
SQL’s Three-Valued Logic and Certain Answers

Leonid Libkin

School of Informatics, University of Edinburgh

Abstract

SQL uses three-valued logic for evaluating queries on databases with nulls. The standard theoret-

ical approach to evaluating queries on incomplete databases is to compute certain answers. While

these two cannot coincide, due to a significant complexity mismatch, we can still ask whether

the two schemes are related in any way. For instance, does SQL always produce answers we can

be certain about?

This is not so: SQL’s and certain answers semantics could be totally unrelated. We show,

however, that a slight modification of the three-valued semantics for relational calculus queries

can provide the required certainty guarantees. The key point of the new scheme is to fully utilize

the three-valued semantics, and classify answers not into certain or non-certain, as was done

before, but rather into certainly true, certainly false, or unknown. This yields relatively small

changes to the evaluation procedure, which we consider at the level of both declarative (relational

calculus) and procedural (relational algebra) queries. We also introduce a new notion of certain

answers with nulls, which properly accounts for queries returning tuples containing null values.

1998 ACM Subject Classification H.2.4 Query Processing

Keywords and phrases Null values, incomplete information, query evaluation, three-valued logic,

certain answers

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.1

1 Introduction

SQL’s query evaluation engine uses three-valued logic when it comes to handling incomplete

information: comparisons involving null values have the truth value unknown [7]. This

results in a number of well known paradoxes. Consider, for instance, two relations R and

S with a single numerical attribute A, and assume that S contains a single row with a null

value in it. Then

select S.A from S where S.A <= 0 or S.A > 0 (1)

returns nothing despite the condition in the where clause being a tautology. This is because

both null <= 0 and null > 0 evaluate to unknown and so does their disjunction. Worse

yet, for the same reason, the query computing R− S:

select R.A from R where R.A not in (select S.A from S) (2)

returns nothing if S contains a single null, no matter what R is, telling us that might well

have |R| > |S| and R− S = ∅ at the same time.

However unintuitive these answers are (which led to very severe criticism of the design of

null-related features of SQL [6, 7]) they at least seem not to give us any false positives. To

understand what it means, we appeal to the standard theoretical notion of query answering

in the presence of incompleteness, certain answers [1, 12]. Each incomplete database D has

an associated semantics [[D]]. We can think of [[D]] as the set of possible complete databases

that D can represent, i.e., all databases obtained by substituting values for nulls. Then

© Leonid Libkin;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martin Ugarte; pp. 1–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 SQL’s Three-Valued Logic and Certain Answers

certain answers contain tuples that will be in the answer to Q over all possible complete

databases represented by D:

certain(Q,D) =
⋂

{Q(D′) | D′ ∈ [[D]]} (3)

How does SQL evaluation of queries relate to certain answers? There is a simple argument

that they cannot coincide for relational calculus queries: SQL’s evaluation is tractable (very

tractable, in fact, of AC0 data complexity), but data complexity of certain answers is in-

tractable: at least coNP-complete for commonly considered semantics [2]. Examples (1)

and (2) seem to suggest that we at least get a subset of certain answers, but this is not the

case: false positives are possible. Consider the query:

select R.A from R

where R.A not in (select R1.A from R R1 (4)

where R1.A not in (select * from S))

expressing R − (R − S) and a database R = {1} and S = {⊥}. SQL’s evaluation results in

{1}. At the same time the certain answer is empty: if ⊥ is interpreted as any value other

than 1, the query produces ∅.

Can we remedy this? Clearly we cannot modify SQL’s evaluation rules to generate

certain answers due to the complexity mismatch. So the best we can hope for is a reasonable

approximation without false positives. The idea itself is not new: in fact for the first time

it was expressed in [22], even before complexity bounds for certain answers were known.

Despite this, we do not yet have such approximation schemes for SQL query evaluation.

Providing them is our goal here. Specifically, we want to achieve the following:

find query answers fast, without a significant modification of the existing evaluation

techniques, and at the same time

guarantee that no false positives occur, i.e., every returned tuple is a certain answer.

We achieve this by providing a small modification to the three-valued logic approach

of SQL that restores correctness guarantees: query evaluation no longer produces false

positives, and all returned results are guaranteed to be certain answers.

To understand the idea of the modification, notice that SQL’s query evaluation actually

mixes three- and two-valued logic. Three-valued logic is used to evaluate conditions, but

then query results return only those tuples for which conditions evaluate to true, effectively

collapsing unknown and false. This works fine for positive queries, but once negation, es-

pecially negation in subqueries (e.g., not in or not exists) enters the picture, we have

a problem, as it flips truth values. Now true flips to false, but both unknown and false

(which were collapsed to one value when a subquery was evaluated) flip to true! This is how

unintended tuples end up in the answer.

So to get correctness guarantees, we just need to be faithful to the three-valued approach.

This means that there will be three possible outcomes for each candidate answer tuple: it

can be either

certainly in the answer (truth value true); or

certainly not in the answer (truth value false); or

possibly in the answer, or possibly not (truth value unknown).

The second modification that we need is using marked, or naïve nulls [1, 12] in ta-

bles. Such nulls can appear multiple times in tables, and they are often required by



L. Libkin 3

applications such as data integration and exchange [3, 13]. In fact they have already

been implemented in connection with such applications [11, 19]. Generally, SQL’s nulls

can be modeled with naïve nulls, simply by forbidding repetition. The reason we need

marked nulls is twofold. Firstly, we want to produce more general results. Secondly,

we need to overcome an additional (and quite unreasonable) deficiency of SQL’s han-

dling of nulls: even comparing whether a null value equals itself produces truth value

unknown. Indeed, consider a table T(A,B) with a single tuple (1,null) and a query

select T1.A from T T1, T T2 where T1.A=T2.A and T1.B=T2.B, i.e., πA(T ∩ T ). In-

stead of the expected 1, it gives the empty result, as comparing a value with itself does not

evaluate to true.

We remark that using the multi-valued approach has proved very useful in two closely

related areas: model-checking [4, 10], and knowledge representation [14, 18]. In fact the

procedure of [14] that uses three-valued reasoning with knowledge bases is similar in spirit

with the modification of SQL query evaluation that we propose (although the technical

details of our procedure are quite different from [14]), and its modifications to achieve

tractable reasoning [18] relied on database query evaluation techniques. In the database

field the three-valued approach has, by and large, belonged to the practice rather than the

theory.

Organization In Section 2 we present basic definitions. Section 3 describes the evaluation

procedure for relational calculus and SQL’s three-valued approach in the presence of nulls.

Section 4 presents the modified evaluation procedure and states its correctness. In Section 5

we prove a generalization of that result, relying on a new notion of certain answers with nulls.

This generalization properly accounts for all three possible outcomes of query evaluation

(certainly true, certainly false, unknown). In Section 6 we look at certainty guarantees for

relational algebra queries. Concluding remarks are in Section 7. Due to space limitations,

only proof sketches are presented here; complete proofs are available in the full version.

2 Preliminaries

Incomplete databases We begin with some standard definitions [1, 12]. Incomplete

databases are populated by constants and nulls. The sets of constants and nulls are count-

ably infinite sets denoted by Const and Null respectively. Nulls are denoted by ⊥, sometimes

with sub- or superscripts.

A relational schema (vocabulary) is a set of relation names with associated arities. An

incomplete relational instance D assigns to each k-ary relation symbol S from the vocabulary

a k-ary relation SD over Const∪Null, i.e., a finite subset of (Const∪Null)k. When the instance

is clear from the context we shall write S, rather than SD, for the relation itself as well.

The sets of constants and nulls that occur in D are denoted by Const(D) and Null(D). If

Null(D) is empty, we refer to D as complete. That is, complete databases are those without

nulls. The active domain of D is adom(D) = Const(D) ∪ Null(D).

Homomorphisms, valuations, and semantics Given two relational structures D and

D′, a homomorphism h : D → D′ is a map from the active domain of D to the active domain

of D′ such that:

1. for every relation symbol S, if a tuple ū is in relation S in D, then the tuple h(ū) is in

the relation S in D′; and

2. h(c) = c for every c ∈ Const(D).

ICDT’15



4 SQL’s Three-Valued Logic and Certain Answers

By h(D) we denote the image of D, i.e., the set of all tuples S(h(ū)) where S(ū) is in D.

If h : D → D′ is a homomorphism, then h(D) is a subinstance of D′.

A homomorphism h : D → D′ is called a valuation if h(x) is a constant for every

x ∈ adom(D); in other words, it provides a valuation of nulls as constant values. If h is a

valuation, then h(D) is complete. We now define the semantics of incomplete databases by

means of valuations:

[[D]] = {h(D) | h is a valuation}.

This is often referred to as the closed-world assumption, or cwa semantics of incompleteness

[12, 21]. Another common semantics uses the open-world assumption, or owa, and allows

adding complete tuples to h(D). In the study of incompleteness, the closed-world semantics

is a bit more common [1, 2, 12] since it is better behaved. We shall offer some comments on

the owa semantics in Section 5.2.

Query languages As our basic query languages we consider relational calculus and its frag-

ments. Relational calculus has exactly the power of first-order logic, or FO. Its formulae are

built from relational atoms R(x̄), equality atoms x = y, by closing them under conjunction

∧, disjunction ∨, negation ¬, existential ∃ and universal ∀ quantifiers. If x̄ is the list of free

variables of a formula ϕ, we write ϕ(x̄) to indicate this. We write |x̄| for the length of x̄.

Conjunctive queries (CQs, also known as select-project-join queries) are defined as queries

expressed in the ∃,∧-fragment of FO. The class UCQ of unions of conjunctive queries is the

class of formulae of the form ϕ1∨ . . .∨ϕm, where each ϕi is a conjunctive query. In terms of

its expressive power, this is the existential-positive fragment of FO, i.e., the ∃,∨,∧-fragment.

We shall use relational algebra, the procedural language equivalent to FO, that has

operations of selection σ, projection π, cartesian product ×, union ∪, and difference −.

We use the unnamed perspective of relational algebra which does not require the renaming

operator [1] (more on this in Section 6, where we shall add explicit intersection to relational

algebra). The fragment without the difference operator is referred to as positive relational

algebra; it has the same expressiveness as existential positive formulae (and thus unions of

conjunctive queries).

3 Evaluation procedures for FO queries

We shall look at different query evaluation procedures. Each such procedure Eval will take

a query (an FO formula) ϕ(x̄), a database D, and an assignment ν of values to the free

variables x̄. The output Eval(ϕ,D, ν) is a truth value. For the standard Boolean logic, the

domain of truth values is {0, 1}, with 0 meaning false and 1 meaning true. For three-valued

logic, the domain is {0, 1
2 , 1}, with 1

2 interpreted as unknown.

An assignment ν maps each free variable to an element of adom(D). Note that such an

element could be a constant or a null; assignments thus are not valuations. We write ν[a/x]

for the assignment that changes ν by mapping x to a. Also, given a tuple x̄ = (x1, . . . , xn) of

free variables, and a tuple ā = (a1, . . . , an), we write simply Eval(ϕ,D, ā) if the assignment

ν is such that ν(xi) = ai for all i ≤ n.

Given an evaluation procedure Eval, the outcome of query evaluation for ϕ(x̄) with

|x̄| = k is

Eval(ϕ,D) = {ā ∈ adom(D)k | Eval(ϕ,D, ā) = 1}

For all of the evaluation procedures that we use (except two in Subsection 5.2), the



L. Libkin 5

evaluation of the Boolean connectives and quantifiers is completely standard:

Eval(ϕ ∨ ψ,D, ν) = max(Eval(ϕ,D, ν),Eval(ψ,D, ν))

Eval(ϕ ∧ ψ,D, ν) = min(Eval(ϕ,D, ν),Eval(ψ,D, ν))

Eval(¬ϕ,D, ν) = 1 − Eval(ϕ,D, ν)

Eval(∃xϕ,D, ν) = max{Eval(ϕ,D, ν[a/x]) | a ∈ adom(D)}

Eval(∀xϕ,D, ν) = min{Eval(ϕ,D, ν[a/x]) | a ∈ adom(D)}

(5)

Thus, from now we only explain the valuation of atomic formulae R(x̄) and equalities

x = y. The classical FO evaluation gives us the procedure EvalFO with the range {0, 1}

defined by (5) and:

EvalFO(R(x̄), D, ν) =

{

1 if ν(x̄) ∈ RD

0 if ν(x̄) 6∈ RD

EvalFO(x = y,D, ν) =

{

1 if ν(x) = ν(y)

0 if ν(x) 6= ν(y)

SQL’s evaluation has {0, 1
2 , 1} as the range of values. Again it uses rules (5), and the

rule for EvalSQL(R(x̄), D, ν) is exactly the same as for EvalFO, but for equality atoms the rule

differs:

EvalSQL(x = y,D, ν) =















1 if ν(x) = ν(y) and ν(x), ν(y) ∈ Const

0 if ν(x) 6= ν(y) and ν(x), ν(y) ∈ Const

1
2 if ν(x) ∈ Null or ν(y) ∈ Null

Indeed, SQL’s approach is to declare every comparison as unknown if a null is involved. Note

that over complete databases, EvalFO and EvalSQL coincide. Also, over incomplete databases,

EvalFO is usually referred to as naïve evaluation [1, 12].

How do these relate to certain answers? We now examine FO and SQL evaluation. But

first note that the definition (3) ensures that only tuples of constants are present in certain

answers. There is no such restriction on the standard evaluation procedures. So to do a fair

comparison we only compare sets of constant tuples returned by evaluation procedures (this

will be relaxed later in the paper).

◮ Definition 1. Given a class Q of queries, an evaluation procedure Eval has certainty

guarantees for Q if for every query ϕ(x̄) ∈ Q, every database D, and every tuple ā of

constants with |ā| = |x̄|, we have

ā ∈ Eval(ϕ,D) ⇒ ā ∈ certain(ϕ,D).

In other words,

Eval(ϕ,D) ∩ Const
|x̄| ⊆ certain(ϕ,D).

Certain answers and EvalFO The first observation is immediate:

certain(ϕ,D) ⊆ EvalFO(ϕ,D).

The converse in general is not true, we can have EvalFO(ϕ(x̄), D) ∩ Const
|x̄| 6⊆ certain(ϕ,D).

Consider for instance ϕ(x) = R(x) ∧ ¬S(x) expressing the difference of R and S. Let D

contain RD = {1} and SD = {⊥}; then Eval(ϕ,D) = {1} while certain(ϕ,D) = ∅.

ICDT’15



6 SQL’s Three-Valued Logic and Certain Answers

However, sometimes certainty guarantees can be established. It has long been known

[12] that we get them by excluding universal quantification and negation from first-order

logic: EvalFO has certainty guarantees for the class UCQ. This was recently extended in

[8] which showed that the same is true for queries from a rather significant expansion of

the class UCQ, by adding universal quantification and a limited form of implication. More

precisely, we look at the class Qcert
FO defined as follows:

atomic formulae R(x̄) and x = y are in Qcert
FO ;

if ϕ,ψ ∈ Qcert
FO then so are ϕ ∨ ψ and ϕ ∧ ψ;

if ϕ ∈ Qcert
FO then so are ∃xϕ and ∀xϕ;

if ϕ(x̄, ȳ) is in Qcert
FO , then so is ∀x̄ (R(x̄) → ϕ(x̄, ȳ)), where R is a relation symbol in the

schema, and x̄ does not have a repetition of variables.

Then EvalFO has certainty guarantees for Qcert
FO queries [8]. From the point of view of relational

algebra, the class Qcert
FO corresponds to operations σ, π,∪,× and the division operation Q÷Q′,

where Q′ is written in the π,∪,×-fragment of relational algebra, see [16].

Certain answers and EvalSQL How does SQL change things? Actually, it changes them for

the worse: now there is no connection between EvalSQL(ϕ,D) and certain(ϕ,D) whatsoever.

Indeed, we saw that for the query ϕ(x) = R(x) ∧ ¬(R(x) ∧ ¬S(x)) and database D with

RD = {1} and SD = {⊥}, the certain answer is empty while EvalSQL(ϕ,D) = {1}, and for

ψ(x) = R(x) ∧ (S(x) ∨ ¬S(x)), the certain answer is {1}, while EvalSQL(ψ,D) = ∅.

In a restricted case we provide correctness guarantees:

◮ Proposition 2. EvalSQL has certainty guarantees for unions of conjunctive queries.

Proof sketch. This follows from the fact for unions of conjunctive queries, EvalSQL(ϕ,D, ν) =

1 implies EvalFO(ϕ,D, ν) = 1 (shown by induction), and known results for FO evaluation

for unions of conjunctive queries [12]. �

4 Evaluation procedures with certainty guarantees

We now introduce an evaluation procedure that comes with certainty guarantees for all

relational calculus queries. For that, we have to explain what is wrong with FO and SQL

evaluation procedures shown above, particularly for evaluation of atomic formulae.

Atomic relational formulae R(x̄) For both SQL and FO, one simply checks, for a given

assignment ν, whether ν(x̄) belongs to R. However, returning 0 if ν(x̄) 6∈ R is too strong

if we view 0 as saying that the tuple certainly cannot belong to R.

Indeed, consider R = {(⊥1, 1), (2,⊥2)} and let ν be the identity (recall that the range

of ν is the whole active domain). Consider a tuple x̄ = (⊥1,⊥2). It is not in R, but can

it be in R under some valuation h? Of course it can: if h(⊥1) = 2 and h(⊥2) = 1, then

h(x̄) = (2, 1) and h(R) = {(2, 1)}, i.e., h(x̄) ∈ h(R). On the other hand, if h′(⊥1) = 1

and h′(⊥2) = 2, then h′(x̄) = (1, 2) and h′(R) = {(1, 1), (2, 2)}, so h′(x̄) 6∈ h′(R). Thus,

the correct value for evaluating the membership of x̄ in R seems to be 1
2 , not 0. Value 0

should be reserved for cases when no valuation h makes h(x̄) ∈ h(R) possible.

The EvalFO and EvalSQL procedures return 0 too eagerly, and this becomes a problem

when negation is applied to a formula, as 0 becomes a 1, and suddenly we have a false

positive answer that in fact is not certain at all. If the value is kept at 1
2 , applying

negation still results in 1 − 1
2 = 1

2 , and thus no false ‘certain answers’ appear.



L. Libkin 7

Equality formulae x = y FO evaluation results in 0 if ν(x) and ν(y) are different nulls,

but they could still be mapped to the same constant, so the right value should be 1
2 , not

0. On the other hand, SQL evaluation produces 1
2 if one of ν(x) or ν(y) is a null. But

if we know ν(x) = ν(y), then for every valuation h we will have h(ν(x)) = h(ν(y)), so

the evaluation procedure must return 1 and not 1
2 in this case, or else it will miss some

certain answers.

Now with this in mind, we introduce a proper 3-valued evaluation procedure Eval3v. For

this, we need one additional concept. Given two tuples t̄1 and t̄2 of the same length over

Const ∪ Null, we say that they unify if there is a homomorphism h such that h(t̄1) = h(t̄2).

We then write t̄1 ⇑ t̄2.

It is easy to see that we can define t̄1 ⇑ t̄2 by asking for a valuation h so that h(t̄1) = h(t̄2).

By classical results on unification, it is known that t̄1 ⇑ t̄2 can be tested in linear time [20].

Now the evaluation procedure is as follows. It uses rules (5) and the following rules for

atomic formulae:

Eval3v(R(x̄), D, ν) =















1 if ν(x̄) ∈ RD

0 if there is no t̄ ∈ RD such that ν(x̄) ⇑ t̄
1
2 otherwise

Eval3v(x = y,D, ν) =















1 if ν(x) = ν(y)

0 if ν(x), ν(y) ∈ Const and ν(x) 6= ν(y)
1
2 otherwise

Coming back to the example in the beginning of the section, if we have a database D with

RD = {(⊥1, 1), (2,⊥2)} and ν : (x, y) 7→ (⊥1,⊥2), then Eval3v(R(x, y), D, ν) = 1
2 . Indeed,

even though (⊥1,⊥2) is not in RD, there are valuations h so that h(⊥1,⊥2) ∈ h(RD). On

the other hand, no valuation h makes (1, 2) ∈ h(RD) possible, so for ν′ : (x, y) 7→ (1, 2) we

have Eval3v(R(x, y), D, ν′) = 0.

These modifications turn out to be sufficient to ensure certainty guarantees for all rela-

tional calculus queries.

◮ Theorem 3. Eval3v has certainty guarantees for all FO queries.

As an example, consider again query (4), or ϕ(x) = R(x)∧¬(R(x)∧¬S(x)) over D with

RD = {1} and SD = {⊥}. It produced a false positive since EvalSQL(ϕ,D) = {1} but the

certain answer is empty. But now we have Eval3v(ϕ,D) = ∅. Indeed, we had EvalSQL(R(x)∧

¬S(x), D, 1) = 0, and thus EvalSQL(ϕ,D, 1) = 1, but now Eval3v(R(x) ∧ ¬S(x), D, 1) = 1
2

and hence Eval3v(ϕ,D, 1) = 1
2 .

As another remark, note that the result of Eval3v need not be contained in the result of

EvalSQL, i.e., Eval3v can produce results that SQL evaluation misses. For instance, given a

database D with RD = {(⊥,⊥)} and a query ψ = ∃x, y R(x, y)∧x = y, one can easily check

that Eval3v(ψ,D, ν) = 1 (for the only possible valuation over a singleton active domain),

while EvalSQL(ψ,D, ν) = 1
2 .

Theorem 3 will be a consequence of a more general result (Theorem 6), that does not

restrict us to constant tuples. But for this we first need to define certain answers with nulls.

ICDT’15



8 SQL’s Three-Valued Logic and Certain Answers

5 Certain answers with nulls

While the definition of certain answers (3) has been with us for 30+ years [17], recently it

has been questioned [15, 16]. One of the problems with this definition is that it only returns

tuples containing constants. Consider a database D with a relation RD = {(1, 2), (3,⊥)}

and a query ψ(x, y) = R(x, y). Then certain(ψ,D) = {(1, 2)} but intuitively we should

return the entire relation RD since we are certain its tuples are in the answer. The reason

we are certain about it is that for every valuation h, the tuple (3, h(⊥)) is in h(D). We turn

this reasoning into a definition.

◮ Definition 4. Given an incomplete database D and a k-ary query Q defined over complete

databases, certain answers with nulls certain⊥(Q,D) is defined as the set of all tuples ū ∈

adom(D)k such that h(ū) ∈ Q(h(D)) for all valuations h.

For instance, if a query is given by an FO formula with k free variables, then

certain⊥(ϕ,D) = {ū ∈ adom(D)k | EvalFO(ϕ, h(D), h(ū)) = 1 for every valuation h}.

Returning to the above example, we have certain⊥(ψ,D) = {(1, 2), (3,⊥)}, so the tuple

(3,⊥) is no longer omitted.

We now summarize properties of certain answers with nulls. The usual certain answers

can be obtained from certain answers with nulls by dropping tuples containing nulls, and

certain answers with nulls are always contained in the result of the simple FO evaluation

of formulae. Sometimes, but not always, they may coincide with the result of such an

evaluation.

Formally, we have the following.

◮ Proposition 5. The following hold:

certain(ϕ(x̄), D) = certain⊥(ϕ,D) ∩ Const
|x̄|.

certain⊥(ϕ,D) ⊆ EvalFO(ϕ,D) for every FO query ϕ.

If ϕ ∈ Qcert
FO , then certain⊥(ϕ,D) = EvalFO(ϕ,D).

There exist FO queries ϕ so that certain⊥(ϕ,D) 6= EvalFO(ϕ,D).

We can now state a more general description of the evaluation procedure Eval3v: the

output value 1 guarantees that a tuple belongs to certain answers with nulls for query ϕ,

the output value 0 guarantees that it belongs to certain answers with nulls for the negation

¬ϕ, and output value 1
2 comes with no guarantees.

◮ Theorem 6. For every FO query ϕ(x̄) and every database D,

Eval3v(ϕ,D) ⊆ certain⊥(ϕ,D).

Moreover, if ā ∈ adom(D)|x̄| and Eval3v(ϕ,D, ā) = 0, then ā ∈ certain⊥(¬ϕ,D).

Theorem 3 is now an immediate corollary: if ā is a tuple of constants and Eval3v(ϕ,D, ā) =

1, then by Theorem 6, ā ∈ certain⊥(ϕ,D), and by Proposition 5, ā ∈ certain(ϕ,D).

Proof sketch. We first show an auxiliary result that ū ∈ certain⊥(ϕ,D) if and only if

EvalFO(ϕ, h(D), h(ū)) = 1 for every homomorphism h (rather than every valuation h). Then

the theorem is a consequence of the following:

Eval3v(ϕ,D, ν) = 1 ⇒ ∀ homomorphism h : EvalFO(ϕ, h(D), h(ν(x̄))) = 1 (*)



L. Libkin 9

Eval3v(ϕ,D, ν) = 0 ⇒ ∀ homomorphism h : EvalFO(ϕ, h(D), h(ν(x̄))) = 0 (**)

This is shown by induction on ϕ; we provide the proof for the case of atomic formulae (for

which Eval3v differs from EvalFO) here.

If ϕ(x̄) is a relational atom R(x̄), then:

(*) If Eval3v(ϕ,D, ν) = 1 then ν(x̄) ∈ RD; in particular, h(ν(x̄)) ∈ h(RD) for every

homomorphism h, showing h(ν(x̄)) ∈ EvalFO(ϕ, h(D)).

(**) If Eval3v(ϕ,D, ν) = 0 then for each tuple t̄ ∈ RD we have that ν(x̄) ⇑ t̄ does not

hold. Thus for each homomorphism h, and each tuple t̄ ∈ RD, we have h(ν(x̄)) 6=

h(t̄). This means that h(x̄) 6∈ h(RD), and thus for each homomorphism h we have

EvalFO(ϕ, h(D), h(ν(x̄))) = 0.

If ϕ(x, y) is an equational atom x = y, then:

(*) If Eval3v(x = y,D, ν) = 1 then ν(x) = ν(y), and thus for for every homomorphism h,

we have h(ν(x)) = h(ν(y)); in particular, EvalFO(x = y, h(D), ν) = 1.

(**) If Eval3v(x = y,D, ν) = 0, then both ν(x) and ν(y) are constants and ν(x) 6= ν(y).

Since they are constants, every homomorphism leaves them intact, and thus EvalFO(x =

y, h(D), ν) = 0. �

Another corollary says that we can use Eval3v to find overapproximations of certain

answers:

◮ Corollary 7. For every FO query ϕ(x̄) we have

certain⊥(ϕ,D) ⊆ adom(D)|x̄| − Eval3v(¬ϕ,D).

As for the complexity of the procedure, one can easily show the following.

◮ Proposition 8. For each relational vocabulary σ and α ∈ {0, 1
2 , 1}, from every FO query

ϕ(x̄) one can compute FO queries ϕα(x̄) in the vocabulary that extends σ with a unary

predicate const(·) interpreted as the set of constants, such that, for every database D,

{ā ∈ adom(D)|x̄| | Eval3v(ϕ,D, ā) = α} = EvalFO(ϕα, D).

Consequently, data complexity of computing Eval3v(ϕ,D) is in AC0.

This gives us a complexity argument showing that there are cases when Eval3v fails to

produce all certain answers. A concrete example of strict containment of Eval3v in certain⊥

will be shown below in Section 5.1.

5.1 CQs and UCQs with inequalities

A common extension of conjunctive queries and their unions is by adding inequalities [1].

This is a very mild form of negation; essentially, we only allow negation to be applied to

equality atoms. Instead of writing them as ¬(x = y), it is common to use x 6= y in formulae,

and refer to them as inequality atoms. Then the ∃,∧-closure of relational, equality and

inequality atoms is referred to as CQs with inequalities, and the ∃,∧,∨-closure as UCQs

with inequalities. This class of queries is denoted by UCQ
6=.

We now present a particularly easy evaluation procedure that correctly accounts for Eval3v

producing value 1 for UCQs with inequalities, and thus gives us correctness guarantees for

ICDT’15



10 SQL’s Three-Valued Logic and Certain Answers

those queries. This procedure uses two-valued, rather than three-valued, logic and only one

rule that separates it from EvalFO. To understand it, note for an inequality atom x 6= y, FO

evaluation returns true if x and y are assigned different values – even if they are different

nulls. But actually the evaluation of conditions such as ⊥1 6= ⊥2 must be false, since ⊥1

and ⊥2 can be mapped, by a valuation, to the same element. For UCQ
6=, there is no risk

with assigning false rather than unknown, since negation will never be applied further on.

This lets us define the evaluation procedure for UCQ
6= by adding the following explicit rule

for 6= formulae to the EvalFO rules:

EvalUCQ6=(x 6= y,D, ν) =

{

1 if ν(x), ν(y) ∈ Const and ν(x) 6= ν(y)

0 otherwise

This evaluation is particularly easy to implement in SQL with the usual is not null

conditions in the where clause. And it has the desired correctness guarantees.

◮ Theorem 9. For every UCQ
6= query ϕ, we have

EvalUCQ6=(ϕ,D) = Eval3v(ϕ,D) ⊆ certain⊥(ϕ,D).

In particular, EvalUCQ6= has certainty guarantees for UCQ
6= queries.

Proof sketch. We prove, by induction on the formulae, that EvalUCQ6=(ϕ,D, ν) = 1 iff

Eval3v(ϕ,D, ν) = 1 for UCQ
6= queries. �

One cannot capture certain⊥(ϕ,D) precisely with the UCQ
6= evaluation procedure. In-

deed, consider the query ψ = ∃x∃y R(x, y) ∧ x 6= y and a database D with RD =

{(⊥, 1), (⊥, 2)}. One easily checks certain⊥(ψ,D) = certain(ψ,D) = true but at the same

time EvalUCQ6=(ψ,D) = 0. By Theorem 9, this also means that Eval3v(ψ,D) fails to capture

certain⊥(ϕ,D); this is the example promised at the end of the last section.

In fact there could be no polynomial-time evaluation procedure for finding certain answers

for UCQ
6= queries since they have coNP-complete data complexity, even without free vari-

ables. Indeed, suppose we have a graph G = 〈V,E〉 where the set of vertices is {a1, . . . , an}.

Create a binary relation DG with adom(DG) = {⊥1, . . . ,⊥n} and pairs (⊥i,⊥j) for every

edge (ai, aj) ∈ E. Let ϕ ∈ UCQ
6= be given by ∃x DG(x, x)∨ ∃x, y, z, u (x 6= y ∧ x 6= z ∧ x 6=

u ∧ y 6= z ∧ y 6= u ∧ z 6= u). Then certain(ϕ,DG) is true iff G is not 3-colorable.

5.2 Open world semantics

Another commonly used semantics of incompleteness is based on the open-world assumption,

or owa [1, 12, 21]. Under this assumption, after applying a valuation h to a database, finitely

many complete tuples can be added to it. That is,

[[D]]
owa

= {h(D) ∪D′ | h is a valuation and D′ is complete}.

Certain answers under owa are defined as certainowa(Q,D) =
⋂

{Q(D′) | D′ ∈ [[D]]
owa

}.

The evaluation procedure Eval3v no longer has certainty guarantees under owa. To see

this, consider D with relations RD = {(1, 2)} and SD = {(⊥1, 1), (2,⊥2)}. Let ϕ(x, y) =

R(x, y) ∧ ¬S(x, y). Since the tuple (1, 2) does not unify with either tuple in SD, we

have (1, 2) ∈ Eval3v(ϕ,D). However, under owa, it is not a certain answer: for instance,

the database D′ with RD′

= {(1, 2)} and SD′

= {(1, 1), (2, 2), (1, 2)} is in [[D]]
owa

, and

EvalFO(ϕ,D′) is empty.



L. Libkin 11

Thus, our question is whether the approach of Eval3v, guaranteeing correctness for all

FO queries under cwa, can be extended to owa. Of course there is always a trivial positive

answer: the evaluation procedure that always returns 0 vacuously has correctness guarantees.

Since [[D]]
cwa

⊆ [[D]]
owa

, certain answers under owa will be included in certain answers under

cwa, so the question really is how much we eliminate from the latter so that the result is still

meaningful, and provides certainty guarantees under owa. Note also that finding certain

answers under owa is undecidable [2] (even for data complexity [9]) which ties our hands

even more in terms of finding suitable approximations.

To understand the changes that need to be made under owa, consider again relational

atoms. For them, there is no way to assert with certainty that a tuple does not belong to a

relation, since each relation can be expanded under owa. Hence, the case when evaluation

produces 0 must go.

Next, look at existential formulae. Again we cannot state with certainty that the result

of evaluation of those is 0, as perhaps in some extension of the database there is a witness for

the existential formula, so the lowest value for evaluating such a formula is 1
2 , not 0. Likewise,

for universal formulae, one cannot state with certainty that the result of evaluation is 1, as

it requires checking the universal conditions in all extensions of the database, which is an

undecidable problem. Hence, the highest value in this case is 1
2 and not 1.

This explains the three changes that we make for the evaluation procedure. The proce-

dure Eval
owa

3v has the range {0, 1
2 , 1} and differs from Eval3v in three rules:

Eval
owa

3v (R(x̄), D, ν) =

{

1 if ν(x̄) ∈ RD

1
2 otherwise

Eval
owa

3v (∃xϕ,D, ν) = max
{

1
2 , max{Eval

owa

3v (ϕ,D, ν[a/x]) | a ∈ adom(D)}
}

Eval
owa

3v (∀xϕ,D, ν) = min
{

1
2 , min{Eval

owa

3v (ϕ,D, ν[a/x]) | a ∈ adom(D)}
}

Note that this procedure is the only one that modifies rules (5). These modifications are

sufficient for correctness under owa.

◮ Proposition 10. The evaluation algorithm Eval
owa

3v has correctness guarantees under owa.

Returning to the example from the beginning of the subsection, note that the value

of Eval
owa

3v (S(x, y), D, (1, 2)) is 1
2 (for Eval3v it would have been 0), and thus the result

Eval
owa

3v (R(x, y) ∧ ¬S(x, y), D, (1, 2)) is 1
2 as well; in particular, (1, 2) 6∈ Eval

owa

3v (ϕ,D) while

we had (1, 2) ∈ Eval3v(ϕ,D).

A remark on equivalence of queries under Eval3v. Under the usual FO semantics, called

EvalFO here, we are used to a number of equivalences that are not necessarily true when Eval3v

is used instead. Consider, for instance, a formula ϕ(x) = ∃y
(

R(x, y) ∧ (y = 1 ∨ y 6= 1)
)

. Of

course we expect it to be equivalent to ϕ′(x) = ∃yR(x, y). However, under the three-valued

semantics these are not equivalent: if RD = {(1,⊥)} and ν : x 7→ 1, then EvalFO(ϕ,D, ν) =

EvalFO(ϕ′, D, ν) = 1 = Eval3v(ϕ
′, D, ν), but at the same time Eval3v(ϕ,D, ν) = 1

2 . This point

will be important for us in the next section, where we present an evaluation procedure of

relational algebra for databases with nulls.

6 Evaluation procedure for relational algebra

Queries that get executed in a DBMS are procedural queries, in particular, in the relational

case, they are written in relational algebra, or some of its extensions. We now present

ICDT’15



12 SQL’s Three-Valued Logic and Certain Answers

an algorithm that provides an evaluation with correctness guarantees for relational algebra

expressions. Even though from the point of view of expressiveness, relational algebra is

equivalent to FO, the equivalence itself, established under the standard two-valued seman-

tics, is not yet a guarantee that it will provide us with a desired evaluation procedure in the

three-valued world.

To expand on this, note that by Proposition 8, for every FO query ϕ(x̄) we have a

relational algebra expression eϕ which has access to the extra predicate const(·) so that eϕ

faithfully implements Eval3v(ϕ, ·). So it seems that starting with a relational algebra query

Q, we could find an equivalent FO query ϕQ and then consider eϕQ
to evaluate Q.

Reasoning of this sort, however, mixes the equivalence of FO and relational algebra (that

is true with respect to the usual two-valued FO evaluation) with the three-valued evalua-

tion. Still, from the equivalence of EvalFO(ϕQ, ·) and Q one can easily derive eϕQ
(D) =

Eval3v(ϕQ, D) ⊆ certain⊥(Q,D), so we do in fact get correctness guarantees with this ap-

proach. Nonetheless, it not satisfactory for two reasons. First, the detour via translation

into FO and back to algebra may produce unnecessarily complicated expressions. Second,

this approach assumes a particular translation between relational algebra and FO (which of

course is not unique), and the quality of the resulting query depends on that translation.

For instance, we view expressions R and σA=1(R) ∪ σA 6=1(R) as equivalent, but using the

latter in eϕQ
can miss some answers with certainty guarantees due to the presence of nulls.

The bottom line is that it is better to have a direct evaluation procedure for relational

algebra that gives us correctness guarantees without going through both algebra-to-FO and

FO-to-algebra translations.

In the two-valued world sound translations for relational algebra have been considered

in the past [22]. Our goal is a bit different though as we have to provide specific correctness

guarantees, and relate them to SQL’s way of evaluating queries; in fact we shall produce

approximations for sets of tuples on which Eval3v returns 1 and 0.

We now explain the procedure for correct evaluation of relational algebra queries. First,

recall the operations of relational algebra. These are selection σ, projection π, cartesian

product ×, union ∪, intersection ∩, and difference −. To avoid the clutter, and in particular

to avoid renaming, we use the unnamed perspective for presenting relational algebra [1],

that is, for each expression returning an m-attribute relation, we simply assume that the

names of those attributes are ♯1, . . . , ♯m. As conditions θ in selections, we use positive

Boolean combinations of equalities and inequalities between attribute values and constants.

For instance, (♯1 6= ♯2)∨(♯3 = 1) is a condition that can be used in selection. Note that such

conditions are closed under negation, simply by propagating it all the way to (in)equalities,

so we shall also refer sometimes to conditions ¬θ, meaning the result of such a propagation.

We refer to this standard relational algebra as RA.

We also consider an extension called RAnull. In this extension, conditions θ are positive

Boolean combinations of

equalities and inequalities between attributes, and

conditions const(♯n) and null(♯n) stating that the value of attribute ♯n is a constant or a

null, respectively.

Our goal is to provide a translation RA → RAnull that associates with each query Q of

RA a query Q+ of RAnull such that Q+(D) ⊆ certain⊥(Q,D).

As noticed already, due to coNP-data complexity of certain⊥(Q,D), we cannot hope for

equality, so this correctness guarantee is the best we can count on.

We shall actually produce more. Let Q̄ be the query that computes the complement of

Q, i.e., for an n-ary Q, the result of Q̄(D) is adom(D)n −Q(D). Then we actually provide



L. Libkin 13

a translation

Q 7→ (Q+, Q−)

of RA queries into a pair of RAnull queries such that

Q+(D) ⊆ certain⊥(Q,D) and Q−(D) ⊆ certain⊥(Q̄,D).

When this happens, we say that the translation Q 7→ (Q+, Q−) provides correctness

guarantees.

Since certain⊥(Q,D) ∩ certain⊥(Q̄,D) = ∅, this also means that Q+(D) ∩ Q−(D) = ∅.

One can think of Q+ and Q− as analogs of finding tuples for which Eval3v produces 0 or 1.

Everything that does not fall into the results of these two, is essentially ‘unknowns’.

We now provide the translations. We need three auxiliary elements: a translation θ 7→ θ∗

from RA conditions to RAnull conditions, one RA query, and one RAnull query. These are given

as follows:

The translation θ 7→ θ∗ is defined inductively. We assume that in conditions ♯n = ♯m or

♯n 6= ♯m, attributes ♯n and ♯m are different (otherwise they are easily eliminated).

If θ is (♯n = ♯m) or (♯m = c), where c is a constant, then θ∗ = θ.

(♯n 6= ♯m)∗ = (♯n 6= ♯m) ∧ const(♯n) ∧ const(♯m).

(♯n 6= c)∗ = (♯n 6= c) ∧ const(♯n).

(θ1 ∨ θ2)
∗ = θ∗1 ∨ θ∗2 .

(θ1 ∧ θ2)
∗ = θ∗1 ∧ θ∗2 .

Active domain query We use adom as an RA query that returns the active domain of a

database; clearly it can be written as a π,∪-query, that takes the union of all projections

of all relations in the database.

Relative complement query The relative complement of a k-ary relation R in database D

is

R⊖ = {ū ∈ adom(D)k | ¬∃t̄ ∈ R : ū ⇑ t̄ }.

It is not hard to see that R⊖ is expressible in RAnull. We show this formally in the proof

of Theorem 11. In fact this is the only expression where conditions null(♯n) are used in

selections.

With these, translations of relational algebra are given by inductive rules presented in

Figure 1. We use abbreviation ar(Q) for the arity of Q, and ααα refers to a list of attributes.

◮ Theorem 11. The translation Q 7→ (Q+, Q−) in Figure 1 provides correctness guaran-

tees.

Proof sketch. Again, we show the following, by induction on relational algebra expressions:

ū ∈ Q+(D) ⇒ ∀ homomorphism h : h(ū) ∈ Q(h(D)) (X)

ū ∈ Q−(D) ⇒ ∀ homomorphism h : h(ū) 6∈ Q(h(D)) (XX)

We provide a couple of sample cases. Consider, for instance, the case when Q is R. Then

Q− = R⊖. Assume ū ∈ R⊖ and let h be a homomorphism. By definition, ū does not unify

with any of t̄ ∈ R, in particular, h(ū) cannot equal h(t̄), thus implying h(ū) 6∈ h(R).

Let θ = (♯n 6= ♯m), and assume Q = σθ(Q1) (so that Q+ = σθ∗(Q+
1 )). Suppose

ū ∈ σθ∗(Q+
1 (D)), and let h be a homomorphism. Since ū ∈ Q+

1 (D), we see, by the hypothesis,

ICDT’15



14 SQL’s Three-Valued Logic and Certain Answers

R+ = R R− = R⊖

(Q1 ∪Q2)
+ = Q+

1 ∪Q+
2 (Q1 ∪Q2)

− = Q−
1 ∩Q−

2

(Q1 ∩Q2)
+ = Q+

1 ∩Q+
2 (Q1 ∪Q2)

− = Q−
1 ∪Q−

2

(Q1 −Q2)
+ = Q+

1 ∩Q−
2 (Q1 −Q2)

− = Q−
1 ∪Q+

2

(σθ(Q))+ = σθ∗(Q+) (σθ(Q))− = Q− ∪ σ(¬θ)∗(adomar(Q))

(Q1 ×Q2)
+ = Q+

1 ×Q+
2 (Q1 ×Q2)

− = Q−
1 × adomar(Q2)

∪ adomar(Q1) ×Q−
2

(πααα(Q))+ = πααα(Q+) (πααα(Q))− = πααα(Q−) − πααα(adomar(Q) −Q−)

Figure 1 Relational algebra translations

that h(ū) ∈ Q1(h(D)). Furthermore, since θ∗ holds, we know that un and um, the nth and

the mth components of ū, are constants, and un 6= um. This means h(un) 6= h(um), proving

h(ū) ∈ σθ(Q1(h(D))). �

The translation in Figure 1 is not just one translation but rather a family of translations,

due to the following observation. A translation can be viewed as a mapping F that assigns

to each relational algebra operation ω (including nullary operations for base relations) two

queries F+
ω and F−

ω . These queries are simply the queries that appear on the right in the

translation; for instance, for the translation scheme we used, F+
∩ is the intersection (since

the result of (Q1 ∩Q2)
+ is the intersection of Q+

1 and Q+
2 ) and F−

∩ is the union (since the

result of (Q1 ∩Q2)
− is the union of Q−

1 and Q−
2 ).

Such a mapping F results in a translation Q 7→ F+
Q ,F

−
Q , where F+

Q and F−
Q are queries

of the same type as Q (i.e., they operate on databases of the same schema and have the

same arity). Intuitively, these are analogs of Q+ and Q− that we had for the translation in

Figure 1.

Formally, they are defined as follows.

If ω is a base relation R, then F+
R and F−

R take no arguments and F+
R = F+

R and

F−
R = F−

R .

That is, F+
R and F−

R are queries that give us certainly positive and certainly negative

information about R.

If ω is a unary operation (σ or π), then F+
ω and F−

ω take two arguments and F+
ω(Q) =

F+
ω (F+

Q ,F
−
Q ) and F−

ω(Q) = F−
ω (F+

Q ,F
−
Q ).

That is, if we already have queries F+
Q and F−

Q describing certainly positive and certainly

negative answers for Q, the queries describing such answers for ω(Q) are obtained by

applying F+
ω and F−

ω to those.

If ω is a binary operation (∪,∩,−,×), then F+
ω and F−

ω take four arguments and

F+
ω(Q1,Q2)

= F+
ω (F+

Q1
,F+

Q2
,F−

Q1
,F−

Q2
) and F−

ω(Q1,Q2)
= F−

ω (F+
Q1
,F+

Q2
,F−

Q1
,F−

Q2
).

That is, if we already have queries F+
Qi

and F−
Qi

describing certainly positive and certainly

negative answers for Qi, with i = 1, 2, the queries describing such answers for ω(Q1, Q2)

are again obtained by applying F+
ω and F−

ω to those.

Given a translation F and another translation G that assigns to each operation ω queries

G+
ω and G−

ω , we say that F is contained in G if F+
ω ⊆ G+

ω and F−
ω ⊆ G−

ω , where ⊆ refers to

the usual query containment.



L. Libkin 15

◮ Proposition 12. Every translation that is contained in the translation of Figure 1 provides

correctness guarantees.

This proposition lets us adjust translations for the sake of efficiency without having to

worry about correctness guarantees. For instance, consider the rule

(Q1 ×Q2)
− = Q−

1 × adomar(Q2) ∪ adomar(Q1) ×Q−
2

in Figure 1. This results in a rather expensive query, as one needs to compute a power of the

active domain. But we can replace it with the much simpler rule (Q1 ×Q2)
− = Q−

1 ×Q−
2 ,

since Q−
1 × Q−

2 is contained in the above query, giving us a more efficient query. Another

possible replacement is of the rule

(σθ(Q))− = Q− ∪ σ(¬θ)∗(adomar(Q))

that again requires computing the active domain with the very simple rule (σθ(Q))− = Q−.

In both cases the result is that the translated queries are significantly more efficient and

they still guarantee correctness of the overall translation in the sense that they produce

subsets of certain answers with nulls, or the usual certain answers if tuples with nulls are

removed. There is a price to pay for the efficiency though: we can get fewer answers in the

result. Hence one should decide how to resolve the efficiency vs the quality of approximation

tradeoff.

Another corollary concerns positive relational algebra, even extended with inequalities,

and it just follows from examining the basic translation of Figure 1. Define PosRA
6= as the

positive fragment of RA (i.e., σ, π,×,∪) where conditions in selections are allowed to use

inequalities. In terms of its expressiveness, this fragment corresponds to UCQ
6=.

◮ Corollary 13. Let Q be a PosRA
6= query, and let Q∗ be obtained from it by changing each

selection condition θ to θ∗. Then, for every database D, we have Q∗(D) ⊆ certain⊥(Q,D).

7 Conclusions

We have shown that small changes to the 3-valued query evaluation used in SQL produce

sound query answers, i.e., answers without false positives. We have presented such evaluation

procedures at the levels of both relational calculus and algebra, and also specialized them

for unions of conjunctive queries with inequalities.

The theoretical complexity of these procedures is very low, in fact it is as low as evaluating

relational calculus and algebra themselves, in terms of data complexity. The next obvious

step is to implement these algorithms to study their real-life applicability. As indicated at

the end of the last section, our translations – especially at the procedural level – are really

families of algorithms, with the efficiency vs quality of approximation tradeoff, so there is

a lot to play with, to find those that provide a good combination of both. Another natural

question is to consider other features of SQL. They include not only such common features as

aggregation and grouping, but also derived operations of relational algebra that are used in

implementation of SQL queries: for instance, the division operation for the implementation

of some universal queries, or semi-joins and anti-joins that can be used for implementing

subqueries.

Acknowledgment I thank Cristina Sirangelo and the reviewers for their helpful comments

and suggestions. Work partially supported by EPSRC grant J015377.

ICDT’15



16 REFERENCES

References

1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

2 S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying of sets

of possible worlds. Theoretical Computer Science, 78(1):158–187, 1991.

3 M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations of Data Exchange. Cam-

bridge University Press, 2014.

4 G. Bruns and P. Godefroid. Model checking with multi-valued logics. In ICALP, pages

281–293, 2004.

5 K. Compton. Some useful preservation theorems. Journal of Symbolic Logic, 48(2):427–

440, 1983.

6 C. J. Date. Database in Depth - Relational Theory for Practitioners. O’Reilly, 2005.

7 C. J. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley, 1996.

8 A. Gheerbrant, L. Libkin, and C. Sirangelo. Naïve evaluation of queries over incomplete

databases. ACM Transactions on Database Systems, 39(4): 34 (2014).

9 A. Gheerbrant, L. Libkin, and T. Tan. On the complexity of query answering over

incomplete XML documents. In ICDT, pages 169–181, 2012.

10 A. Gurfinkel and M. Chechik. Multi-valued model checking via classical model checking.

In CONCUR, pages 263–277, 2003.

11 L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio grows up: from

research prototype to industrial tool. In SIGMOD, pages 805–810, 2005.

12 T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal of

the ACM, 31(4):761–791, 1984.

13 M. Lenzerini. Data integration: a theoretical perspective. In PODS, pages 233–246,

2002.

14 H. J. Levesque. A completeness result for reasoning with incomplete first-order knowledge

bases. In Principles of Knowledge Representation and Reasoning (KR), pages 14–23,

1998.

15 L. Libkin. Certain answers as objects and knowledge. In Principles of Knowledge Rep-

resentation and Reasoning (KR), 2014.

16 L. Libkin. Incomplete information: what went wrong and how to fix it. In PODS, pages

1–13, 2014.

17 W. Lipski. On semantic issues connected with incomplete information databases. ACM

Transactions on Database Systems, 4(3):262–296, 1979.

18 Y. Liu and H. J. Levesque. A tractability result for reasoning with incomplete first-order

knowledge bases. In ĲCAI, pages 83–88, 2003.

19 B. Marnette, G. Mecca, P. Papotti, S. Raunich, and D. Santoro. ++Spicy: an opensource

tool for second-generation schema mapping and data exchange. PVLDB, 4(12):1438–

1441, 2011.

20 M. Paterson and M. N. Wegman. Linear unification. J. Comput. Syst. Sci., 16(2):158–

167, 1978.

21 R. Reiter. On closed world data bases. In Logic and Data Bases, pages 55–76, 1977.

22 R. Reiter. A sound and sometimes complete query evaluation algorithm for relational

databases with null values. Journal of the ACM, 33(2):349–347, 1986.


	Introduction
	Preliminaries
	Evaluation procedures for FO queries
	Evaluation procedures with certainty guarantees
	Certain answers with nulls
	CQs and UCQs with inequalities
	Open world semantics

	Evaluation procedure for relational algebra
	Conclusions

