 1 we examine numerically the impact of the difficulty of the problem,
in terms of the ratio λ1/λ0, on the expected number of samples until stopping
for different settings of accuracy α, β. For instance, an average NON-SPIT call
duration of 2 minutes as opposed to an average duration of SPIT calls of 12 s leads
to λ1/λ0 = 0.1, and distributions that are sufficiently dissimilar to arrive with
high accuracy at the correct decision within a very short observation horizon:
with accuracy α, β = 0.001, the filter has to observe on the average 1.0 calls if
the source is NON-SPIT and 4.9 calls if the source is SPIT to make the correct
decision in at least 99.9% of all cases. (Notice that the stopping time is not
symmetric.)

Next we will compute the log-likelihood ratio Λt. From Eq. (3) we have

Λt =

t∑

i=1

log
p(xi|NON-SPIT)

p(xi|SPIT) =

t∑

i=1

log
λ1 exp(−λ1x)

λ0 exp(−λ0x)

=
t∑

i=1

[
log

λ1

λ0
+ (λ0 − λ1)xi

]
.

SPRT for SPIT 81

Table 1. How does the difficulty of the problem, expressed in terms of the ratio λ1/λ0,
affect the expected number of samples until stopping, ESPIT[T] and ENON-SPIT[T], for
different settings of the accuracy parameters α, β

α, β = 0.05 α, β = 0.01 α, β = 0.001

λ1/λ0 κ0 κ1 ESPIT[T] ENON[T] ESPIT[T] ENON[T] ESPIT[T] ENON[T]

0.99 -0.00005 0.00005 52646.2 52294.7 89463.4 88865.9 136938.9 136024.5
0.95 -0.00129 0.00133 2049.0 1980.1 3481.9 3364.9 5329.7 5150.5
0.90 -0.00536 0.00575 494.3 460.8 840.0 783.0 1285.8 1198.6
0.70 -0.05667 0.07189 46.7 36.8 79.4 62.6 121.6 95.8
0.50 -0.19314 0.30685 13.7 8.6 23.3 14.6 35.6 22.4
0.30 -0.50397 1.12936 5.2 2.3 8.9 3.9 13.6 6.1
0.10 -1.40258 6.69741 1.8 0.3 3.2 0.6 4.9 1.0
0.01 -3.61517 94.39486 0.7 <0.1 1.2 <0.1 1.9 0.1

The decision regions for the SPRT from Eq. (4) are thus

log
β

1− α
< t · log λ1

λ0
+ (λ0 − λ1)

t∑

i=1

xi < log
1− β

α
(24)

or, equivalently,

log
β

1− α
+ t ·

(
log

λ0

λ1

)
< (λ0 − λ1)

t∑

i=1

xi < log
1− β

α
+ t ·

(
log

λ0

λ1

)
. (25)

From the latter we can see that the boundaries of the decision regions are straight
and parallel lines (as a function t of samples). Running the SPRT can now be
graphically visualized as shown in Figure 1: the log-likelihood ratio ΛT starts
for t = 1 in the middle region between the decision boundaries and, with each
new sample it observes from the unknown source, does a random walk over
time. Eventually it will cross over one of the lines after which the corresponding
decision is made. For a fixed value of α, β, changing the ratio λ0/λ1 changes
the slope of the decision boundaries. For a fixed value of λ0, λ1, changing the
accuracy α, β shifts the decision boundaries upward and downward.

3 Evaluation with Real World Data

To evaluate our approach with some real-world data, we used call logs from 106
subjects collected from mobile phones over several months by the MIT Media
Lab and made publicly available in [2]. The dataset gives detailed information
for each call and comprises about 100,000 regular voice calls. Ideally we would
have liked to perform our experiments based on real-world data for both SPIT
and NON-SPIT. Unfortunately, this dataset only contains information about

82 T. Jung et al.

0 10 20 30 40 50 60
−5

0

5

10

15

20

25

30

Number of calls [t]

Lo
g−

lik
el

ih
oo

d
ra

tio
 Λ

t Decide NON−SPIT Λ
t

Decide SPIT

Fig. 1. An example run of
SPRT. The log-likelihood
ratio Λt starts at t = 1 in
the region between the de-
cision boundaries and, with
each new sample observed
from the unknown source,
performs a random walk
over time. Eventually it will
cross over one of the deci-
sion boundaries and either
enter the region marked
“decide SPIT” or enter
the region marked “decide
NON-SPIT”.

regular calls and not SPIT—and at the time of writing, no other such dataset
for SPIT is publicly available.1

In the following we will take again call duration as feature for our filter to
discriminate SPIT from NON-SPIT. To obtain call duration for SPIT calls, we
proceed as follows. The dataset is artificially divided into two smaller datasets:
one that corresponds to SPIT and one that corresponds to NON-SPIT. The set
of SPIT calls is obtained by taking 20% of all calls whose call duration is <80
seconds, the remaining calls are assigned to the set of NON-SPIT calls.

Our experimental setup is the following: we first assign a source to be either
of type SPIT or NON-SPIT. We then begin to draw samples uniformly at ran-
dom from the matching data set and present the samples to the filter until it
decides to either accept or block all future calls from this source. Since now we
do not know the true generating distributions pSPIT, pNON-SPIT, we first fit via
maximum likelihood an exponential distribution to the datasets we have built
and later use the learned distributions as surrogate for the unknown distribu-
tion pSPIT, pNON-SPIT in the SPIT filter (i.e., κ1, κ0 is calculated for the learned
distributions which in our case have mean 30.23 seconds for SPIT and 129.64
seconds for NON-SPIT).

We performed 10,000,000 independent runs. For each setting, Table 2 shows
the number of times the SPIT filter made the wrong decision and how many calls
the filter needed to observe to arrive at this decision. These empirical quantities

1 The earlier work described in [7] set out to precisely change that. In it the authors
describe a methodology for creating SPIT traffic and also provide a common data
set for the use in benchmark comparisons. However, the data set they provide is
generated from “emulated users based on a social model”; in essence, the authors
use common tools to generate the SPIT traffic, where the relevant features, such as
call duration, inter-arrival time, behavior upon receiving a call, etc. are all modeled
by sampling from distributions. For example, the call duration was generated from
an exponential distribution the parameter of which was specified by hand (which
amounts to the same as what we do here).

SPRT for SPIT 83

Table 2. Results of running the SPIT filter on real-world call data. For each of the
two cases, i.e., source=NON-SPIT and source=SPIT, the table shows two types of
quantities: the empirical ones obtained in simulation and the theoretical ones computed
from the model. The first column, accuracy α and β, is the input parameter (values here
chosen by hand) and gives an upper bound on the probability of making a mistake. The
second column, error, then shows the empirical error rate. The third column, stopping
time, shows the average number of observations before a decision was made. And the
fourth column, E[T] shows the corresponding expected stopping time from Eqs. (11)
and (12). Note that the actual values do not always agree with the theoretical bounds:
there is a mismatch between the true model and the distribution generating the data
(see text).

source=NON-SPIT source=SPIT
α, β Error Stopping time ENON-SPIT[T] Error Stopping time ESPIT[T]

1·10−6 6.16·10−3 10.11 7.5 0 15.67 20.0

1·10−5 1.39·10−2 9.12 6.2 0 13.18 16.7
1·10−4 3.15·10−2 8.00 5.0 0 10.66 13.3

1·10−3 6.96·10−2 6.64 3.7 0 8.18 10.0

1·10−2 1.54·10−1 4.97 2.4 0 5.66 6.5
1·10−1 3.40·10−1 2.79 0.9 0 3.05 2.5

are compared with the theoretical ones computed under the assumption that
the model is correct, i.e., SPIT calls are drawn from an exponential distribution
with λ0 = 1/30.23 and NON-SPIT calls from an exponential distribution with
λ1 = 1/129.64 . The results show that, with α, β for example set to 10−3, the
empirical error rate for NON-SPIT is 6.96 ·10−2 (meaning that 6.96% of regular
callers are wrongly identified as SPIT), while the empirical error rate for SPIT
is 0 (meaning that 0% of SPIT bots are wrongly identified as regular users).
The average number of calls the SPIT filter had to let through to arrive at this
decision was 6.64 and 8.18, respectively. Note that while the error rate for NON-
SPIT seems rather high (and is higher than the upper bound on the probability
of making an error for this setting of accuracy, i.e., the value of α), we should
keep in mind that in our experiment there is a mismatch between the true model
and the distribution generating the data.

In practice, one would use more sophisticated (and more accurate) methods to
estimate the distributions from data and, since the SPRT filter would ideally be
just one component in the larger SPIT prevention framework and not be alone
responsible for making the decision of whether to accept or reject the call, also
allow higher tolerance thresholds for the error (which should be automatically
adjusted as described in Section 2.3 by having a human operator define the cost
of making an error and using optimization to find the best α∗, β∗).

4 Summary

In this paper, we presented the first theoretical approach to SPIT filtering that is
based on a rigorous mathematical formulation of the underlying problem and, in
consequence, allows one to derive performance guarantees in terms of worst case

84 T. Jung et al.

cumulative misclassification cost (the expected loss) and thus, on the number
of samples that are required to establish with the required level of confidence
that a source is indeed a spitter. The method is optimal under the assumption
of knowing the generating distributions, does not rely on manual tuning and
tweaking of parameters, and is computationally simple and scalable. These are
desirable features that make it a component of choice in a larger, autonomic
framework.

Acknowledgements. Sylvain Martin (Post-Doctoral Researcher) acknowledges
the financial support of the Belgian National Fund of Scientific Research (FNRS).
Tobias Jung acknowledges financial support from a research fellowship of ULg.
This work is also partially funded by EU project ResumeNet, FP7–224619.

References

1. Chaisamran, N., Okuda, T., Blanc, G., Yamaguchi, S.: Trust-based voip spam
detection based on call duration and human relationships. In: Proc. of the 11th
Int. Symp. on Applications and the Internet, SAINT (2011)

2. Eagle, N., Pentland, A., Lazer, D.: Inferring social network structure using mobile
phone data. Proceedings of the National Academy of Sciences (PNAS) 106(36),
15274–15278 (2009)

3. Kolan, P., Dantu, R.: Socio-technical defense against voice spamming. ACM Trans-
actions on Autonomous and Adaptive Systems, TAAS (2007)

4. Nassar, M., Dabbebi, O., Badonnel, R., Festor, O.: Risk management in voip infras-
tructure using support vector machines. In: International Conference on Network
and Service Management (CNSM 2010), pp. 48–55 (2010)

5. Nassar, M., Martin, S., Leduc, G., Festor, O.: Using decision trees for generating
adaptive spit signatures. In: Proc. of the 4th International Conference on Security
of Information and Networks, SIN 2011 (2011)

6. Nassar, M., State, R., Festor, O.: Monitoring SIP Traffic Using Support Vector
Machines. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS,
vol. 5230, pp. 311–330. Springer, Heidelberg (2008)

7. Nassar, M., State, R., Festor, O.: Labeled VoIP Data-Set for Intrusion Detec-
tion Evaluation. In: Aagesen, F.A., Knapskog, S.J. (eds.) EUNICE 2010. LNCS,
vol. 6164, pp. 97–106. Springer, Heidelberg (2010)

8. Quittek, J., Niccolini, S., Tartarelli, S., Stiemerling, M., Brunner, M., Ewald, T.:
Detecting SPIT calls by checking human communication patterns. In: IEEE Inter-
national Conference on Communications (ICC 2007) (June 2007)

9. Schlegel, R., Niccolini, S., Tartarelli, S., Brunner, M.: SPIT prevention framework.
In: IEEE GLOBECOM 2006, pp. 1–6 (2006)

10. Shin, D., Ahn, J., Shim, C.: Progressive multi gray-leveling: a voice spam protection
algorithm. IEEE Network 20, 18–24 (2006)

11. Soupionis, Y., Tountas, G., Gritzalis, D.: Audio CAPTCHA for SIP-Based VoIP. In:
Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT, vol. 297, pp. 25–38. Springer,
Heidelberg (2009)

12. Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathematical Statis-
tics 16, 117–186 (1945)

SPRT for SPIT 85

13. Wald, A., Wolfowitz, J.: Optimum character of the sequential probability test.
Annals of Mathematical Statistics 19, 326–339 (1948)

14. Wu, Y.-S., Bagchi, S., Singh, N., Wita, R.: Spam detection in voice-over-ip calls
through semi-supervised clustering. In: Proceedings of the 2009 Dependable Sys-
tems Networks, pp. 307–316 (2009)

15. Yan, H., Sripanidkulchai, K., Zhang, H., Shae, Z.-Y., Saha, D.: Incorporating active
fingerprinting into spit prevention systems. In: Third Annual Security Workshop,
VSW 2006 (2006)

	SPRT for SPIT: Using the SequentialProbability Ratio Test for Spam in VoIP Prevention
	Introduction
	A SPIT Filter with Theoretically Optimal Performance
	Problem Statement
	SPIT Detection via the SPRT
	Theoretical Performance of the SPIT Filter
	Example: Exponential Duration Distribution

	Evaluation with Real World Data
	Summary
	References

