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ABSTRACT 
In this paper we present a modular and extensible visualization 
framework for wireless sensor networks. These networks have 
typically no means of visualizing their internal state, sensor 
readings or computational results. Visualization is therefore a 
key issue to develop and operate these networks. Data emitted 
by individual sensor nodes is collected by gateway software 
running on a machine in the sensor network. It is then passed 
on via TCP/IP to the visualization software on a potentially 
remote machine. Visualization plug-ins can register to 
different data types, and visualize the information using a 
flexible multi-layer mechanism that renders the information on 
a canvas. Developers can easily adapt existing or develop new 
custom tailored plug-ins for their specific visualization needs 
and applications. 

Categories and Subject Descriptors 
C.2.3 [Network Operations]: Network monitoring.  

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
Sensor networks, smart dust, visualization, debugging, 
embedded computing. 

1. INTRODUCTION 
Recently, the study of wireless sensor networks [4] has 
become a rapidly developing research area that offers 
fascinating perspectives for combining technical progress with 
new applications of distributed computing. These networks 
consist of tiny battery powered devices that can be seen as a 
combination of a micro computer and a sensor board. They 
feature a number of sensors (maybe custom tailored for certain 

applications) as well as wireless communication and limited 
computational capabilities. Limitations arise from power, form 
factor and price constraints. Examples are the Mica Motes 
developed at the UC Berkeley [6] or the Embedded Sensor 
Board ESB 430/2 from the FU Berlin [1]. As can be seen in 
Figure 1, these devices are usually only a few centimetres big 
and don’t have any user interfaces like displays or keyboards.  

 
Figure 1: The Mica2 (left) and ESB 430/2 (right) wireless 

sensor motes 
 

Deployed in large numbers by for example dropping the 
wireless sensor motes from a plane flying over the area of 
interest, sample applications comprise the monitoring of 
physical structure integrity, biological habitats, battle fields or 
environmental parameters. They can help for example in 
disaster recovery, by helping rescue personnel finding victims, 
guiding them through the terrain or giving them a more 
comprehensive view on the situation as a whole. In these 
application domains, future scenarios anticipate networks 
consisting of several thousand nodes [7], [8]. Nevertheless, the 
development of algorithms, protocols and applications is 
extremely difficult and progresses only slowly. The inherent 



lack of user interfaces leads to a tedious and error-prone 
developing and debugging cycle for which embedded systems 
are ill-reputed. In addition, unpredictable hardware and 
communication behaviors aggravate application development. 
This might be one of the reasons why real-world systems 
today consist of rather a few dozens nodes [1], [10], [11]. 
While there is tool-chain support for embedded systems, 
development software for sensor networks is still in the early 
beginnings.  

2. RELATED WORK 
With the SpyGlass sensor network visualizer we aim at easing 
the life for sensor network debugging, evaluation and deeper 
understanding of the software by visualizing the sensor 
network, its topology, the state and the sensed data. A few 
tools exist which cover some aspects of sensor network data 
display and visualization.  
The Surge Network Viewer [13] and the Mote-VIEW 
Monitoring Software [12] are Crossbow’s products to visualize 
wireless sensor networks. The Surge Network Viewer features 
topology and network statistics visualization as well as logging 
of sensor readings and the viewing of the logged data. The 
statistics function includes the end-to-end data packet yield, a 
prediction for the future and the RF link quality, but is limited 
to these features. The system is not extensible; hence custom-
made visualizations are not feasible. The Mote-VIEW 
Monitoring Software covers essentially the same topics but 
presents a much cleaner user interface and more features. It is 
also capable of logging wireless sensor data to a database and 
to analyze and plot sensor readings. It allows querying the 
sensor network for collected data in a database-like manner, 
hiding the distribution of the data collection software on the 
sensor nodes. Apart from lacking independency from the Mica 
sensor network hardware [6] and easy extensibility, this tool 
differs from our software in that it targets the operation and 
data-retrieval phase while we aim at easing the setup and 
debugging of applications. 
The TinyViz visualization framework is the most generic 
among the related visualizers. It is part of the TOSSIM 
package of TinyOS [5]. It visualizes Sensor readings, LED 
states, radio links and allows direct interaction with running 
TOSSIM simulations. The architecture of TinyViz allows 
adding application specific visualization functionality. This 
functionality includes specialized drawing operations, 
subscription and reaction to events and providing feedback to 
the TOSSIM simulator. It is very tightly coupled to the 
TinyOS software, the TOSSIM simulator and the Mica sensor 
network hardware [6].  

3. SPYGLASS ARCHITECTURE 
The visualization framework consists of three major functional 
entities: The sensor network, the gateway nodes located in the 
sensor network and the visualization software.  Figure 2 shows 
how these three work together with a TCP/IP based transit 
network. 

3.1 Data flow 
In the sensor network, each individual sensor node collects 
data using its sensors, derives new information from 
calculations or communicates with neighbors. If new 
information is generated, it is forwarded to one or more so 
called gateway nodes. Our current implementation of the 
sensor network software uses simple flooding mechanisms to 
achieve maximum reliability by redundant transmission. 
However, any technique may be used to route the data to the 
gateway nodes. This may range from the rather simple current 
approach up to a fully sophisticated geographic routing 
protocol in order to minimize the generated in-network traffic. 
Gateway nodes connect the sensor network to some other 
TCP/IP based network. Depending on the setup they may be 
implemented in very different manifestations. In our demo 
installation gateway nodes are regular sensor nodes that are 
connected to an off-the-shelf PC via a serial connection. In 
real world deployments it may not be feasible to use standard 
PC equipment, but specialized hardware or mobile phones to 
provide a connection to another network.  
On boot, each sensor node checks its serial port for a 
connection to a PC, and hence can determine whether it 
functions as a gateway node or not. If so, it queries the PC for 
the current time and date, and forwards this information into 
the wireless sensor networks. Like this, all nodes in the 
networks become loosely time-synchronized, so all readings 
can be augmented with time stamps within a common, 
consistent time system. This enables consistent visualization of 
sensor readings etc. regardless from which particular sensor 
node the data originates. The gateway node forwards all the 
data received from other nodes to the gateway PC via the serial 
connection.  
The software component running on a gateway PC features a 
ring buffer for storing a number of data packets from the 
sensor network. Its size can be set using a startup parameter. A 
gateway PC listens on a certain port (also set using a 
parameter) for incoming connections from visualization PCs. 
On connection, it sends over the contents of it ring buffer. 
When new data arrives via the serial link, it is both stored into 

Figure 2: Information from the sensor network is 
forwarded to the gateway and then transferred to the 

visualizer 



the buffer and forwarded to all connected visualizers. The 
circular buffer enables the system to bridge the time gap of 
transit network failures or to provide data to visualization 
stations which connect at a later point in time.  
For the network connection between the gateway PC and the 
machine running the visualization component, all kinds of 
TCP/IP based networks including LAN, WLAN or GPRS can 
be used. Obviously the gateway and the visualization 
component can also run on the same machine to enable in-situ 
monitoring of a sensor network. All that needs to be done is 
that the visualization software component opens a connection 
to the local host.  
All data packets flowing through the sensor network, from the 
gateway node to the attached PC, and through the transit 
networks to the visualization PC have the same payload 
format. Independent of the information they carry (e.g. sensor 
readings, calculated data, internal sensor state, etc.), they 
consist of a data type indicator, length information and the 
data. Using this simple format, developers can come up with 
new data types which will be immediately supported by the 
sensor network and the gateway software. Up to this point data 
has only been forwarded, all data processing and display tasks 
are performed by the visualization software. Using this 
architecture and data format makes it possible to replace each 
of the three components individually, since the communication 
between them follows a well-defined packet format. Currently 
we provide three sensor network configurations: a real life 
sensor network using the embedded sensor board ESB 430/2 
[1] and data originating from the ns-2 [2] network simulator 
and a replay implementation for debugging purposes.  

3.2 The visualization component 
The graphical user interface of the visualization component 
(see Figure 3) consists of three major components: a graphical 
display canvas (on the upper left), a sidebar for tree-structured 
textual information on the network as a whole (on the upper 

right), and a display for line-based output e.g. for debugging 
purposes (at the bottom).  
The graphical display canvas consists of three layers: 

 The background layer is used for painting the 
background of the visualization. In Figure 3 it is used 
for displaying both the white background and the 
reddish/bluish temperature gradient field. 

 The relation layer is used for displaying all kinds of 
relations between nodes e.g. by connecting nodes 
that can communicate with a “can communicate” 
relation as in Figure 3. 

 The node layer is used for displaying the actual 
nodes. In Figure 3, the box representing each node, 
as well as the textual information and the blue battery 
indicator are painted on this layer. 

 

The actual visualization is done by user-written plug-ins, one 
for each visualization demand. When a number of 
visualization plug-ins independent of each other shall 
cooperate, one important issue is to make sure that painting 
operations don’t collide. To solve this problem while keeping 
configuration simple, we have decided to create different plug-
in types, each type corresponding to one of the three display 
layers and being only allowed to paint on “their” layer (see 
also Figure 4).  

 Background Painter plug-ins draw the background of 
the visualization canvas. They can also be used to 
illustrate spatial phenomena which can be inferred 
from the received sensor data and positions. 
Examples are temperature maps [3], the display of 
coordinate systems or terrain visualizations. 

 Node Relation Painter plug-ins display arbitrary 
relations between sensor nodes onto the canvas, e.g. 
by using lines to connect related nodes or drawing 
polygons around them. Such relations might be 
communication links, group membership or routing 
paths.  

 Node Painter plug-ins draw the actual nodes and 
additional information onto the canvas. The depiction 
may be dependent on the node type (e.g. gateway 
node, cluster head, etc.), and may comprise a symbol 
representing the node, as well as additional textual or 
graphical information arranged around it. 

 
Apart from these plug-ins painting on the canvas, there are two 
other types of plug-ins.  

 Node Positioner plug-ins are used by Node Painter 
and Node Relation Painter plug-ins to determine 
where to paint the nodes and relation end points on 
the canvas. Placement decisions can be either based 
on location estimates/measurements received from 
the sensor network or on strategies based on graph 
theoretical calculations optimizing screen 
representation. Like this, the actual depiction of 

Figure 3: The graphical user interface of the visualization 
component 



nodes is decoupled from the positioning of the node 
representation, so both positioner plug-ins and 
node/relation painters can be replaces easily. 

 Global information plug-ins display information 
about partitions or the whole network in a textual 
way. This information is displayed in a sidebar and 
can be structured in a tree. Examples are the overall 
number of nodes, average neighborhood degree, etc. 

3.3 Flexibility as a key property 
SpyGlass features a very flexible drawing and plug-in 
architecture. Most of its inner components can be exchanged 
or extended easily. This extensibility has its roots in the way 
how plug-ins and drawing instructions are implemented.  
The plug-ins are not directly drawing on the canvas, but 
instead they use a set of drawing primitives available in 
SpyGlass. Calling these primitives results in the assignment of 
graphical objects (such as lines, rectangles, text etc.) with the 
layers. These graphical objects are then used by the canvas to 
represent itself in the graphical user interface, using 
appropriate drawing routines. Using this architecture has 
several advantages: Drawing on different layers avoids 
conflicts between plug-ins that have different priorities and the 
painting code in the plug-ins is independent from the actual 
canvas implementation.  
The three canvas drawing plug-in types (Node Painter, 
Relation and Background plug-ins) have their own layer on the 
canvas on which their plug-ins exclusively draw. The user can 
change the order and visibility of the plug-ins within each 
plug-in container to achieve an optimal presentation of the 
data. 
Because the canvas brings drawing routines that implement the 
drawing primitives, it is easy to add new canvas types, and 
SpyGlass is able to draw on a variety of different canvas types. 
One actual canvas implementation, the Java2D–Canvas, can be 
seen on Figure 3. Other canvas types may be implemented for 
special purposes. Implementing a new type of canvas is as 

easy as providing a mapping from the abstract drawing 
instructions to the concrete target canvas.  
Like this, it is possible to easily create new canvasses like a 
Postscript-canvas to document the sensor network in Postscript 
graphics, a canvas that could create a series of JPEG images or 
an MPEG video for demonstration purposes. Note that it is 
possible to operate multiple canvases in parallel, so that e.g. 
videos could be created while watching the visualization on 
the regular Java2D–Canvas on the screen. 

3.4 Recording and Playback 
SpyGlass can not only be used for visualizing wireless sensor 
networks that are currently in operation. It is also able to 
record activities going on at a certain point of time, and 
playing it back later, for seeing it again or watching it at a 
different speed, similar to slow motion or fast forward. 
Whenever a sensor network is visualized, the user can select to 
additionally record all the information arriving at the 
visualization component. By choosing a filename and pressing 
the red dot button (see Figure 3), the recording is started. Note 
that not the current visualization is recorded, but all data 
packets arriving at the network information dispatcher (see 
Figure 4). This allows not only playing back the current 
visualization at a later point in time, but having completely 
new views on the current network situation by employing 
different plug-ins for interpreting and visualizing the recorded 
information. This even allows for developing special 
visualization plug-ins to show interesting details that were not 
recognizable during the actual visualization run. Apart from 
different playback speeds, Spyglass certainly implements 
features commonly known from video players like fast 
forward and jumping to certain point in playback. 

3.5 Plug-ins 
Currently, the SpyGlass visualization component has already a 
number of plug-ins available. They range through all five 
categories. 

 
Figure 4: The architecture of the visualization component 



The temperature map plug-in belongs to the category of the 
background painters. It allows the visualization component to 
indicate the temperature distribution by coloring the 
background between the sensor nodes. Each sensor 
periodically measures the current temperature. On change, it 
broadcasts a packet containing its address, the current time and 
the corresponding temperature. The plug-in residing in the 
visualization component refers to the currently used node 
positioning plug-in to assign the temperature value to a 
position and maps the temperature to a color. Colors between 
the node positions are interpolated from the values belonging 
to the surrounding nodes. The resulting temperature maps can 
be seen in the screenshot in Figure 3. 
Currently a very simple node painter is implemented. It 
displays a box for each node, with the node’s address written 
in it (also see Figure 3). 
The temperature plug-in indicates the temperature a nodes 
measures as a numerical value. It uses the same messages as 
the temperature map plug-in. It is at work in Figure 3. 
The battery plug-in uses a blue bar to indicate how much 
energy the nodes have left. To do so, the nodes periodically 
measure their battery voltage, and forward packets augmented 
with their address and a timestamp to the gateway. Voltage 
indication can be observed in Figure 3. 
The topology plug-in is a node relation painter. The sensor 
nodes periodically send out beacon packets that neighbors use 
to maintain a neighbor list. The list is broadcasted periodically 
and forwarded to the gateway node. In the visualization 
component, the plug-in processes the packet, and draws lines 
from the sender to all its neighbors. Again, the node positioner 
plug-in is consulted for the nodes’ positions. Connectivity is 
indicated in Figure 3. 
There also is a plug-in that can be used to position the nodes 
on the graphical display canvas. It assumes that the sensor 
nodes are aware of their real positions. Hence they periodically 
send out their coordinates together with their address and a 
timestamp. The plug-in subscribes to these packets and maps 
the coordinates to positions on the graphical display canvas. It 
automatically extends the coordinate boundaries the canvas 
represents whenever out-of-scope positions come to its 
knowledge.  
The spring embedder is another node positioner plug-in. 
Opposite to the aforementioned one it assumes that the sensor 
nodes do not have any information about where they are. 
Hence it has to figure out appropriate positions for node 
display by other means: It subscribes to the neighborhood 
messages, and keeps track of the topology. Using a spring 
embedder, it then positions nodes that can hear each other 
close on the canvas, whereas it places nodes without 
connectivity far away from each other. The resulting node 
distribution can be seen in the screenshot. 
The average neighborhood size plug-in is a global information 
plug-in. It subscribes to the neighborhood messages used by 
the topology plug-in, but keeps track only of the number of 
neighbors. Like this, it can display the average network-wide 
connectivity in the global information sidebar. 

There is another general information plug-in that keeps track 
of the number of nodes in the network. Subscribing to the 
neighborhood list packets (or any other periodical packet 
type), it keeps track of the nodes in the network. When a node 
didn’t send a packet for a certain time, it is considered not to 
be part of the network anymore. 

3.6 Adding custom functionality 
Adding new elements to the visualization is straightforward, 
two cases can be distinguished: 

 If the new visualization element is driven by 
messages already emitted by the sensor network, all 
that needs to be done is implementing an additional 
plug-in. To implement for example a general 
information plug-in that could count the number of 
network partitions, the messages containing the 
neighborhood lists could be used. All that is needed 
is a plug-in that keeps track of the all the connectivity 
information, constructs graphs from it and displays 
their number in the sidebar. 

 If new messages are needed, things get only slightly 
more difficult. To implement for example the 
visualization of motion detection sensor readings, a 
developer simply needs to define a new data type, 
construct it as a binary array in the sensor and use the 
common forwarding service to a gateway node. To 
visualize the data, a simple Node Painter plug-in 
must be implemented which registers itself as a 
handler for the new data type, parses it and attaches 
this information to the corresponding node.  

4. STATUS AND FUTURE WORK 
SpyGlass is currently used throughout several projects in our 
group for research as well as teaching purposes. It is 
implemented using the Java 2 Standard Edition and the Java2D 
framework. We are currently in the process of finishing 
support for all features and eliminating remaining bugs. The 
sensor network implementation is completed for the Embedded 
Sensor Board ESB 430/2 from the FU Berlin [1] in C using the 
provided firmware from the FU Berlin. As soon as this process 
in completed, we plan to publish it under an open source 
license (GPL) soon.  
We tested the scalability properties for the visualization 
component using data generated by the Ns-2 network 
simulator [2]. We found that it scales to thousands of nodes 
without problems. In addition, there is experience in 
visualizing real-life sensor networks of about 10 devices. To 
be able to visualize bigger networks, we plan to enhance to 
data forwarding mechanisms used in the sensor network. 
In addition to that, future work will include a TinyOS 
compatible implementation to support the Berkeley Motes 
hardware platform [6]. Additionally we want to integrate 3D 
visualization support using the Java3D framework and 
additional plug-ins. Current ideas include a map component to 
display geospatial information, more sophisticated node 



drawing plug-ins and support for the network simulator Shawn 
[14]. 
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