
SQL to SPARQL Mapping for RDF querying based

on a new Efficient Schema Conversion Technique

Larbi Alaoui
International University of Rabat,

Sala Al Jadida, Morocco

Ahmed Abatal, Khadija Alaoui, Mohamed Bahaj,

 Ilias Cherti
 University Hassan 1st,

 Faculty of Science and Technologies,

 Settat, Morocco

Abstract— In this paper we give an algorithm for querying

RDF data using SQL without conversion of RDF instances. This

algorithm translates an SQL query into an equivalent SPARQL

query that is to be directly executed on the RDF data and allows

it for SQL users to efficiently and easily query the RDF data.

The SQL queries are formulated based on the converted

relational database schema that the algorithm builds from the

RDF one. In this algorithm not only simple SQL queries are

considered but also complex ones such as those with UNION,

INTERSECT or EXCEPT expressions.

Keywords— RDB, RDF, SQL, SPARQL, Query translation

I. INTRODUCTION

Our aim in this paper is to facilitate querying of RDF data

for SQL users by providing a framework for translating RDF

schemas into relational database (RDB) schemas and an

algorithm for translating SQL queries into SPARQL queries

based on the proposed framework.

RDF (Resource Description Framework) which was

standardized by the W3C [6] is a language for describing the

semantics of data that allows sharing of its meaning between

different applications. RDF provides a powerful data model

based on representing data in RDF graphs that can be queried

using SPARQL. SPARQL (SPARQL Protocol and RDF

Query Language) was proposed and standardized by W3C [7]

as a query language for RDF.

Because of the well established techniques of relational

database (RDB) systems, storing and querying RDF using

relational databases techniques is of great importance for

multiple RDB applications which makes it an attractive

research topic in the world of information retrieval. For

example, different research works have been made for

translating RDB into RDF [8-9].

It is however to be noticed that there is still a lot of research

work to be done for translating RDF to RDB for exploring

RDF data.

The main existing works with regards to the translation from
RDF into RDB are those of Rachapalli & al. [1] and
Ramanujam & al. [5]. In [1] Rachapalli & al. proposed a
Framework that stores RDF into RDBMS using a vertically
partitioning storage technique [2] where a table is created for
each predicate and the table contains a subject-object as
attributes (i.e. name (subject, object)). This framework is
based on providing a relational model that contains therefore

many tables. It therefore makes it inadequate for easily
querying the resulting RDB tables using SQL since it
involves adding many join conditions among these tables and
makes the conversion from SQL into SPARQL a complex
one. Also Ramanujam & al. [4] presented a tool for
visualizing RDF into a virtual RDB that contains a module
for translating SQL to SPARQL. His work focus in
converting a SQL query with data aggregation abilities like
GROUP BY and ORDER BY clauses without any details on
how the conversion is made. Furthermore, the work in [4]
does not consider some important SQL constructs such as
UNION, INTERSECT and EXCEPT.

Our aim in this paper is to tackle the problems and the short

outcomes of the aforementioned existing works. In this sense

we propose a new solution for RDB users to easily extract

information directly from RDF data by providing them with

an associated RDB schema we carefully extract from the

RDF schema and without a translation of the RDF data

instances. Users can simply formulate their queries using the

RDB query language SQL, and our newly developed

algorithm based on the extracted relational schema will

translate them into SPARQL ones that can therefore be

executed directly on the RDF data. Contrary to the existing

works our strategy for schema translation uses a simple

structure for the schema modeling and therefore for the SQL

to SPARQL translation. The RDF to RDB schema mapping

with its simplicity allows us to treat not only simple queries

but also those queries with more complex constructs that are

relevant for users and that were not considered before such as

UNION, INTERSECT and EXCEPT.

The remainder of this paper is organized as follows. In

section II we give our schema mapping model. Section III

presents our algorithm for SQL to SPARQL query conversion

based on the aforementioned schema mapping model. Section

IV gives a summary and open perspectives of our work.

II. SCHEMA MAPPING

In this section we propose a new framework for modeling
RDF data using relational database schemas.

In our contribution, we propose a new alternative for RDB

modeling of RDF data without storing the data in the newly

defined RDB tables and give a translation method of SQL

queries into SPARQL equivalent ones which can therefore be

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS100105

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 10, October-2015

57

made on the real RDF data instances. First property tables

are used to group subjects with similar predicates together.

Every table contains a subject as attribute and a set of

predicates attributes. In difference with the work done in [1]

we don’t use a table for each predicate. This allows us to

come up with a solution with largely less tables and a

consistent modeling of the data. The solution therefore

reduces the join conditions and yields an efficient logical

relational schema that facilitates querying the schema for

users. In difference with the work done in [4-5] our solution

come up with a consistent schema modeling that allows us to

efficiently issue not only simple SQL queries but also

complex ones such as nested queries.
 RDF is based on modeling data in form of triplets where
each triplet is constituted of a subject, a predicate and an
object. An example illustrating such triplets is given in Figure
2.
For a given RDF model, our schema-mapping algorithm
traverses all triplets of the Abox set and adds for each one its
associated type and predicate to a hash map.

Fig 1: Mapping algorithm steps

The algorithm is the following one:

Schema-Mapping() Algorithm - Part 1

Input: AB a set of Abox
Output: A hash Map, P (relation name, predicate name)

1.

2.

3.
4.

5.

6.

7.

8.
9.

10.

11.
12.

13.

14.
15.

16.

17.
18.

19.

P ; { The map P is initially empty }

for i 1 to AB.size do

T AB[i] { Retrieve a triple T from the AB}

r T.type { Retrieve the type r from the triple T }
v T.predicate

 { Retrieve the predicate p from the triple T }

notFound true
j 1

while ((notFound) AND (j<=P.size)) do

 if ((r==P(j).getRelation()
 AND v ==P(j).getPredicate())

 then

 notFound false;
 end if

end while

 if (notFound) then
 P.put (r,v) { Add predicate v, and relation r to P }

 end if

end for
Return P

The Hash map P returned by the Schema-Mapping()

Algorithm will be used to extract relation names and their

associated attributes names. For each key r of P we create a

relation R and the attributes of R are simply the predicates v

that are associated with r in P. An additional attribute

SUBJECT is also added to the list of attributes of R to

represent subjects of the relation r. The values of this attribute

will then be the subject values of the RDF triplets of r. This

transformation step of Schema-Mapping() is therefore as

follows

Algorithm "Schema-Mapping()" - Part 2

Input: The hash Map P of Part-1

Output: Relational schema

 For each key r of P
Create a relation R with an attribute SUBJECT

For each value v associated with r in P add an attribute v to R

For the RDF example of Figure 2 we get the following

relational tables "AUTHOR", "PUBLISHER", and "BOOK":

Fig 2: example for RDF graph

- AUTHOR = {subject, name, homepage}

- BOOK= {subject, title, year, author, publisher}

- PUBLISHER = {subject, name, city}

This example will also be considered in the next section to

illustrate our SQL to SPARQL conversion results that use the

relational schema we built from the RDF data.

III. QUERY CONVERSION

In this section, we give a list of algorithms for mapping

SQL queries into SPARQL ones. The resulted SPARQL

queries can therefore be executed directly on RDF data. The

conversion algorithms take into consideration the fact that

there are equivalent types of the tables used in the SQL

queries. They are therefore suitable for the use with the

relational schema we extracted from the RDF one in the

previous section. For the different section composing an SQL

query, we give associated algorithms. More precisely, two

algorithms ConvSelectSql() and ConvWhereSql() are

separately given to yield the results of the SELECT part and

of the WHERE part respectively, and a combine() algorithm

is used for the combinations involved in the SQL query.

Table 4 gives an example of SQL queries for the relational

scheme S and their equivalent SPARQL queries for the RDF

schema that is obtained from our algorithm.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS100105

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 10, October-2015

58

Query

Description

SQL Query SPARQL Query

Author
name of

SPARQL

Book

SELECT author.name
FROM author, book

WHERE

author.subject=book.author
AND

Book.title=”SPARQL”

SELECT ?o1
WHERE

{

?s1 name ?o1 .
?s2 author ?s1.

?s2 author ?o2.

?s2 title ?o3
FILTER(?o3=”SPARQ

L”)

}

Select titles

of all books

SELECT book.title

From book

SELECT ?o

WHERE {

?s title ?o }

Names
authors and

publishers

SELECT author.name
FROM author

UNION

SELECT publisher.name
FROM publisher

SELECT ?o1
WHERE

{

? s1 name ?o1
}

UNION

{
? s1 name ?o1

}

Table 4. Illustration of SQL query converted to SPARQL

A. Conversion algorithms
 The algorithm Query Converted is used to convert a input
SQL query into an equivalent output SPARQL query, firstly
the algorithm call ConvSelectSql(), take as an input SQL
SELECT Clause, and return a SELECT SPARQL Clause, and
a list of triple patterns names TP, for generating a triple
pattern, ?si ri ?oi for every relation ri, because we have
attributes names in SQL SELECT Clause, to allows the next
algorithm ConWhereSql() to index the list TP.

ConvSelectSql() Algorithm

Input: The list A of attributes of an SQL-Select query

Output: SPARQL Select, and triple patterns TP
1

2

3
4

5

6
7

8

9
10

11

12
13

14

select =""

TP empty set;

for i 1 to A.size do

 r A{i}.relation { Retrieve the relation r from attributes A}

 p A{i}.attribute { Retrieve the attribute p from A }

 if p !='subject' then

select += "o" + i
tp{ ?si p oi } { A triple pattern is constructed }

TP.put (r, tp)

 else

select += "s " + i

 end if
end for

Return select, TP

The algorithm ConvWhereSql() generates a correspondent
SPARQL WHERE clause by evaluating the SQL WHERE
clause, and takes as input: the join conditions JC (each
condition has the form: Attribute Operator Attribute), the
Boolean expressions BE (each condition has the form:
Attribute Operator Value), the triple patterns generated by
ConvSelectSql() algorithm, and the list of predicates from the
Hash map outputted by the Schema-Mapping() algorithm.

The SPARQL WHERE clause is obtained by converting join
conditions in a given SQL query into an equivalent triple
patterns (lines 6-16) and by making a filtering using the
boolean conditions (lines 24-30). In lines 18-22 it verifies that

no triple pattern needed in the filtering with join condition
with objects does miss.

ConvWhereSql() Algorithm

Input: JC: Join conditions, BE: Boolean expressions, TP (Relation

name triple pattern)
Output: WHERE clause

1. where = ""

2. if(JC.isEmpty() AND BE.isEmpty()) then

3. for each tp from TP do

4. where += "?" + tp.subject + " " + tp.predicate +" ?"

5. + tp.object

6. end for

7. Else

8. if (! JC.isEmpty) then

9. for each p from JC do

10. p1
 =p.LeftOperand ; p2

 =p.RightOperand ;

11. tp1 =TP.get(P1.relation)

12. tp2 =TP.get(P2.relation)
13. where += "?" + tp1.subject+" " + tp1.predicat +

14. "?"+tp1.object

15. if P1.relation = P2.attribut then

16. where+= "?" + tp1.subject + " "+ P1.attribut + " ?"

17. + tp1.object + "." + " ?" + tp2.subject +

18. " " + P2.attribut + " ?" + tp1.object + ". "
19. end if

20. End for

21. {if we have a Boolean conditions }
22. if (! BE.isEmpty) then

23. for each e from BE do

24. p=e.LeftOperand;

25. tp =TP.get(p.relation)

26. where += "?" + tp.subject + " " + tp.predicat +

27. "?" + tp.object

28. end for

29. {for adding FILTER }

30. for each e from BE do

31. P1=e.LeftOperand;

32. p2=e.RightOperand;

33. tp =TP.get(p1.relation)

34. where += "FILTER("+ tp.object+" "

35. + e.operator + " " + p2

36. end for

37. end if

38. Return where

The core of query converting takes for its input an SQL
query in a string format and the hash map P from the
SCHEMA-MAPPING() algorithm, and gives a SPARQL
query in a string format. The SQL query string is parsed to
extract the clauses SELECT, WHERE-A (WHERE with join
condition) and WHERE-B (WHERE with Boolean
expressions). If the WHERE clause does not contain any join
condition or Boolean expressions, then we set null for the
value of the clause. This algorithm uses the previously given
algorithms ConvSelectSql(), ConvWhereSql () to convert each
considered clause

In the case the SQL query has an SQL UNION, EXCEPT or
INTERSECT construct, it is simply considered as two
composed SQL queries and the QueryConvert() algorithm
first converts each one of these queries before combining the
conversion results using the combine()-method given below
in order to yield the final SPARQL query.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS100105

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 10, October-2015

59

QueryConvert() Algorithm

Input: SQL query SQ, and hash map P

Output: SPARQL SPQ

1. SPQ ="" { initialize SPARQL query}

2. tnodes=analyze(SQ) {cut SQL query to obtain clauses }
3. SQselect= tnodes.getSelectClause()

4. SQwhere-A= tnodes.getWhereJC()

5. SQwhere-B= tnodes.getWhereBE()
6. SPQselect=”SELECT “

7. SPQwhere=”WHERE { “

8. TP ;
9. TP ConvSelectSql(SQselect).getTP()

10. SPQselect=ConvSelectSql(SQselect)

11. SPQwhere +=
12. ConvWhereSql(SQwhere-A, SQwhere-B,TP,P)

13. SPQ= SPQselect+ SPQwhere+’’}’’

14. if tnodes.type!= null then

15. q1=tnodes.leftSubSQL()

16. q2=tnodes.RightSubSQL()
17. SPQ1=queryConvert(q1)

18. SPQ2=queryConvert(q2)

19. SPQ=combine(SPQ1, SPQ2, tnodes.type)
20. end if

21. Return SPQ

The method "analyze()" cited in line 2 takes an SQL query as

input and return a set of nodes by splitting the SQL input and

extracting separately the attributes from the SELECT clause,

the join conditions and the Boolean expressions from the

WHERE clause. The methods getWhereJC() and getWhereBE()

used in line 4-5 extract after this the associated join conditions and

the boolean expressions.

If we have an SQL sub-queries joined by a UNION,

INTERSECT or EXCEPT type then the associated SPARQL

queries are grouped together by QueryConvert() algorithm in

lines 14-20 by call combine()-method which takes as input

the sub-queries and the merging type.

Combine() Algorithm

Input: SPARQL Query q1; SPARQL Query q2; type {type is either

INTERSECT, EXCEPT or UNION}
Output: A SPARQL query SPQ

1.
2.
3.
4.
5.
6.
7.
8.

SPQ =" " {A SPARQL query that is initially empty}
sparqlSelect= q1.getSelectClause()
sparqlWhere=" { " ;
sparqlWhere1=" { "+q1. getSparqlWhere()+" }";
 sparqlWhere2 = " { "+q2. getSparqlWhere ()+" }";
sparqlWhere +=SpWhere1+type+SpWhere2+" }"
SPQ+=SpSelect+SpWhere
return SPQ

B. IMPLEMENTATION

Our algorithm was implemented using the Java language. To

test the SPARQL queries converted by our algorithm from

SQL ones we used Jena's [3] ARQ module which is a Java-

based project.

The following screen shots (Fig. 3-5) present some examples

of the conversion results using our algorithm.

The SQL query considered in Fig 3 is the following one:

SELECT book.title

FROM book

The resulted SPARQL query is as follows:

SELECT ?o0

WHERE

{

?s0 ?title ?o0

}

Fig 3: simple select Query

Fig 4 shows an example of the SQL query with join

conditions and Boolean expressions given bellow:

SELECT author.name,book.title

FROM author book

WHERE author.subject =book.author

AND book.title=" SPARSL"

The equivalent SPARQL query outputted is:

SELECT ?o0

WHERE {

?s0 ?name ?o0.

?s1 ?title ?o1.

?s1 ?author ?s0.

?s1 ?author ?o2

FILTER(?o1=="sparql")

}

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS100105

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 10, October-2015

60

Fig 4: SQL Query

Fig 5 shows an example of the following SQL query

containing a UNION construct:

SELECT author.name,

FROM author

UNION

SELECT publisher.name,

FROM publisher

Its associated SPARQL query obtained by the algorithm is:

SELECT ?o0

WHERE

{

{

 ?s0 ?name ?o0

}

UNION

{

 ?s1 ?name ?o0

}

}

Fig 5: SQL Union Query

V CONCLUSION
Resource Description Framework has been standardized

by the W3C as the language of the semantic web to reflect the
semantics of the data being exchanged on the web. It comes
with an emerging data format that makes it possible to share
the meaning of data between various applications. However
because of the dominance of relational database systems and
associated tools that are still based on SQL for handling data
there is an increasing need for tools to help SQL users to
query RDF data. In this perspective we proposed in this paper
an approach for querying RDF data using SQL. The technique
we used is based on modeling RDF data by a suitable
relational schema that makes it possible for users to query
RDF data with SQL without any instance translation into
relational tables. Based on the extracted relational schema our
approach converts users SQL queries into equivalent
SPARQL queries to be executed on the RDF data. This is
done in efficient way since the proposed modeling technique
insures a consistent representation of all information in RDF
data that avoids redundancy and comes up with a minimal set
of representation tables in the extracted schema.

Because of this concise modeling technique we aim to further
use it in the future for integration with existing relational
database systems for purposes related to RDF data storage and
manipulating. This will open a new era for existing relational
systems to be open for extensions to the world of semantic
web.

REFERENCES

[1] Jyothsna Rachapalli, Vaibhav Khadilkar, Murat Kantarcioglu and
Bhavani Thuraisingham, “RETRO: A Framework for Semantics
Preserving SQL-to-SPARQL Translation”, EvoDyn Workshop, 2011.

[2] Bajda-Pawlikowski, K.: Querying RDF data stored in DBMS:
SPARQL to SQL Conversion. Technical Report TR-1409, Yale
Computer Science Department, USA Jena Framework,
https://jena.apache.org.

[3] Sunitha Ramanujam , Anubha Gupta , Latifur Khan , Steven Seida ,
Bhavani Thuraisingham, “R2D: A Bridge between the Semantic Web
and Relational Visualization Tools”, Proceedings of the 2009 IEEE
International Conference on Semantic Computing, p.303-316,
September 14-16, 2009.

[4] Sunitha Ramanujam, Anubha Gupta, Latifur Khan , Steven Seida, Bha
vani M. Thuraisingham “R2D: Extracting relational structure from
RDF stores” In Proc. of ACM/IEEE International Conference on Web
Intelligence, Page 361-366, September, 2009, Milan, Italy

[5] W3C, Resource description framework (RDF): concepts and abstract
syntax, in: G. Klyne, J.J. Carroll, B. McBride (Eds.), W3C
Recommendation[S], 10 February2004.
http://www.w3.org/TR/2004/REC-rdf-concepts- 20040210/

[6] W3C, SPARQL query language for RDF,in: E. Prud’hommeaux, A.
Seaborne (Eds.), W3C Recommendation[S], 15 January 2008.
http://www.w3.org/TR/2008/REC-rdf-sparql -query-20080115/

[7] S. Das, S. Sundara, and R. Cyganiak. ‘R2RML: RDB to RDF mapping
language’, Sept. 2012. URL http://www.w3.org/TR/2012/REC-
r2rml/20120927/

[8] J. Grabis, M. Kirikova, 'Advanced RDB-to-RDF/OWL Mapping
Facilities in RDB2OWL',10th International Conference, BIR 2011,
Riga, Latvia, October 6-8, 2011.pp 142-157

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS100105

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 10, October-2015

61

