
10 COMMUNICATIONS OF THE ACM | APRIL 2010 | VOL. 53 | NO. 4

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
excerpts from selected posts.

Follow us on Twitter at http://twitter.com/blogCACM

From Michael
Stonebraker’s
“The NoSQL
Discussion has
Nothing to Do
With SQL”

http://cacm.acm.org/blogs/
blog-cacm/50678

Recently, there has been a lot of buzz
about NoSQL databases. In fact, there
were at least two conferences on the
topic in 2009, one on each coast. Seem-
ingly, this buzz comes from people who
are proponents of:

document-style stores in which a !

database record consists of a collec-
tion of key-value pairs plus a payload.
Examples of this class of system in-
clude CouchDB and MongoDB, and
we call such systems document stores
for simplicity;

key-value stores whose records !

consist of key-payload pairs. Usually,
these are implemented by distributed
hash tables, and we call these key-val-
ue stores for simplicity. Examples in-
clude MemcacheDB and Dynamo.

In either case, one usually gets a
low-level, record-at-a-time database
management system (DBMS) in-
terface instead of SQL. Hence, this

NoSQL databases are most often con-
sidered: update- and lookup-intensive
online transaction processing (OLTP)
workloads, not query-intensive, data-
warehousing workloads. We do not
consider document repositories or
other specialized workloads for which
NoSQL systems may be well suited.

There are two ways to improve OLTP
performance; namely, provide auto-
matic sharding over a shared-nothing
processing environment and improve
per-server OLTP performance.

In the first case, one improves per-
formance by providing scalability as
nodes are added to a computing en-
vironment; in the second case, one
improves the performance of individ-
ual nodes.

Every serious SQL DBMS—such
as Greenplum, Aster Data, Vertica,
ParAccel, and others—written in the
last 10 years has provided shared
nothing scalability, and any new ef-
fort would be remiss if it did not do
likewise. Hence, this component of
performance should be “table stakes”
for any DBMS. In my opinion, nobody
should ever run a DBMS that does not
provide automatic sharding over com-
puting nodes.

As a result, this posting continues
about the other component; namely,
single-node OLTP performance. The
overhead associated with OLTP da-
tabases in traditional SQL systems
has little to do with SQL, which is why
“NoSQL” is such a misnomer.

Instead, the major overhead in
an OLTP SQL DBMS is communicat-
ing with the DBMS using ODBC or

group identifies itself as advocating
NoSQL.

There are two possible reasons
to move to either of these alternate
DBMS technologies: performance and
flexibility.

The performance argument goes
something like the following: I started
with MySQL for my data storage needs
and over time found performance to be
inadequate. My options were:

“Shard” my data to partition it 1.
across several sites, giving me a serious
headache managing distributed data
in my application or

Abandon MySQL and pay big li-2.
censing fees for an enterprise SQL
DBMS or move to something other
than a SQL DBMS.

The flexibility argument goes some-
thing like the following: My data does
not conform to a rigid relational sche-
ma. Hence, I can’t be bound by the
structure of a RDBMS and need some-
thing more flexible.

This blog posting considers the
performance argument; a subsequent
posting will address the flexibility ar-
gument.

For simplicity, we will focus this
discussion on the workloads for which

SQL Databases v.
NoSQL Databases
Michael Stonebraker considers several performance arguments
in favor of NoSQL databases—and finds them insufficient.

DOI:10.1145/1721654.1721659 http://cacm.acm.org/blogs/blog-cacm

blog@cacm

APRIL 2010 | VOL. 53 | NO. 4 | COMMUNICATIONS OF THE ACM 11

JDBC. Essentially all applications
that are performance-sensitive use
a stored-procedure interface to run
application logic inside the DBMS
and avoid the crippling overhead of
back-and-forth communication be-
tween the application and the DBMS.
The other alternative is to run the
DBMS in the same address space as
the application, thereby giving up any
pretense of access control or security.
Such embeddable DBMSs are reason-
able in some environments, but not
for mainstream OLTP, where security
is a big deal.

Using either stored procedures or
embedding, the useful work compo-
nent is a very small percentage of the
total transaction cost for today’s OLTP
databases, which usually fit in main
memory. Instead, a recent paper1 calcu-
lated that total OLTP time was divided
almost equally between the following
four overhead components:

Logging
Traditional databases write everything
twice—once to the database and once
to the log. Moreover, the log must be
forced to disk, to guarantee transac-
tion durability. Logging is, therefore,
an expensive operation.

Locking
Before touching a record, a transaction
must set a lock on it in the lock table.
This is an overhead-intensive operation.

Latching
Updates to shared data structures,
such as B-trees, the lock table, and re-
source tables, must be done carefully
in a multithreaded environment. Typi-
cally, this is done with short-term dura-
tion latches, which are another consid-
erable source of overhead.

Buffer Management
Data in traditional systems is stored
on fixed-size disk pages. A buffer pool
manages which set of disk pages is
cached in memory at any given time.
Moreover, records must be located on
pages and the field boundaries identi-
fied. Again, these operations are over-
head intensive.

If you eliminate any one of the above
overhead components, you speed up
a DBMS by 25%. Eliminate three and
your speedup is limited by a factor of

two. You must get rid of all four to run a
DBMS a lot faster.

Although the NoSQL systems have
a variety of different features, there are
some common themes. First, many
NoSQL systems manage data that is
distributed across multiple sites, and
provide the “table stakes” noted above.
Obviously, a well-designed multisite
system, whether based on SQL or some-
thing else, is way more scalable than a
single-site system.

Second, many NoSQL systems are
disk-based and retain a buffer pool as
well as a multithreaded architecture.
This will leave intact two of the four
sources of overhead noted above.

Concerning transactions, there is of-
ten support for only single record trans-
actions and an eventual consistency
replica system, which assumes that
transactions are commutative. In ef-
fect, the “gold standard” of ACID trans-
actions is sacrificed for performance.

However, the net-net is that the
single-node performance of a NoSQL,
disk-based, non-ACID, multithreaded
system is limited to be a modest factor
faster than a well-designed stored-pro-
cedure SQL OLTP engine. In essence,
ACID transactions are jettisoned for a
modest performance boost, and this
performance boost has nothing to do
with SQL.

However, it is possible to have one’s
cake and eat it too. To go fast, one needs
to have a stored procedure interface to
a runtime system, which compiles a
high-level language (for example, SQL)
into low-level code. Moreover, one has
to get rid of all of the above four sourc-
es of overhead.

A recent project2 clearly indicated
that this is doable, and showed blaz-
ing performance on TPC-C. Watch for
commercial versions of these and sim-
ilar ideas with open source packaging.
Hence, I fully expect very high speed,
open-source SQL engines in the near
future that provide automatic shard-
ing. Moreover, they will continue to
provide ACID transactions along with
the increased programmer produc-
tivity, lower maintenance, and better
data independence afforded by SQL.
Hence, high performance does not re-
quire jettisoning either SQL or ACID
transactions.

In summary, blinding performance
depends on removing overhead. Such

overhead has nothing to do with
SQL, but instead revolves around tra-
ditional implementations of ACID
transactions, multithreading, and
disk management. To go wildly faster,
one must remove all four sources of
the overhead discussed above. This
is possible in either a SQL context or
some other context.

References
1. S. Harizopoulos, et. al., “OLTP Through the Looking

Glass, and What We Found There,” Proc. 2008
SIGMOD Conference, Vancouver, B.C., June 2008.

2. M. Stonebraker, et. al., “The End of an Architectural
Era (It’s Time for a Complete Rewrite),” Proc. 2007
VLDB Conference, Vienna, Austria, Sept. 2007.

Disclosure: Michael Stonebraker is
associated with four startups that are
either producers or consumers of data-
base technology. Hence, his opinions
should be considered in this light.

Reader’s comment
You seem to leave out several other sub-
categories of the NoSQL movement in your
discussion. For example: Google’s BigTable
(and clones) as well as graph databases.
Considering those in addition, would that
change your point of view?

Johannes Ernst—

Blogger’s Reply
I am a huge fan of “One size does not fit
all.” There are several implementations
of SQL engines with very different
performance characteristics, along with
a plethora of other engines. Besides the
ones you mention, there are array stores
such as Rasdaman and RDF stores such
as Freebase. I applaud efforts to build
DBMSs that are oriented toward particular
market needs.

The purpose of the blog entry was to
discuss the major actors in the NoSQL
movement (as I see it) as they relate
to bread-and-butter online transaction
processing (OLTP). My conclusion is
that “NoSQL” really means “No disk” or
“No ACID” or “No threading,” i.e., speed
in the OLTP market does not come
from abandoning SQL. The efforts you
describe, as well as the ones in the above
paragraphs, are not focused on OLTP. My
blog comments were restricted to OLTP, as
I thought I made clear.

Michael Stonebraker —

Michael Stonebraker is an adjunct professor at the
Massachusetts Institute of Technology.

© 2010 ACM 0001-0782/10/0400 $10.00

