
Received May 9, 2020, accepted May 30, 2020, date of publication June 10, 2020, date of current version June 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3001296

SPSNN: nth Order Sequence-Predicting Spiking
Neural Network

DOHUN KIM1,2, VLADIMIR KORNIJCUK3, CHEOL SEONG HWANG 1,2,
AND DOO SEOK JEONG 3, (Member, IEEE)
1Department of Material Science and Engineering, Seoul National University, Seoul 08826, South Korea
2Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, South Korea
3Division of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea

Corresponding author: Doo Seok Jeong (dooseokj@hanyang.ac.kr)

This work was supported by the National Research Foundation of Korea under Grant NRF-2019R1C1C1009810.

ABSTRACT We introduce a means of harnessing spiking neural networks (SNNs) with rich dynamics as

a dynamic hypothesis to learn complex sequences. The proposed SNN is referred to as nth order sequence-

predicting SNN (n-SPSNN), which is capable of single-step prediction and sequence-to-sequence prediction,

i.e., associative recall. As a key to these capabilities, we propose a new learning algorithm, named the learning

by backpropagating action potential (LbAP) algorithm, which features (i) postsynaptic event-driven learning,

(ii) access to topological and temporal local data only, (iii) competition-induced weight normalization effect,

and (iv) fast learning. Most importantly, the LbAP algorithm offers a unified learning framework over the

entire SPSNN based on local data only. The learning capacity of the SPSNN is mainly dictated by the number

of hidden neurons h; its prediction accuracy reaches its maximumvalue (∼1) when the hidden neuron number

h is larger than twice training sequence length l, i.e., h ≥ 2l. Another advantage is its high tolerance to

errors in input encoding compared to the state-of-the-art sequence learning networks, namely long short-term

memory (LSTM) and gated recurrent unit (GRU). Additionally, its efficiency in learning is approximately

100 times that of LSTM and GRU when measured in terms of the number of synaptic operations until

successful training, which corresponds to multiply-accumulate operations for LSTM and GRU. This high

efficiency arises from the higher learning rate of the SPSNN, which is attributed to the LbAP algorithm. The

code is available on-line (https://github.com/galactico7/SPSNN).

INDEX TERMS Sequence-predicting spiking neural network, event-driven learning algorithm of locality,

sequence learning, single-step prediction, associative recall.

I. INTRODUCTION

Spiking neural network (SNN) is a dynamic hypothesis with

diverse temporal kernels to express neuronal behaviors in

response to synaptic transmission [1]–[3]. The central ner-

vous system (CNS) is based on the SNN, and the SNN

has therefore been analyzed theoretically to understand the

working principles of the CNS. Apart from the SNN’s physi-

ological plausibility, its feasible applications to deep learning

as a hypothesis have attracted considerable research atten-

tion from various fields [4]–[9]. The effort to realize an

SNN using integrated circuits—which has continued over

the last three decades—paves the way for the data- and

energy-efficient acceleration of deep learning. This has been

emerging as an important goal of neuromorphic engineer-

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia .

ing [5], [6]. In this case, the main challenge lies in the

learning algorithm; a universal learning algorithm, similar to

backpropagation algorithms for deep neural network (DNN),

is still missing. There exist several methods to optimize

synaptic weights in an SNN. They usually map the weights of

backpropagation-trained DNNs onto SNNs [10], [11]. How-

ever, to leverage the SNN in neuromorphic hardware, the

learning needs to be based on an event-driven algorithm of

locality [5], [6], [12]. For instance, the event-driven random

backpropagation (eRBP) algorithm satisfies this requirement

considering that (i) the ad hoc update is driven by a presynap-

tic spike and (ii) only local variables are used to evaluate the

change in weight [13]. Static-domain data, e.g., images, are

suited to the eRBP algorithm for training SNNs.

Considering the rich dynamics of SNN, learning with

dynamic-domain data perhaps harnesses the full capability

of SNNs [3], [12]. Dynamic-domain data include time-series

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 110523

https://orcid.org/0000-0002-6254-9758
https://orcid.org/0000-0001-7954-2213
https://orcid.org/0000-0002-7565-5963


D. Kim et al.: SPSNN: nth Order Sequence-Predicting SNN

data, which embody periodic discrete data points in a time

domain. In a framework of deep learning, the recurrent neu-

ral network (RNN) and its variations, e.g., long short-term

memory (LSTM) [14] and gated recurrent unit (GRU) [15],

are known to have an excellent capability to learn time-

series data. Unfortunately, there is a lack of both SNN archi-

tecture for learning time-series data as well as a learning

algorithm for the architecture, which performs sequence-

prediction tasks, e.g., single-step prediction and sequence-to-

sequence prediction (also known as associative recall), with

accuracy comparable to that of LSTM and GRU.

In this regard, we propose an SNN architecture for tempo-

ral sequence learning, named nth order sequence-predicting

spiking neural network (n-SPSNN). The indispensable work-

ing memory for the prediction is realized using synaptic

chains. To train the n-SPSNN, we propose an event-driven

learning algorithm of locality, referred to as learning by back-

propagation action potential (LbAP) algorithm. The LbAP

algorithm was inspired by physiological observations of

backpropagating action potential (bAP) boosts intervening in

homosynaptic plasticity [16]. Note that the weight is only

updated upon postsynaptic events in contrast to other event-

driven algorithms such as spike timing-dependent plasticity

(STDP) rule (updates upon both presynaptic and postsynap-

tic events) and eRBP algorithm (updates upon presynaptic

events only). The locality allows the LbAP algorithm to be

suitable for memory-efficient implementation in digital neu-

romorphic hardware, particularly, multi-core neuromorphic

processors [6], [12], [17], [18].

The primary contributions of our work are as follows.

• We introduce a novel learning algorithm (LbAP algo-

rithm) for SNNs, which is suitable for neuromorphic

hardware.

• We introduce an SNN architecture for sequence predic-

tions by deploying working memories.

• We identify the sequence-learning capability of the pro-

posed architecture and learning algorithm using the

Nottingham dataset and random sequences. The results

highlight high efficiency in learning and excellent toler-

ance to errors in sequence encoding.

• The code for the LbAP algorithm and SNN implementa-

tion is available on-line (https://github.com/galactico7/

SPSNN).

Section II (Related work) addresses several relevant previ-

ous works including associative recalls of spike sequences in

recurrent SNNs and sequence learning in RNNs. Section III

is dedicated to detailed explanations of the n-SPSNN

(Section III.A), LbAP algorithm (Section III.B), and applica-

tion of the LbAP algorithm to the n-SPSNN (Section III.C).

Experimental results follow in Section IV. Section IV.A

explains the single-step prediction and associative recall

(sequence-to-sequence) capacity of the n-SPSNN with dif-

ferent hyper-parameter settings. The performance robustness

of the n-SPSNN to variability in a sequence is addressed in

Section IV.C. Section IV.D addresses the learning efficiency

of n-SPSNN in terms of learning speed and number of synap-

tic operations (SynOps) until the completion of learning.

II. RELATED WORK

Associative memory or recall has long been the subject of

research interest in sequence learning, which is categorized

as sequence-to-sequence learning. The Hopfield network is a

seminal network to this end; the recurrent network is given the

capability to memorize patterns over the neurons, and a piece

of a pattern can activate the whole pattern [19]. However,

the network still lacks dynamics, and hence, the sequence

information of the pattern is ignored. By contrast, RNNs

are dynamic hypotheses that can learn sequences and make

single-step predictions. This capability is given by the feed-

back connection that bases the current prediction on the net-

work activity at the previous time step [20]. However, training

the network through time causes several critical issues such

as vanishing gradient and exploding gradient problems [21].

Variations of RNN, e.g., LSTM [14] and GRU [15], cope

with these issues due to a constant error-flow through internal

units. A backpropagation algorithm is commonly used to train

these networks. The good performance of these networks

comes at the cost of large computational power [22]. In partic-

ular, their demands for computational power are highlighted

by comparison with the n-SPSNN, which will be addressed

in Section IV.D. Their low tolerance to errors in sequence

encoding is another disadvantage.

The sequence-learning neural network proposed by Wang

and Yuwono [23] employs short-term memory networks as

sub-networks, which play a similar role to the working mem-

ory of the n-SPSNN in sequence learning. The short-term

memory network considers memory decay with time so that

a discount factor applies to the contributions of previous

elements to the present element prediction. Each subsequence

of previous elements is mapped onto a single detector in an

injective manner, given strong lateral inhibition among the

detectors, which is also similar to the proposed n-SPSNN

architecture. However, the neural network proposed byWang

andYuwono consists of binary neurons, i.e.,McCulloch–Pitts

neurons, and the inhomogeneous learning rule applying to the

network fails to provide a unified framework of learning. The

learning rule needs to access global data (all weights values)

to normalize the weight under update, which differs from

our LbAP algorithm. Unfortunately, the sequence-learning

capacity of the network is unavailable.

SNNs with recurrent connections are considered as

hypotheses for associative recall [24]–[26]. Unlike the asso-

ciative recall in the above-mentioned class, the associative

recall in SNNs concerns not only a sequence of spiking neu-

rons but also their precise spike times. This is because SNNs

are endowed with the capacity to learn dynamic-domain data

given their rich dynamics. Pfister et al. considered an SNN

with stochastic spiking neurons and proposed a method to

train the SNN to lead the postsynaptic neurons to fire spikes

at desired times [27]. This work was further extended to

more complicated SNNs with visible and hidden neurons,

110524 VOLUME 8, 2020



D. Kim et al.: SPSNN: nth Order Sequence-Predicting SNN

where the hidden neurons receive supervision signals and

represent a sequence [24]. In this work, the objective function

for weight optimization was defined as the difference in a

distribution function between a desired and actual spike time.

The proposed learning algorithm for the visible neurons is

found to be equivalent to the voltage-based STDP rule [28] in

support of the physiological fidelity of the proposed learning

algorithm. However, a different learning algorithm is used for

the hidden neurons, which fails to provide a unified learning

framework. Unfortunately, systematic analyses on the perfor-

mance (learning capacity, efficiency, error-tolerance, etc.) of

the recurrent SNN are unavailable.

Gardner and Grüning modified the learning rule by Pfister

et al. [27] to train an SNN of deterministic neurons, referred

to as FILT [29]. In the FILT rule, the synaptic weight is

adjusted to reduce the difference in spike filtering between

a desired and actual spike train. In a similar framework,

several learning algorithms have been proposed to produce

a desired spike train, such as remote supervised method [25],

chronotron [30], spike pattern association neuron [31], and

precise-spike-driven synaptic plasticity [32]. These learning

rules are capable of training a neuron to generate the desired

spike train in response to the input spike pattern. However,

success in associative recall using these learning rules has not

been demonstrated.

An STDP rule in conjunction with heterosynaptic depres-

sion enables a recurrent SNN to form synaptic chains, each

of which represents a sequence that is recalled associa-

tively [26]. Such chains are formed at random; however,

the number of chains tends to decrease with the strength

of global inhibition. Additionally, the network can copy an

applied sequential input during training and reproduce the

input subsequently. However, a critical downside is the neces-

sary access to global data, such as total synaptic weights (for

the heterosynaptic depression) and activity state variables (for

global inhibition), which is inconsistent with the attributes of

an ideal learning rule embedded in neuromorphic hardware.

The hierarchical temporal memory (HTM) adopts and

simplifies the physiological observation that, in a pyramidal

cell, a delay in postsynaptic potential is proportional to the

distance between the dendritic spine and soma [33], [34].

The HTM network consists of a set of columns; a combina-

tion of such columns represents an element in a sequence.

A sequence is learned such that a synaptic chain (with

the same length as the sequence) representing the sequence

is formed in the network. Therefore, learning complex

sequences is inefficient.

III. SEQUENCE-PREDICTING SPIKING NEURAL NETWORK

AND LEARNING ALGORITHM

In this section, we detail our sequence-predicting frame-

work. We first introduce a sequence prediction princi-

ple and the n-SPSNN architecture in Section III.A. Next,

we describe the LbAP algorithm, show how the LbAP

algorithm captures the temporal distance in Section III.B.

Finally, we apply the LbAP algorithm to the n-SPSNN for

sequence prediction and associative recall, which is detailed

in Section III.C.

A. SEQUENCE PREDICTION PRINCIPLE AND NETWORK

ARCHITECTURE

We define a sequence of l elements as (x1, x2, . . . , xl),

where each element is chosen from a set of m symbols

S (={s1, s2, . . . , sm}), i.e., xi ∈ {s1, s2, . . . , sm}. xi and

xi+1 are separated by 1te in time. Each element is repre-

sented by an m-long one-hot vector. The n-SPSNN learning

a sequence is illustrated in Fig. 1(a). The network is given

m parallel sub-networks, each with a synaptic chain of n

neurons. One sub-network is dedicated to one of m sym-

bols only. The parallel m sub-networks are in full connec-

tion with a hidden layer loaded with h neurons. A weight

matrix for the feedforward connections is defined as w1

(w1 ∈ R
h×nm;w1 [i, j]∈ [0,wmax1]). The hidden neurons are

fully connected with m output neurons in an output layer.

Each output neuron represents each of m elements. Weight

matrix w2 (w2∈R
m×h;w2 [i, j]∈ [0,wmax2]) defines the feed-

forward connections. Note that full lateral inhibition applies

to both hidden and output layers. This n-SPSNN network

is expressed as m-(n × m)-h-m, considering the number of

neurons in each layer.

The element on a given time step in a sequence is encoded

as a one-hot vector. Each element of the vector is subse-

quently applied to the input neuron of the corresponding

sub-network such that ‘‘1’’ indicates the presence of an input

spike, whereas ‘‘0’’ indicates no spike (see Fig. 1(a)). Each

spike is relayed over the synaptic chain in each sub-network.

We consider an axonal delay (1tax1) between neighboring

neurons in a synaptic chain of n neurons. Assuming that

1tax1 = 1te, a spike on a given time step hops to the

next neuron in 1te, and simultaneously, the next element in

the sequence arrives at the input neurons. Therefore, a spike

representing a particular element on a given time step can

stay in the sub-network over the synaptic chain for (n − 1)

1tax1, serving as a workingmemory. Unless otherwise stated,

the equalities 1tax1 = 1te and 1te = 100 ms hold. Note

that the n-SPSNN robustly predicts a sequence with random

variations in 1te (i.e., 1tax1 6= 1te), which will be addressed

in Section IV.D.

Fig. 1(b) schematizes this process for a 4-SPSNN (n = 4)

trained with an arbitrary sequence of (B, A, C, D, B, B, C)

(l = 7;m = 4; S = {A, B, C, D}). Sub-nets 1, 2, 3, and 4 rep-

resent elements A, B, C, and D, respectively. The table for

each sub-network in Fig. 1(b) indicates a neuronal activity

vector on each time step such that a non-zero element and

‘‘0’’ denote the presence of a spike and no spike, respectively.

For instance, 000A1 for Sub-net 1 at t2 means that Neuron 1

(N1) fires a spike, while the rest of the neurons (N2, N3, and

N4) are quiet. Here, A1 indicates the element corresponding

to the sub-network (A) and the neuron index (subscript).

The n-SPSNN begins sequence prediction when n preceding

elements are available. Thus, the 4-SPSNN in Fig. 1(b) begins

the prediction at t4 based on the component-wise sum of the

VOLUME 8, 2020 110525



D. Kim et al.: SPSNN: nth Order Sequence-Predicting SNN

FIGURE 1. (a) Schematic of the n-SPSN (m−(n × m)−h−m). The thick
arrows indicate all-to-all connection, whereas the thin arrows indicate
element-to-element connections. Lateral inhibition is indicated by red
arrows. (b) Visualized single-step predictions for a sequence of (B, A, C, D,
B, B, C).

four neuronal activity vectors (B4A3C2D1), meaning that N3

(Sub-net 1), N4 (Sub-net 2), N2 (Sub-net 3), and N1 (Sub-

net 4) fire spikes at t4 simultaneously. The prediction at t5 is

based on the vector (A4C3D2B1), meaning the simultaneous

spiking of N4 (Sub-net 1), N1 (Sub-net 2), N3 (Sub-net 3),

and N2 (Sub-net 4).

However, early prediction before seeing n previous ele-

ments is made occasionally in real network operations, as will

be addressed in Section IV.A.

Based on an n-long neuronal activity vector at ti, the

n-SPSNN should be able to predict the input element at ti+1.

For instance, B4A3C2D1 at t4 in Fig. 1(b) outputs B as a

predicted element at t5 such that the output neuronal activity

vector is 0100. The hidden layer in full connection with

the parallel sub-networks and output layer associates the n-

long neuronal activity vector with the desired output neuronal

activity vector. Hidden neurons need to detect n simultaneous

spikes on a given time step and fire a spike accordingly,

serving as a coincident detector. The spiking pattern of hid-

den neurons should be specific to a certain spatial pattern

of spiking over the sub-networks. For instance, B4A3C2D1

at t4 and A4C3D2B1 at t5 should cause different spiking

patterns to distinguish them. The lateral inhibition over the

hidden neurons suppresses overlap between different spiking

patterns. Eventually, the spiking pattern of hidden neurons

activates the desired output neuron through the feedforward

connections. The lateral inhibition over the output neurons

ensures the clear separation of a desired output neuron from

the others.

For associative recall (sequence-to-sequence prediction),

the n-SPSNN for single-step prediction is modified to employ

feedback connection from the output to the input layer. The

single-step prediction in response to a set of n preceding

elements is fed into the input layer as an input. This feedback

process continues onward until the end of the sequence.

The hidden and output neurons are expressed as a

multi-compartment model in that the dendritic and somatic

potentials are separately evaluated for each neuron. Both

potentials are evaluated using a spike-response model

(SRM) [2] (Appendix A). However, the dendrite is not

allowed to fire spikes so that no refractory kernel applies to

the dendritic potential evaluation. We consider axonal delays

for the sub-networks-to-hidden layer and hidden layer-to-

output layer feedforward connections, which are 1tax2 and

1tax3, respectively. They are fixed to 20 ms.

B. LEARNING BY BACKPROPAGATING ACTION

POTENTIAL (LbAP) ALGORITHM

To train the n-SPSNN, we propose a local learning algorithm

called learning by backpropagating action potential (LbAP)

algorithm. The LbAP algorithm was inspired by physio-

logical observations of homosynaptic plasticity dictated by

backpropagating action potentials (bAPs) [16], [35]. Upon

spiking at a soma, the spike propagates to the dendritic spines;

this is referred to as a bAP. The bAP amplitude decays over

the dendrite. However, the initial amplitude is recovered if

the dendritic potential exceeds a certain threshold, indicating

a bAP boost. Otherwise, the amplitude keeps decaying out.

The bAP, in turn, additively perturbs the dendritic potential,

such that dendritic potential above the bAP-boost threshold

undergoes a large increase in potential, whereas dendritic

potential below the threshold undergoes a negligible increase

in potential. The key to the direction of plasticity is the

calcium influx such that a large (small) influx likely induces

LTP (LTD) [36]–[38]. Importantly, the calcium influx tends

to increase with membrane potential, and thus, a bAP boost

likely induces LTP, while the failure of a bAP boost likely

leads to LTD [16].

The LbAP algorithm simplifies the physiological observa-

tions as follows. First, the dendritic potential at the moment

of bAP arrival directly determines the plasticity direction: if

the potential is above the bAP-boost threshold, the synapse

gainsweight, and it loses weight otherwise. Second, a delay in

backpropagation is ignored, so that the weights of all relevant

synapses are updated simultaneously when the postsynaptic

neuron fires a spike. Therefore, the LbAP algorithm is an

event-driven local algorithm, ensuring incremental learning

over a learning period. To be specific, the algorithm is a

postsynaptic event-driven local algorithm because the weight

is renewed only upon postsynaptic events in contrast to other

event-driven algorithms such as STDP rule (presynaptic and

110526 VOLUME 8, 2020



D. Kim et al.: SPSNN: nth Order Sequence-Predicting SNN

FIGURE 2. LbAP learning rule with rate and temporal codes. (a) Example of a neuronal configuration
where the LbAP learning rule drives activity-dependent competition between the two presynaptic
neurons N1 and N2, which share the same postsynaptic neuron N3. N1 and N2 emit Poisson spikes at
activities of a1 and a2, respectively. (b) Evolution of weights w1 and w2 in response to a1 and a2, which
differ for the three periods: 0–0.5 s, 0.5–1 s, and 1–1.5 s. The gray line denotes the sum of w1 and w2.
(c) Example of a configuration where the LbAP learning rule drives competition between N1, N2, and N3,
depending on the temporal correlation between a presynaptic and postsynaptic spike. A supervision
signal applies to the postsynaptic neuron N4 to define the temporal correlation. We set ud,th1, ud,th2, and
wmax to 0, 1 mV, and 1, respectively. The firing threshold us,th was fixed to 2.5 mV. (d) A spike sequence
of (1, 4, 2, 4, 1, 4, 3, 4), where each number denotes the index of a neuron spiking at a given time. We set
1t1 and 1t2 to 20 ms and 30 ms, respectively. (e) Evolution of weights w1, w2, and w3 in response to the
spike sequence repeated ten times. Neuron N1 wins N2 and N3 because the unit sequence includes two
1-4 pairs, whereas both 2-4 and 3-4 pairs appear once. We set ud,th1, ud,th2, and wmax to 50 µV, 1 mV,
and 0.8, respectively. The neuronal parameters for both simulations are listed in Table 1.

postsynaptic event-driven algorithm) [39]–[41] and eRBP

(presynaptic event-driven algorithm) [42].

The following equation describes the LbAP algorithm:

1w =
{

αH
(

ud − ud,th
)

− β2 (ud)
}

δ
(

t − tpost
)

, (1)

where ud, ud,th, andH denote the dendritic potential at a given

time, threshold for a bAP boost, and Heaviside step function,

respectively. The LTP rate is determined by a positive con-

stant α. LTD is facilitated by a boxcar function 2 with ud,th2
and ud,th1 (< ud,th2):

2 =

{

1 if ud,th1 < ud < ud,th2.

0 otherwise.

The parameter ud,th1 denotes a threshold for LTD. The

LTD rate is determined by a positive constant β. The

term δ
(

t − tpost
)

ensures a postsynaptic event-driven weight

update, where tpost refers to a postsynaptic event time.

We employ weight boundaries (0 and wmax) to avoid unlim-

ited growth of weight and switch to inhibitory synapses. The

LbAP algorithm is paraphrased in pseudocode, as follows:

function LbAP

for j ∈ {postsynaptic spike} do

if ud > ud,th2 then wji←wji + α

else if ud,th1 < ud < ud,th2 then wji←wji − β

end if

end for

end function.

Notably, rate-based and spike (event)-based learning

schemes merge in a unified framework based on the LbAP

algorithm. Regarding rate-based learning, consider two inde-

pendent presynaptic neurons (N1 and N2) firing Poisson

spikes at a1 and a2 and a postsynaptic neuron (N3) firing to

the presynaptic Poisson spikes (see Fig. 2(a)). Applying the

LbAP algorithm to the two synapses results in rate-dependent

changes in weights (w1 and w2) with a1 and a2 in an unsu-

pervised manner, as plotted in Fig. 2(b). The first period

(a1 = a2 = 25 Hz) explains a simultaneous increase in

w1 and w2 due to the equally high firing rates. However, the

different rates in the second period (a1 = 25 Hz; a2 = 5

Hz) bifurcate w1 and w2 such that N1 with the higher rate

gains weight while N2 loses weight. Alternating the rates

(a1 = 5Hz; a2 = 25Hz) in the third period reverses the direc-

tions of the weight changes. Note that this learning condition

recalls the monocular deprivation experiment that backs the

seminal Bienenstock–Cooper–Munro (BCM) rule [43], [44].

VOLUME 8, 2020 110527



D. Kim et al.: SPSNN: nth Order Sequence-Predicting SNN

The result highlights rate-dependent learning (the higher the

firing rate of a neuron, the more likely that the synapse with

a postsynaptic neuron strengthens) in agreement with the

Hebbian learning. However, unlike the basic Hebb’s rule,

competition between the two presynaptic neurons is induced

even without explicit weight normalization, as identified by

the constant sum of the weights in the second and third

periods in Fig. 2(b). This feature highlights the key advantage

of the LbAP algorithm, which enables weight normalization

without access to global data unlike other normalization algo-

rithms, e.g., heterosynaptic depression [26], Oja rule [45],

and subtractive normalization [1].

The LbAP algorithm captures the temporal configuration

of individual presynaptic and postsynaptic spikes. A presy-

naptic spike closely preceding a postsynaptic spike likely

boosts a bAP at the dendritic spine, yielding LTP. Addi-

tionally, using the LbAP algorithm, a pair of presynaptic

and postsynaptic neurons that most frequently fire spikes in

close succession (a presynaptic spike preceding a postsynap-

tic spike) is distinguished from the other pairs. For instance,

consider a toy network of three presynaptic neurons (N1–N3)

and a postsynaptic neuron (N4) in Fig. 2c. One spike at a

time is elicited from one of the three presynaptic neurons

following a given sequence (1, 4, 2, 4, 1, 4, 3, 4) repeated

10 times (Fig. 2(d)). Events from N1, N2, N3, and N4 are

denoted by 1, 2, 3, and 4, respectively. A supervision signal

(external current) is applied to N4 to manipulate the temporal

configuration of pre and postsynaptic spikes. In the sequence

(1, 4, 2, 4, 1, 4, 3, 4)×10, N1 is most frequently paired with

N4 (20 times) so that the synapse between N1 and N4 gains

weight, whereas the other synapses undergo LTD, as shown

in Fig. 2(e). The temporal order of spikes (a presynaptic spike

preceding a postsynaptic spike in close succession) likely

indicates the causality between the presynaptic postsynaptic

events because a cause should precede its effect. However,

the opposite order likely undermines the causality. Therefore,

this example identifies the LbAP algorithm as an identifier

of statistical causality between individual spikes, highlighting

its suitability for spike-based learning.

C. TRAINING METHOD AND CAPABILITY EVALUATION IN

DETAIL

The n-SPSNN (m-(n × m)-h-m) was trained for a single-

step prediction, given the n previous elements in a sequence.

As training data, we employed l-long random sequence data

(x1, x2, . . . , xl), where xi was randomly chosen from set

S (= {s1, s2, . . . , sm}) with equal probability. Note that

l and m are measures of complexity in the training data.

Each element in the sequence was sampled every 1te and

subsequently encoded as a one-hot vector. Responding to the

‘‘1’’ in the one-hot vector, the input neuron in the correspond-

ing sub-network in Fig. 1 fires periodic spikes at a0 (=50

Hz). A supervised learning framework was used to train the

n-SPSNN as a whole; the actual element on the present time

step was considered as the correct response to the n previous

elements. Accordingly, the weights w1 and w2 were ad hoc

updated every time step. The correct element was encoded as

a one-hot vector (supervision signal) and applied to the output

layer in sync with the nth input element of the n previous

elements. The supervision signal was a train of periodic

current pulses at a0; each pulse sufficed to evoke a spike from

the neuron. Thus, periodic spikes at a0 were elicited from the

output neuron, which drove the update of w2. Unsupervised

learning trained the weight matrix w1 because a desired spik-

ing pattern of hidden neurons was unknown unlike training

the weight matrix w2. Nevertheless, both unsupervised and

supervised learning were performed within a unified frame-

work based on the LbAP algorithm. The weight matrix w1

was loaded with random values (0 < wij < wmax1) initially.

To avoid unwanted preset connections to the output neurons,

the weight matrix w2 was loaded with constant values (0.2).

Note that the lateral inhibition weights for both hidden and

output layers were invariant through learning. The n-SPSNN

was trained with the same sequence data repeatedly until the

saturation of single-step prediction accuracy. The parameters

in Table 1 were used for the simulation results, unless other-

wise stated.

TABLE 1. Parameters for n-SPSNN.

A single-step prediction result was determined from output

neuronal spikes in a time step. Training generally hinders

output spikes from multiple neurons in a given time step,

and hence, the index of a single active neuron was encoded

as a one-hot vector of a predicted element. Otherwise, the

110528 VOLUME 8, 2020



D. Kim et al.: SPSNN: nth Order Sequence-Predicting SNN

FIGURE 3. Spiking sequence before and after learning. (a) Spiking
sequence of a 20-(4 × 20)-40-20 SPSNN for output neurons (upper panel)
and hidden neurons (lower panel) in response to an input sequence of (1,
2, 3, . . . , 20), which is identical to training data. The spiking sequence of
output neurons became associated with the training sequence in contrast
to the untrained SPSNN shown in (b). (c) Spiking behavior of output
neurons in Period 2 in (a), highlighting the capability of single-step
predictions.

neuron index of the largest activity was considered to output a

predicted element. The accuracy of single-step predictionwas

evaluated by applying the training sequence to the n-SPSNN

without a supervision signal and by comparing the actual

output with the correct output. For instance, if an n-SPSNN

trained with an l-long sequence makes correct predictions x

times, its single-step prediction accuracy is x/(l - n), where n

is in the denominator because the first n elements are ignored

considering the working principle of the n-SPSNN.

IV. RESULTS

A. SEQUENCE-PREDICTION CAPACITY

Fig. 3 compares the spiking pattern of a fully trained

20-(4× 20)-40-20 SPSNN with that of an untrained SPSNN.

We used a sequence of (1, 2, 3, . . . , 20) (l = 20; m = 20; S =

{1, 2, . . . , 20}), where each element was sampled every 1te
(=100 ms). Fig. 3(a) shows the response of the fully trained

SPSNN to the training sequence, identifying the capability

of single-step predictions, unlike the untrained SPSNN in

Fig. 3(b). The output spikes are delayed for one time-step

because of the EPSC integration rate of the used neuron

model. The delay is shown in Fig. 3(c), where the present

input element and the output spikes responding to the element

on the previous time step are present on the same time step.

The first nth elements in the training sequence cannot be

predicted correctly because the n-SPSNN needs n previous

elements to predict the following element. Nevertheless, this

4-SPSNN can predict the fourth element based on the first

three elements for this specific learning as in Period 1 shown

in Fig. 3(a).

FIGURE 4. The single-step prediction accuracy. (a) Single-step prediction
capability of a 20-(n × 20)-h-20 SPSNN with respect to the number of
hidden neurons h for three different n values (2, 4, and 6). The SPSNN
was trained using a random sequence (l = 100; m = 20). Each accuracy
value was evaluated from ten trials; each trial includes a training period
with a different random sequence and subsequent accuracy evaluation
period. (b) Accuracy of a 20-(4 × 20)-h-20 SPSNN with varying training
sequence length l (m = 20) for different h values.

TABLE 2. Single-step prediction Accuracy with respect to the number of
hidden neurons h for three different n values (2, 4, and 6).

To identify the sequence-prediction capacity of the pro-

posed n-SPSNN, we analyzed the prediction accuracy of an

m-(n×m)-h-m SPSNN by varying the number of hidden neu-

rons (h) and the length of a training sequence. Fig. 4(a) shows

the measured single-step prediction accuracy with respect to

h for 2-, 4-, and 6-SPSNNs trained with random sequences

(l = 100; m = 20). The data are provided in Table 2.

The accuracy tends to increase with the number of hidden

neurons until its saturation with approximately 200 hidden

neurons. The accuracy for the 4-, and 6-SPSNNs reaches

approximately 0.99, whereas the maximum accuracy for the

2-SPSNN is approximately 0.89. This result indicates that

the number of hidden neurons is a key parameter for single-

prediction capacity. Considering the negligible difference in

maximum accuracy between 4- and 6-SPSNNs, n is fixed

to 4 hereafter. For the 2-SPSNN, the bAP-boost threshold

of a hidden neuron uhd,th2 was set to 0.5 mV (cf. a uhd,th2
of 1mV in Table 1) because two simultaneous spikes from the

sub-networks fail to elevate the dendritic potential of hidden

neurons above 1 mV.

The optimal number of hidden neurons offers the max-

imum accuracy (∼1) at minimal SynOps. Fig. 4 reveals

the rule of thumb that h (≥2l) leads to an accuracy of

VOLUME 8, 2020 110529



D. Kim et al.: SPSNN: nth Order Sequence-Predicting SNN

FIGURE 5. Single-step prediction accuracy on the Nottingham dataset.
(a) Spiking sequence of input neurons in response to a one-hot encoded
Nottingham tune. (b) Prediction-accuracy with the number of learned
songs for a 26-(6 × 26)-h-26 SPSNN for different h values (h = 1000, and
2000).

TABLE 3. The single-step prediction accuracy with varying training
sequence length l (m = 20) for different h values.

approximately unity; therefore, h (=2l) appears to be the opti-

mal number. This rule of thumb is underpinned by Fig. 4(b),

which shows the prediction accuracy of 20-(4 × 20)-h-20

SPSNNs (h = 200, 500, 1000, and 2000) with respect to

sequence length (l = 100, 200, 500, and 1000; m = 20). The

rule that h (≥2l) leads to the maximum accuracy (∼1) holds

for the data in Fig. 4(b). The data in Fig. 4(b) are provided in

Table 3.

We trained a 6-SPSNN on the Nottingham dataset

(1200 British and American folk tunes). For each tune,

we used its monophonic melody only, which was discretized

as 26 notes according to pitch height. The note on a given

time step was encoded as a one-hot vector and input into the

input layer (26 neurons). The time bin size was set to 100 ms,

so that each tune was subject to periodic sampling every 1te
(=100 ms). This preprocessing yielded training sequences

(62≤ l ≤ 192;m = 26). The response of the 26 input neurons

to a random tune is shown in Fig. 5(a).

To evaluate the sequence-prediction capacity, we trained

a 26-(6 × 26)-h-26 SPSNN on the tunes (randomly sam-

pled from the dataset and preprocessed as explained) by

varying the number of sampled tunes. Fig. 5(b) shows

the prediction accuracy of two SPSNNs (h = 1000 and

FIGURE 6. Associative recall. Associative recall capability of a
20-(4 × 20)-40-20 SPSNN after the (a) first, (b) second, (c) third, and
(d) fourth training epoch. The training sequence was (1, 2, 3, . . . , 20) (l =

20; m = 20; 1te = 100 ms). For each case, the associative memory was
triggered by the initial four elements (1, 2, 3, 4) of the total sequence.

2000) with the number of sampled tunes. For a single

tune, the accuracy of both cases for one sequence is above

0.98. However, it decreases with the number of the trained

sequences. For 20 sequences, the accuracy reaches approx-

imately 0.86 for h = 2000, whereas that for h = 1000 is

approximately 0.72.

B. ASSOCIATIVE RECALL (SEQUENCE-TO-SEQUENCE

PREDICTION)

The high accuracy of single-step prediction of the n-SPSNN

offers the basis for associative recall (sequence-to-sequence

prediction). For associative recall, the n-SPSNN architec-

ture is modified such that feedback from the output to the

input layer is employed to pass the prediction result on to

the input. An advantage is that the output result (one-hot

vector) can be applied to the input layer without additional

encoding. To identify associative recall capability, we repeat-

edly trained a 20-(4 × 20)-40-20 SPSNN without feedback

using the sequence (1, 2, 3, . . . , 20) (l = 20; m = 20).

An associative recall test with the feedback followed every

training epoch; associative recall was triggered by applying

the first four elements of the sequence. Fig. 6 shows the

progress of associative recall with the repetition of training.

The 20-(4× 20)-40-20 SPSNN eventually succeeds in recall-

ing the whole sequence after repeating training four times.

C. ROBUSTNESS OF LEARNING AND INFERENCE TO

VARIABILITY IN SEQUENCE

Considering that real-world sequences include many imper-

fections, e.g., typo and noise, sequence-learning hypotheses

need to make correct predictions despite the presence of

imperfections. In this regard, the robustness of the n-SPSNN

to errors in input encoding was examined. A 4-SPSNN

[20-(4× 20)-200-20] was trained using a random sequence

(l = 100; m = 20), and its single-step prediction accuracy

was measured with a test sequence that is identical to the

training sequence but with a few different elements from the

110530 VOLUME 8, 2020



D. Kim et al.: SPSNN: nth Order Sequence-Predicting SNN

FIGURE 7. Tolerance of the SPSNN to errors in input sequences.
(a) Robustness of single-step prediction for a 20-(4 × 20)-200-20 SPSNN
to variability in elements in an input sequence (l = 100; m = 20) in
comparison with LSTM and GRU. (b) Degradation of prediction accuracy
for the same SPSNN with respect to variability in input sampling
period (1te).

training sequence. They were chosen randomly. The different

elements indicate errors in input encoding; their number x

defines the error rate as x/l. We evaluated the average pre-

diction accuracy for a given error rate in the range 0–0.25

on 20 trials. Fig. 7(a) shows a linear decrease in accuracy

with error rate, reaching approximately 0.62 at the maximum

error rate (0.25). The results are compared with the error-

tolerance of an LSTM and GRU, which are state-of-the-art

sequence learning hypotheses. The LSTM and GRU used

for this comparative study are elaborated in Appendix B.

Similar to the 4-SPSNN, the LSTM and GRU undergo the

degradation of prediction accuracy with error rate. However,

their degradation rates are faster than that of the 4-SPSNN,

insomuch as the accuracy for the LSTM and GRU reaches

approximately 0.54 and 0.53, respectively, with an error rate

of 0.25 (Fig. 7(a)). This comparison ensures a large tolerance

of encoding error for the n-SPSNN trained with the LbAP

algorithm compared to the state-of-the-art sequence learning

hypotheses.

Prediction-robustness to variability in input-encoding

delay is the key to the application to asynchronous neuro-

morphic hardware. To identify this robustness, a 20-(4×20)-

200-20 SPSNN was trained using a sequence (l = 100;

m = 20) with constant 1te (=100 ms), and its single-step

prediction accuracy was investigated with the same sequence

but with randomly varying 1te over the sequence. The delay

in input-encoding 1t
′

e was sampled from a Gaussian distri-

bution function, which is centered at 1te (=100 ms) with a

standard deviation of σ , i.e., 1t
′

e ∼ N (1te, σ ). The delay

was sampled for every interval over the test sequence. The

standard deviation σ is a measure of the variability in input-

encoding delay. The measured prediction accuracy with the

standard deviation is shown in Fig. 7(b). The accuracy tends

to decrease with the standard deviation because the differ-

ence in input-encoding delay between the training and test

sequences becomes larger with the standard deviation. Nev-

ertheless, an accuracy of approximately 0.77 is maintained

even with a standard deviation of 25 ms (25% of the center

value). All data in Fig. 7 are provided in Table 4.

FIGURE 8. Efficiency in learning. (a) Number of SynOps for a
20-(4 × 20)-2000-20 SPSNN until a prediction accuracy of 0.97 with
respect to sequence length (20 ≤ l ≤ 1000; m = 20). LSTM and GRU are
compared with the SPSNN in terms of the number MAC operations
required to reach the same prediction accuracy (0.97). (b) Single-step
prediction accuracy evolution for a 20-(4 × 20)-2000-20 SPSNN, LSTM, and
GRU with the number of training iterations. They were trained using
random sequences (l = 1000; m = 20). For comparison, the same data for
a 20-(4 × 20)-20-20 SPSNN trained using a random sequence (l = 10; m =

20) are co-plotted.

D. LEARNING EFFICIENCY

Energy-efficient learning is an important attribute of a learn-

ing algorithm embedded in neuromorphic hardware [5], [12].

In this regard, a high learning rate is beneficial to energy-

efficient learning, reducing the number of operations that

significantly consume power. The SynOps is such an oper-

ation, which indicates a single update on a neuronal mem-

brane potential upon an event. Therefore, the number of

SynOps required for successful learning is a direct measure of

energy-efficiency in learning. This quantity was evaluated for

a 20-(4×20)-2000-20 SPSNN learning sequences of different

lengths (20 ≤ l ≤ 1000; m = 20). Success in learning was

defined by prediction accuracy above 0.97, and hence, the

iterative training terminated when an accuracy of 0.97 was

reached. The results are plotted in Fig. 8(a). The number of

SynOps increases with the sequence length because a longer

training sequence needs more ad hoc updates over the whole

sequence, which inevitably increases SynOps.

We compared the required number of SynOps for success-

ful learning with the required number of multiply-accumulate

(MAC) operations for an LSTM and GRU. As for the

SPSNN, both LSTM and GRU were trained using sequences

of different lengths (20 ≤ l ≤ 1000; m = 20), and the

training terminated when the single-step prediction accuracy

reached 0.97. Details of the LSTM and GRU are provided

in Appendix B. The evaluation results are co-plotted in

Fig. 8(a), highlighting the efficient learning for the SPSNN

with approximately two orders of magnitude fewer energy-

consuming operations. The efficiency in learning is attributed

to the fast learning rate facilitated by the LbAP algorithm,

which is identified by monitoring the evolution of prediction

accuracy with the number of training iterations (epochs).

As shown in Fig. 8(b), a 20-(4×20)-2000-20 SPSNN trained

using a random sequence (l = 1000; m = 20) achieves

its maximum accuracy (∼0.98) in five training iterations,

while the LSTM and GRU needs approximately two orders

of magnitude more iterations. Moreover, the learning rate is

VOLUME 8, 2020 110531



D. Kim et al.: SPSNN: nth Order Sequence-Predicting SNN

TABLE 4. Tolerance to errors in input sequences and variability in input
sampling period.

independent of the network size (here, the number of hidden

neurons) and sequence length l as shown in the comparison

with a 20-(4 × 20)-20-20 SPSNN trained using a random

sequence (l = 10; m = 20) (Fig. 8(b)). The smaller network

could learn the sequence with four iterative training steps,

identifying a non-scaling learning rate with both network size

and sequence length.

V. CONCLUSION

We proposed an SNN architecture suitable for single-step

prediction given n previous elements in a training sequence,

referred to as n-SPSNN. The key to the nth order sequence

prediction is the sub-networks of synaptic chains that serve

as working memory. This n-SPSNN architecture can learn

sequences of various lengths using the LbAP algorithm

as a unified learning framework. The LbAP algorithm is

a postsynaptic event-driven learning algorithm of locality;

each synapse involves a single local state variable (dendritic

potential) so that memory usage is minimal. The competi-

tion between synapses with the same postsynaptic neuron is

facilitated by the LbAP algorithm, which realizes effective

weight normalization using local state variables only. The

LbAP algorithm endows the n-SPSNN with the capabilities

of single-step prediction and associative recall.

The sequence prediction robustness to variability in the

test sequence element highlights its high tolerance to errors

in input encoding, which is higher than the state-of-the-

art sequence learning hypotheses LSTM and GRU. The

n-SPSNN also offers the sequence prediction robustness

to variability in intervals between neighboring elements,

TABLE 5. Acronyms.

implying high tolerance to random changes in input-encoding

delay. The efficiency in learning is another advantage of the

n-SPSNN with the LbAP algorithm. The learning is com-

pleted in a few iterations. The iteration number necessary

for success in learning hardly scales with the network size

and sequence length; therefore, the LbAP algorithm can train

large-scale SNNs in an energy- and time-efficient manner.

Nevertheless, the learning capacity of the n-SPSNN is

limited mainly by (i) the use of one-hot coding for input

(extremely sparse coding) and (ii) the limited number of

hidden neurons h. The former limits the number of symbol

representations for a given network setting. Therefore, dense

coding is desired to improve the learning capacity of a given

n-SPSNN, which we leave as a future work for the moment.

Considering the latter, the optimal number of hidden neurons

h for successful learning scales with sequence length l such

that h ≈ 2l. The number of learnable sequences with different

lengths is also determined by this rule; the entire length of the

concatenated sequences should satisfy this rule. Therefore,

the network should be preset appropriately considering the

complexity of the sequences that the n-SPSNN is trained on.

APPENDIX

A. MULTI-COMPARTMENT NEURON MODEL

Multi-compartment neuronswere employed in the hidden and

output layers in the n-SPSNN; each neuron is with a soma and

multiple dendritic spines. Accordingly, somatic and dendritic

potentials were evaluated separately. The somatic potential of

neuron i (usi ) was evaluated using the SRM [2] expressed as

usi (t) = η
(

t − t̂i
)

+
∑

j
wij

∑

f
ǫ(t − t

(f )
j )

+

∫ ∞

0

κ(s)I exti (t − s)ds, (2)

where t̂i, wij, and t
(f )
j denote the last spike time of neuron i,

the weight of the synapse between neurons j and i, and the f th

spike time of neuron j, respectively. A refractory period and

leaky integration of postsynaptic current are realized by the

kernels η and ǫ, respectively. An externally injected current

into neuron i for supervised learning is denoted by I exti .

110532 VOLUME 8, 2020



D. Kim et al.: SPSNN: nth Order Sequence-Predicting SNN

The kernels are expressed as

η (t) = −(usreset − u
s
r )exp(−

t

tsm
)2(t), (3)

ǫ (t) = ǫ0

[

exp

(

−
t

tsm

)

− exp(−
t

tss
)

]

2(t), (4)

κ (t) = κ0 exp

(

−
t

tsm

)

2 (t) , (5)

where usreset and u
s
r are the most hyperpolarized membrane

potential (immediately after spiking) and the resting poten-

tial at the soma, respectively. At the soma, the postsynaptic

current and potential decay exponentially with time constants

of tss and t
s
m, respectively. The pre-exponential factors ǫ0 and

κ0 are positive constants. The somatic membrane potential

exceeding a threshold for spiking fires a spike, and the poten-

tial is evaluated on the next time step with the updated t̂i.

The SRM applied to the dendritic potential evaluation.

However, because no dendritic spikes are allowed, the first

term on the right-hand side of (2) is ruled out. Furthermore,

because supervision current pulses are applied to the soma

only, the last term on the right-hand side of (2) is excluded.

The same kernel in (4) was used but with the parameters

tds and tdm instead of tss and tsm. The replacement considers

different responses of postsynaptic current and membrane

potential to presynaptic spikes for a soma and dendritic spine,

based on physiological observations [16], [46]. The neuronal

parameters used in this study are listed in Table 1.

B. TRAINING RNN WITH LSTM AND GRU LAYER

For the LSTM and GRU experiment, we trained a two-layer

neural network with a recurrent unit. The first layer is the

LSTM or GRU layer with 40 units and the second layer is

a dense layer with 20 output neurons. Training employed

categorical cross-entropy as a loss function and the Adam

optimizer with a learning rate of 0.001. To realize nth order

prediction, n-long subsequences were taken as inputs and

encoded as an m-long real-valued vector (0–1) using a real-

valued dense distributed representation. The output was an

m-long vector that indicates a predicted element given a sub-

sequence including n preceding elements. During training,

a desired output was encoded as a one-hot vector with which

the weights were updated ad hoc, i.e., online learning.

C. ACRONYMS

See Table 5.

REFERENCES

[1] P. Dayan and L. F. Abbott, Theoretical Neuroscience. London, U.K.:

MIT Press, 2001.

[2] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge, U.K.: Cambridge Univ. Press, 2002.

[3] D. S. Jeong, ‘‘Tutorial: Neuromorphic spiking neural networks for tempo-

ral learning,’’ J. Appl. Phys., vol. 124, no. 15, Oct. 2018, Art. no. 152002.

[4] M. Pfeiffer and T. Pfeil, ‘‘Deep learning with spiking neurons: Opportuni-

ties and challenges,’’ Frontiers Neurosci., vol. 12, p. 774, Oct. 2018.

[5] E. O. Neftci, ‘‘Data and power efficient intelligence with neuromorphic

learning machines,’’ iScience, vol. 5, pp. 52–68, Jul. 2018.

[6] M. Davies et al., ‘‘Loihi: A neuromorphic manycore processor with on-

chip learning,’’ IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018.

[7] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,

F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,

I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,

W. P. Risk, R. Manohar, and D. S. Modha, ‘‘A million spiking-neuron

integrated circuit with a scalable communication network and interface,’’

Science, vol. 345, no. 6197, pp. 668–673, Aug. 2014.

[8] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and

A. Maida, ‘‘Deep learning in spiking neural networks,’’ Neural Netw.,

vol. 111, pp. 47–63, Mar. 2019.

[9] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, ‘‘Real-

time classification and sensor fusion with a spiking deep belief network,’’

Frontiers Neurosci., vol. 7, p. 178, Oct. 2013.

[10] H. Mostafa, ‘‘Supervised learning based on temporal coding in spiking

neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7,

pp. 3227–3235, Jul. 2018.

[11] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,

A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch,

C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D. Flickner, and D. S. Modha,

‘‘Convolutional networks for fast, energy-efficient neuromorphic com-

puting,’’ Proc. Nat. Acad. Sci. USA, vol. 113, no. 41, pp. 11441–11446,

Oct. 2016.

[12] V. Kornijcuk and D. S. Jeong, ‘‘Recent progress in real-time adaptable

digital neuromorphic hardware,’’ Adv. Intell. Syst., vol. 1, no. 6, Oct. 2019,

Art. no. 1900030.

[13] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, ‘‘Event-driven ran-

dom back-propagation: Enabling neuromorphic deep learning machines,’’

Frontiers Neurosci., vol. 11, p. 324, Jun. 2017.

[14] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural

Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[15] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘Empirical evalua-

tion of gated recurrent neural networks on sequence modeling,’’ 2014,

arXiv:1412.3555. [Online]. Available: http://arxiv.org/abs/1412.3555

[16] P. J. Sjöström and M. Häusser, ‘‘A cooperative switch determines the sign

of synaptic plasticity in distal dendrites of neocortical pyramidal neurons,’’

Neuron, vol. 51, no. 2, pp. 227–238, Jul. 2006.

[17] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, ‘‘The SpiNNaker

project,’’ Proc. IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[18] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, ‘‘A scalable multicore

architecturewith heterogeneousmemory structures for dynamic neuromor-

phic asynchronous processors (DYNAPs),’’ IEEE Trans. Biomed. Circuits

Syst., vol. 12, no. 1, pp. 106–122, Feb. 2018.

[19] J. J. Hopfield, ‘‘Neural networks and physical systems with emergent

collective computational abilities,’’ Proc. Nat. Acad. Sci. USA, vol. 79,

no. 8, pp. 2554–2558, 1982.

[20] P. J. Angeline, G. M. Saunders, and J. B. Pollack, ‘‘An evolutionary

algorithm that constructs recurrent neural networks,’’ IEEE Trans. Neural

Netw., vol. 5, no. 1, pp. 54–65, Jan. 1994.

[21] Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies

with gradient descent is difficult,’’ IEEE Trans. Neural Netw., vol. 5, no. 2,

pp. 157–166, Mar. 1994.

[22] J. S.-D. Jasmine Collins and D. Sussillo, ‘‘Capacity and trainability in

recurrent neural networks,’’ presented at the 34th Int. Conf. Mach. Learn.,

Sydney, NSW, Australia, 2017.

[23] D. L. Wang and B. Yuwono, ‘‘Anticipation-based temporal pattern gen-

eration,’’ IEEE Trans. Syst., Man, Cybern., vol. 25, no. 4, pp. 615–628,

Apr. 1995.

[24] J. Brea,W. Senn, and J.-P. Pfister, ‘‘Matching recall and storage in sequence

learning with spiking neural networks,’’ J. Neurosci., vol. 33, no. 23,

pp. 9565–9575, Jun. 2013.

[25] F. Ponulak and A. Kasiński, ‘‘Supervised learning in spiking neural net-

works with ReSuMe: Sequence learning, classification, and spike shift-

ing,’’ Neural Comput., vol. 22, no. 2, pp. 467–510, Feb. 2010.

[26] I. R. Fiete, W. Senn, C. Z. H. Wang, and R. H. R. Hahnloser, ‘‘Spike-time-

dependent plasticity and heterosynaptic competition organize networks to

produce long scale-free sequences of neural activity,’’ Neuron, vol. 65,

no. 4, pp. 563–576, Feb. 2010.

[27] J.-P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner, ‘‘Optimal spike-

timing-dependent plasticity for precise action potential firing in supervised

learning,’’ Neural Comput., vol. 18, no. 6, pp. 1318–1348, Jun. 2006.

[28] C. Clopath, L. Büsing, E. Vasilaki, andW. Gerstner, ‘‘Connectivity reflects

coding: A model of voltage-based STDP with homeostasis,’’ Nat. Neu-

rosci., vol. 13, p. 344, Mar. 2010.

VOLUME 8, 2020 110533



D. Kim et al.: SPSNN: nth Order Sequence-Predicting SNN

[29] B. Gardner and A. Grüning, ‘‘Supervised learning in spiking neural

networks for precise temporal encoding,’’ PLoS ONE, vol. 11, no. 8,

Aug. 2016, Art. no. e0161335.

[30] R. V. Florian, ‘‘The chronotron: A neuron that learns to fire temporally pre-

cise spike patterns,’’ PLoS ONE, vol. 7, no. 8, Aug. 2012, Art. no. e40233.

[31] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, ‘‘Span: Spike

pattern association neuron for learning spatio-temporal spike patterns,’’ Int.

J. Neural Syst., vol. 22, no. 04, Aug. 2012, Art. no. 1250012.

[32] Q. Yu, H. Tang, K. C. Tan, and H. Li, ‘‘Precise-spike-driven synaptic

plasticity: Learning hetero-association of spatiotemporal spike patterns,’’

PLoS ONE, vol. 8, no. 11, Nov. 2013, Art. no. e78318.

[33] J. Hawkins and S. Ahmad, ‘‘Why neurons have thousands of synapses,

a theory of sequence memory in neocortex,’’ Frontiers Neural Circuits,

vol. 10, p. 23, Mar. 2016.

[34] Y. Cui, S. Ahmad, and J. Hawkins, ‘‘Continuous online sequence learning

with an unsupervised neural network model,’’ Neural Comput., vol. 28,

no. 11, pp. 2474–2504, Nov. 2016.

[35] P. J. Sjöström, G. G. Turrigiano, and S. B. Nelson, ‘‘Rate, timing, and coop-

erativity jointly determine cortical synaptic plasticity,’’ Neuron, vol. 32,

no. 6, pp. 1149–1164, Dec. 2001.

[36] J. Lisman, ‘‘A mechanism for the Hebb and the anti-Hebb processes

underlying learning and memory,’’ Proc. Nat. Acad. Sci. USA, vol. 86,

no. 23, pp. 9574–9578, Dec. 1989.

[37] C. Hansel, A. Artola, andW. Singer, ‘‘Relation between dendritic Ca2+ lev-

els and the polarity of synaptic long-term modifications in rat visual cortex

neurons,’’ Eur. J. Neurosci., vol. 9, no. 11, pp. 2309–2322, Nov. 1997.

[38] K. Cho, J. P. Aggleton, M. W. Brown, and Z. I. Bashir, ‘‘An experimental

test of the role of postsynaptic calcium levels in determining synaptic

strength using perirhinal cortex of rat,’’ J. Physiol., vol. 532, no. 2,

pp. 459–466, Apr. 2001.

[39] S. Song, K. D. Miller, and L. F. Abbott, ‘‘Competitive Hebbian learning

through spike-timing-dependent synaptic plasticity,’’ Nature Neurosci.,

vol. 3, no. 9, pp. 919–926, Sep. 2000.

[40] R. C. Froemke and Y. Dan, ‘‘Spike-timing-dependent synaptic modi-

fication induced by natural spike trains,’’ Nature, vol. 416, no. 6879,

pp. 433–438, Mar. 2002.

[41] E. M. Izhikevich and N. S. Desai, ‘‘Relating STDP to BCM,’’ Neural

Comput., vol. 15, no. 7, pp. 1511–1523, Jul. 2003.

[42] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwenberghs,

‘‘Event-driven contrastive divergence for spiking neuromorphic systems,’’

Frontiers Neurosci., vol. 7, p. 272, Jan. 2014.

[43] E. Bienenstock, L. Cooper, and P. Munro, ‘‘Theory for the development

of neuron selectivity: Orientation specificity and binocular interaction in

visual cortex,’’ J. Neurosci., vol. 2, no. 1, pp. 32–48, Jan. 1982.

[44] L. N. Cooper andM. F. Bear, ‘‘The BCM theory of synapse modification at

30: Interaction of theory with experiment,’’ Nature Rev. Neurosci., vol. 13,

no. 11, pp. 798–810, Nov. 2012.

[45] E. Oja, ‘‘Simplified neuron model as a principal component analyzer,’’

J. Math. Biol., vol. 15, no. 3, pp. 267–273, Nov. 1982.

[46] J. C. Magee, ‘‘Dendritic integration of excitatory synaptic input,’’ Nature

Rev. Neurosci., vol. 1, no. 3, pp. 181–190, Dec. 2000.

DOHUN KIM received the B.S. degree in mate-

rials science and engineering from Seoul National

University, Seoul, South Korea, in 2016, where he

is currently pursuing the Ph.D. degree in materials

science and engineering. Since 2016, he has been

focusing on learning algorithms for neuromorphic

hardware implementation, especially for temporal

learning.

VLADIMIR KORNIJCUK received the B.S.

degree in telecommunication physics and electron-

ics from Vilnius University, Vilnius, Lithuania, the

M.S. degree in materials science and engineering

from the Seoul National University of Science

and Technology, Seoul, South Korea, and the

Ph.D. degree in nano and information technology

from the University of Science and Technology,

Seoul. He is currently a Postdoctoral Scholar with

Hanyang Univeristy, South Korea. His current

research interest includes digital neuromorphic processor design.

CHEOL SEONG HWANG received the Ph.D.

degree from Seoul National University, Seoul,

South Korea, in 1993. Since 1998, he has been

a Professor with the Department of Materials Sci-

ence and Engineering, Seoul National Univer-

sity. His current research interests include high-k

gate oxides, dynamic random access memory

capacitors, new memory devices, including resis-

tive RAM devices and ferroelectric materials and

devices, energy storage capacitors, as well as

neuromorphic computing.

DOO SEOK JEONG (Member, IEEE) received

B.E. and M.E. degrees in materials science from

Seoul National University, in 2002 and 2005,

respectively, and the Ph.D. degree in materials

science from RWTH Aachen, Germany, in 2008.

He was with the Korea Institute of Science and

Technology, from 2008 to 2018. He is currently

an Associate Professor with Hanyang University,

South Korea. His current research interests include

spiking neural networks for sequence learning and

future prediction, learning algorithms, spiking neural network design, and

digital neuromorphic processor design.

110534 VOLUME 8, 2020


