
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261468046

SQLStor: Blockage of stored procedure SQL injection attack using dynamic query

structure validation

Conference Paper · November 2012

DOI: 10.1109/ISDA.2012.6416544

CITATIONS

15
READS

710

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Cloud Storage Forensics View project

The model approach of GLCM method of keyframe extraction and Kullback-Leibler distance similarity measure for Content based video retrieval system from video

databases View project

Manesh Thankappan

Universitat Oberta de Catalunya

36 PUBLICATIONS 79 CITATIONS

SEE PROFILE

Varghese Paul

Rajagiri School of Engineering and Technology

80 PUBLICATIONS 504 CITATIONS

SEE PROFILE

All content following this page was uploaded by Manesh Thankappan on 09 March 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/261468046_SQLStor_Blockage_of_stored_procedure_SQL_injection_attack_using_dynamic_query_structure_validation?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/261468046_SQLStor_Blockage_of_stored_procedure_SQL_injection_attack_using_dynamic_query_structure_validation?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Cloud-Storage-Forensics?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-model-approach-of-GLCM-method-of-keyframe-extraction-and-Kullback-Leibler-distance-similarity-measure-for-Content-based-video-retrieval-system-from-video-databases?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manesh-Thankappan?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manesh-Thankappan?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitat-Oberta-de-Catalunya?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manesh-Thankappan?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Varghese-Paul?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Varghese-Paul?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Rajagiri_School_of_Engineering_and_Technology?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Varghese-Paul?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manesh-Thankappan?enrichId=rgreq-d2ff04dc002644078cf222c2dd042666-XXX&enrichSource=Y292ZXJQYWdlOzI2MTQ2ODA0NjtBUzoyMDUwNDIzMTg2MTQ1MjhAMTQyNTg5NzMwNjEyMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

SQLStor: Blockage of Stored Procedure SQL Injection Attack Using Dynamic
Query Structure Validation

Sruthy Mamadhan
Department of CS

Adi Shankara Institute of
Engineering & Technology

Kalady, India
e-mail: sruthym.88@gmail.com

Manesh T
Department of IT

Adi Shankara Institute of
Engineering & Technology

Kalady, India
e-mail:

maneshpadmayil@gmail.com

Varghese Paul
Department of IT

Cochin University of Science
And Technology
Cochin, India

e-mail: vp.itcusat@gmail.com

Abstract— Web applications are becoming an important part
of our daily life. So attacks against them also increases
rapidly. Of these attacks, a major role is held by SQL
injection attacks (SQLIA). This paper proposes a new method
for preventing SQL injection attacks in JSP web applications.
The basic idea is to check before execution, the intended
structure of the SQL query. For this we use semantic
comparison. This method prevents different kinds of injection
attacks including stored procedure attack which is more
difficult and less considered in the literature.

Keywords—Arraylist, Parse Tree, Semantics, SQL injection,
Web application.

I. INTRODUCTION

Nowadays, for most of the activities in our life, we depend
on internet or web applications. There exists a natural trend
that as the usage of a particular service increases; the
attacker’s interest on it also increases. The same thing
happened in case of web applications. Of many kinds of
attacks against web applications, SQL Injection Attack
(SQLIA) is one of the top most threats against them[12]. So
it is highly requires in the current scenario to have a good
solution to prevent such attack to secure the information.
This is the motivation behind this work.

SQL Injection targets the web applications that use a back
end database. Working of a typical web application is as
follows: User is giving request through web browsers,
which may be some parameters like username, password,
account number etc. These are then passed to the web
application program where some dynamic SQL queries are
generated to retrieve required data from the back end
database.

SQL Injection attack is launched through specially crafted
user inputs. That is attackers are allowed to give requests as
normal users. Then they intentionally create some bad input
patterns which are passed to the web application code. If
the application is vulnerable to SQLIA, then this specially
created input will change the intended structure of the SQL
query that is being executed on the back end database and

will affect the security of information stored in the
database. The tendency to change the query structure is the
most characteristics feature of SQLIA which is being used
for its prevention also.

For better understanding let us have look at the following
example. We all know that most of the applications that we
are accessing through internet will have a login page to
authenticate the user who is using the application. Figure 1
show such a login page. Here when a user is submitting his
username and password, an SQL query is generated in the
back end to check whether the given credentials are valid
or not. Suppose the given username is 1 and password is
111, the query will be:

Select * from login where user=’1’ and pass=’111’

This is the normal case and if any rows are selected by the
query, the user is allowed to log in.

Now, figure 2 shows an attack scenario. That is an attacker
wants to log in without correct username and password.
Instead of entering valid username if he uses injection
string like “hacker’ OR ‘1’=’1’—“ as username and
“something” as password, the query formed will be like
this:

Select * from login where user=’hacker’ or ‘1’=’1’ –‘ and
pass=’something’

When this query is executed in the database, it will always
return a true and the authentication will succeed.

mailto:sruthym.88@gmail.com

Figure 1. Example login – Normal case

Figure 2 : Example login – attack case

Here the pattern “1=1” will always be true and is called
tautology. Since, “OR” operator is inserted by the attacker,
the query will return true even though the username and
password are wrong. Also “—“ will have special purpose.
It will comment the remaining part of the query so that
password will not be checked.

II. LITERATURE SURVEY

In the literature survey we describe different types of

SQL Injection attacks and also a brief description of
different existing techniques to prevent them.

A. SQLIA Types

The SQLIA can be broadly classified into two: first
order and second order attacks. First of these will have
direct effect on the system whereas other doesn’t have any
direct harm.

Different types of first order attacks are listed below[1]:

Tautologies: The main intention of this attack is to
bypass authentication. For this they attack the field that is
used in a query’s WHERE conditional. Transforming the
conditional into a tautology causes all of the rows in the
database table to be returned so that he can login
successfully without having a valid username and
password. The attack shown in figure 2 is an example of
tautology attack.

Illegal/Incorrect Queries: This is the first step of SQL

injection attack. Here the intention of the attacker is to
gather information about the type and structure of the back
end database that is being used in the web application. This
attack exploits very descriptive default error pages returned
by the application servers.

Union Queries: This type of attack is mainly used to

bypass authentication and to extract data by changing the
data set returned for a given query. Format is ‘UNION
SELECT <part of injected query>’, where the query after
the UNION keyword is fully under control of the attacker
so that he/she can retrieve data from any table which is not
intended by the actual query.

Piggybacked Queries: This attack mainly aims at

extracting data. Like the concept of piggybacked
acknowledgement in computer networks where,
acknowledgement of a packet is sent along with the next
packet, here, the attacker tries to inject additional queries
with original one.

Stored procedure Attack: This type of attack tries to

execute stored procedures present in the database with
malicious inputs. This is explained in next section.

Inference: Main aim of this kind of attack is to identify

injectable parameters. The information can be inferred
from the behavior of the page by asking the server
true/false questions. If the injected statement evaluates to
true, the site continues to function normally. If the
statement evaluates to false, although there is no
descriptive error message, the page differs significantly
from the normally functioning page.

B. Related Works

Research on SQL injection attacks can be broadly
classified into two basic categories: vulnerability
identification approaches and attack prevention
approaches. The former category consists of techniques
that identify vulnerable locations in a Web application that
may lead to SQL injection attacks. In order to avoid SQL
injection attacks, a programmer often subjects all inputs to
input validation and filtering routines that detects attempts
to inject SQL commands. The techniques presented in
[3,4,13] represent the prominent static analysis techniques
for vulnerability identification, where code is analyzed to

ensure that every piece of input is subject to an input
validation check before being incorporated into a query
(blocks of code that validate input are manually annotated
by the user). While these static analysis approaches scale
well and detect vulnerabilities, their use in addressing the
SQL injection problem is limited to merely identifying
potentially unvalidated inputs. The tools do not provide any
way to check the correctness of the input validation
routines, and programs using incomplete input validation
routines may indeed pass these checks and cause SQL
injection attacks.

Another approach to solve the problem is provided by the
class of attack prevention techniques that retrofit programs
to shield them against SQL injection attacks
[5,6,7,8,9,10,11]. These techniques often require little
manual annotation, and instead of detecting vulnerabilities
in programs, they offer preventive mechanisms that solve
the problem of defending the Web application against SQL
injection attacks. Relying on input validation routines as
the sole mechanism for SQL injection defense is
problematic. Although they can serve as a first level of
defense, they cannot defend against sophisticated attack
techniques (e.g., those that use alternate encodings and
database commands to dynamically construct strings) that
inject malicious inputs into SQL queries.

A more fundamental technique to solve the problem of
preventing SQL injection comes from the commercial
database world in the form of PREPARE statements. These
statements, originally created for the purpose of making
SQL queries more efficient, have an important security
benefit. They allow a programmer to declare (and finalize)
the structure of every SQL query in the application. Once
issued, these statements do not allow malformed inputs to
influence the SQL query structure, thereby avoiding SQL
injection vulnerabilities altogether. The following
statement.

SELECT * FROM phonebook WHERE username = ?
AND password = ?

is an example of a PREPARE statement. The question
marks in the statement are used as “place-holders” for user
inputs during query parsing and, therefore, ensure that
these possibly malicious inputs are prevented from
influencing the structure of the SQL statement. Thus,
PREPARE statements allow a programmer to easily isolate
and confine the “data” portions of the SQL query from its
“code.” Thus, PREPARE statements are in fact a robust
and effective mechanism to defend against SQL injection
attacks. However, retrofitting an application to make use of
PREPARE statements requires manual effort in specifying
the intended query at every query point, and the effort
required is proportional to the complexity of the Web
application.

TABLE I
COMPARISON OF RELATED WORKS

Techni
-que

Taut
ol-
ogy

Ille
gal

Pig
gy
Bac
k

Uni
on

Stor
ed
Proc
ed-
ure

Infere
nce

Alter
nate
encod
ing

SQL-
DOM

* * * * X * *

SQLra
nd

* X * * X * X

AMNE
SIA

* * * * X * *

Taintin
g

* * * * * * *

SQLCh
eck

* * * * X * *

SQLG
uard

* * * * X * *

CAND
ID

* p p p X p p

*-Prevention

p-Partial prevention
X-Prevention not possible

From this comparison, it is clear that stored procedure
attacks are less considered in the literature. This paper
focuses on this particular kind of attacks along with general
prevention.

III. PROPOSED METHOD

This paper offers a technique, dynamic query structure
validation, that automatically (and dynamically) mines
programmer-intended query structures at each SQL query
location, thus providing a robust solution to the retrofitting
problem.

The idea is that the process of generation of queries in a
dynamic web application can be represented as a function
of user‘s inputs[2]. In this context, SQL injection is any
situation in which the user‘s input is inducing an
unexpected change in the output generated by the function.

Two parameters can be defined

Original_Query = Fun(input_i) i = 1 to n
 input_i = input from user
 Fun() = Function represented by web
 application

Benign_Query =Fun(input_benign_i) I = 1 to n
 input_benign _i = “qqq” or any evidently
 non-attacking input

The idea requires that the application will not allow the
user to enter any part of SQL query directly. Two
statements are said to be semantically equivalent, if they
perform similar activities, once they are executed on the
database server. So if it can be determined that both
Original_Query and Benign_Query are semantically
equivalent, then there is no possibility of SQL injection.
This paper uses this semantic comparison to detect SQL
injection. The semantic comparison is done by parsing each
of the statements and comparing the syntax tree structure.
If the syntax trees of both the queries are equivalent, then
the queries are inducing equivalent semantic actions on the
database server, since the semantic actions are determined
by the structure of the Original_Query.

Steps include:

1. Generate a Benign_Query from the
Original_Query generated by the application. This
is done by replacing user inputs to the query with
benign inputs.

2. Check the syntax of the Benign_Query to ensure
its validity while doing the replacement.

3. Get the count of stacked queries in both original
SQL query and generated Benign_Query.

4. Compare the count of stacked queries. If both
counts are different, then we can directly report
SQL injection attack and prevent that query from
execution without going for semantic checking.

5. Now construct a syntax tree of both
Original_Query and Benign_Query and compare
them. Here, syntax trees are created using java
ArrayList structure.

6. Compare the syntax trees. If they are equal, the
query is valid and allow its execution. Otherwise,
report injection and block the query.

These steps can be explained using an example: Consider a
web application with two text boxes and a submit button.
Let the text boxes be uid, and pwd. Consider the input from
the user as “hacker‘ OR 1 = 1 –“, and “something”. Here
the Original_Query generated from the web application is

Original_Query = SELECT * FROM User WHERE
UserName=‘hacker‘ OR 1 = 1 --‘ AND

Password=‘Something‘

Here first the user inputs in the order “hacker‘ OR 1 = 1 –“
and “something” will be replaced to produce the statement
as shown below.
SQL_Statement_Safe = SELECT * FROM User WHERE

UserName=‘qqq‘ AND Password=‘qqq‘

Then, the syntax trees are created and compared. The
syntax tree for the Original_Query using ArrayList will
look like:
 [select, [VAR, *],
 from,
 [VAR, login],
 where,
 [VAR, uname=qqq, AND, pwd=qqq]]

Now, the tree for Benign_Query generated will be look
like:

 [select, [VAR, *],
 from,
 [VAR, login],
 where,
 [VAR, uname=admin', OR, '1'='1'--, AND,
 pwd=somethng]]

While comparison we can identify that the tree structures
are different and so it is an SQL Injection attack. So we
prevent its actual execution.

A. Extension To Prevent Stored Procedure Attack
Stored procedures are an important part of relational
databases. They add an extra layer of abstraction into the
design of a software system. This extra layer hides some
design secrets from the potentially malicious users, such as
definitions of tables. By using stored procedures, one could
make sure that all the data is always contained in the
database and is never exposed. In these databases, the
developer is allowed to build dynamic SQL queries ie. SQL
statements are built at runtime according to the different
user inputs. For example, in SQL Server, EXEC(varchar(n)
@SQL) could execute arbitrary SQL statements. This
feature offers flexibility to construct SQL statements
according to different requirements, but faces a potential
threat from SQL Injection Attacks.

Consider an example MySQL Stored procedure for Login.

DELIMITER $$
USE `sqlstor`$$
DROP PROCEDURE IF EXISTS
`LoginCheckNew1`$$
CREATE DEFINER=`root`@`localhost`
PROCEDURE `LoginCheckNew1`(IN uname
VARCHAR(20),IN passwrd VARCHAR(20))
BEGIN

SET @aaa=CONCAT('select * from
login where id=',uname,' ',' and
pass=',passwrd);

 PREPARE stmt FROM @aaa;
 EXECUTE stmt;
 DEALLOCATE PREPARE stmt;
END$$
DELIMITER ;

Here, the procedure name is ‘LoginCheckNew1’ with two
input arguments, uname and password. According to the
inputs given by users, the query will be formed as a string
and executed through ‘EXECUTE’ statement.

Now, the way of calling this procedure from the web page
is as follows:

1. String uname= request.getParameter("username");
2. String pwd = request.getParameter("password");
3. CallableStatement calstat = con.prepareCall("{call

LoginCheckNew1(?,?)}");
4. calstat.setString(1, uname);
5. calstat.setString(2, pwd);
6. ResultSet rs = calstat.executeQuery();

First two statements are for accepting input arguments. The
third statement will create an object of ‘CallableStatement’
for calling stored procedure. The next two statements will
set the values of three arguments of the stored procedure.
The last statement will execute and give the result.

The SQL injection attack is possible by injecting specially
crafted user inputs to the stored procedure. For prevention,
the method proposed in this paper is dynamic semantic
equivalence checking. For doing that the query structure
that is being formed within the procedure is required. But,
in case of stored procedures, getting query structure before
actual execution is difficult. To manage this, we are
constructing one additional procedure which is similar to
the one being considered, but, with one additional output
argument ‘qry’ for getting the dynamic query structure
which is required for semantic equivalence checking.

DELIMITER $$
USE `sqlstor`$$
DROP PROCEDURE IF EXISTS
`LoginCheckNew1`$$
CREATE DEFINER=`root`@`localhost`
PROCEDURE `LoginCheckNew1`(IN uname
VARCHAR(20), IN passwrd VARCHAR(20),OUT
qry TEXT)
BEGIN

SET @aaa=CONCAT('select * from
login where id=',uname,' ',' and
pass=',passwrd);
SET qry=@aaa;

END$$
DELIMITER ;

For prevention, first execute this procedure with original
arguments. Then the ‘qry’ variable will give the dynamic
query structure that is being generated. For example, if the
inputs given are ‘’1’ or ‘1’=’1’—‘ for uname and ‘’ for
password, then the result will be:

qry = select * from login where id='1' or '1'='1'--
and pass=

Now pass the original inputs and this query string to the
above explained attack detection algorithm.

IV. PERFORMANCE EVALUATION

For testing we used the test suite obtained from an
independent research group, AMNESIA test bed[14]. It
consists of some medium to large web applications. From
that we selected one application, ‘BookStore’. Also two
sets of URLs(Total: 3191) is used for testing, one set with
attack URLs(3063) and other set with legitimate
URLs(128). Test results can be summarized in a table as
follows:

TABLE II
TEST RESULTS

Identified
URL
Types

Bookstore-
Without
Prevention

Bookstore
With
Prevention

Bookstore- With
Prevention(Stored
Proc)

Total
URLs

3191 3191 3191

Valid URL
Requests

2901 2901 2901

SQLIA
Detected

0 2777 2777

Undetected 2810 0 0

Syntax
Errors

0 60 60

Others 91 64 64

Redirects 0 0 0

Error URL
Requests

290 290 290

Omitted 0 0 0

Time 413s 327s 313

First column of the above table describes classification of
URLs of the set of 3191 URLs being used for testing. With
the test bed, they are providing a perl script for generating
this kind of result. So first we ran the Bookstore web
application without incorporating our detection strategy
and got the result as second column of above table. Note
that, in that case SQLIA detected was 0. Now, we
incorporated the detection logic with the same application
and ran the perl script. Then we got the result as third
column of above table. Note that, in that case all the SQL
injection attempts were prevented. The last column
indicates the result of using the same application with
stored procedures. Then also our approach caught all the
SQL injection attempts as without using stored procedure.
From this, we can say that the method that is proposed in
this paper is relevant for web applications that uses stored
procedures where stored procedure SQL injection attacks
are possible.

V. CONCLUSION

SQL injection vulnerability is one of the top vulnerabilities
present in the web applications. In this paper we proposed
an efficient approach to prevent this vulnerability. Our
solution is based on the principle of dynamic query
structure validation which is done through checking
query’s semantics. It detects SQL injection by generating a
benign query from the final SQL query generated by the
application and the inputs from the users and then
comparing the semantics of safe query and the SQL query.
The main focus is on stored procedure attacks in which
getting query structure before actual execution is difficult.

REFERENCES
[1] Halfond, W., Viegas, J., & Orso, A. (2006). "Classification of

SQLInjection Attacks and Countermeasures." SSSE 2006.

[2] Sandeep Nair Narayanan, Alwyn Roshan Pais, & Radhesh
Mohandas. Detection and Prevention of SQL Injection Attacks using
Semantic Equivalence. Springer 2011

[3] Preventing SQL Injections in Online Applications: Study,
Recommendations and Java Solution Prototype Based on the SQL
DOM .Etienne Janot, Pavol Zavarsky Concordia University College
of Alberta, Department of Information Systems Security

[4] Xie, Y., and Aiken, A. Static detection of security vulnerabilities in
scripting languages. In USENIX Security Symposium (2006).

[5] Boyd, S. W., and Keromytis, A. D. Sqlrand: Preventing sql injection
attacks. In ACNS (2004), pp. 292–302.

[6] Halfond, W., and Orso, A. AMNESIA: Analysis and Monitoring for
NEutralizing SQL-Injection Attacks. In ASE (2005), pp. 174–183.

[7] Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., and Evans,
D. Automatically hardening web applications using precise tainting.
In SEC (2005), pp. 295–308.

[8] Buehrer, G., Weide, B. W., and Sivilotti, P. A. G. Using parse tree
validation to prevent sql injection attacks. In SEM (2005).

[9] Prithvi Bisht, P. Madhusudan, V. N. VENKATAKRISHNAN.
CANDID: Dynamic Candidate Evaluations for Automatic
Prevention of SQL Injection Attacks. ACMTransactions on
Information and System Security,Vol. 13, No. 2, Article 14,
Publication date: February 2010.

[10] Ke Wei, M. Muthuprasanna, Suraj Kothari. Preventing SQL
Injection Attacks in Stored Procedures. IEEE Software Engineering
Conference, 2006. Australian.

[11] Pietraszek, T. Berghe, C. V. 2006. Defending against injection
attacks through context sensitive string evaluation. In Proceedings of
the Conference on Recent Advances in Intrusion Detection. Springer,
Berlin, 124–145.

[12] OWASP, O.W.(2010). OWASP Top 10 for 2010.
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Proje
ct (Apr. 14, 2011).

[13] Mcclure, R. A. and Kr¨Uger, I.H. 2005. SQL DOM: Compile time
checking of dynamic SQL statements.In Proceedings of the 27th
International Conference on Software Engineering (ICSE’05).ACM,
New York, 88–96.

[14] William, G. J. Halfond, SQL Injection Application Testbed.
http://www-bcf.usc.edu/~halfond/testbed.html

View publication statsView publication stats

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10753
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10753
https://www.researchgate.net/publication/261468046

	I. INTRODUCTION
	II. Literature Survey
	III. Proposed Method
	Here first the user inputs in the order “hacker‘ OR 1 = 1 –“ and “something” will be replaced to produce the statement as show
	Then, the syntax trees are created and compared. The syntax tree for the Original_Query using ArrayList will look like:
	A. Extension To Prevent Stored Procedure Attack

	IV. Performance Evaluation
	V. Conclusion
	References

