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ABSTRACT

Objective: There is increasing evidence that common genetic risk factors underlie frontotemporal
lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Recently, mutations in the
sequestosome 1 (SQSTM1) gene, which encodes p62 protein, have been reported in patients
with ALS. P62 is a multifunctional adapter protein mainly involved in selective autophagy, oxida-
tive stress response, and cell signaling pathways. The purpose of our study was to evaluate the
frequency of SQSTM1 mutations in a dataset of unrelated patients with FTLD or ALS, in compar-
ison with healthy controls and patients with Paget disease of bone (PDB).

Methods: Promoter region and all exons of SQSTM1 were sequenced in a large group of subjects,
including patients with FTLD or ALS, healthy controls, and patients with PDB. The clinical charac-
teristics of patients with FTLD or ALS with gene mutations were examined.

Results: We identified 6 missense mutations in the coding region of SQSTM1 in patients with
either FTLD or ALS, none of which were found in healthy controls or patients with PDB. In silico
analysis suggested a pathogenetic role for these mutations. Furthermore, 7 novel noncoding
SQSTM1 variants were found in patients with FTLD and patients with ALS, including 4 variations
in the promoter region.

Conclusions: SQSTM1 mutations are present in patients with FTLD and patients with ALS. Addi-
tional studies are warranted in order to better investigate the role of p62 in the pathogenesis of
both FTLD and ALS. Neurology® 2012;79:1556–1562

GLOSSARY
AD � Alzheimer disease; ALS � amyotrophic lateral sclerosis; FTLD � frontotemporal lobar degeneration; HD � Huntington
disease; PD � Parkinson disease; PDB � Paget disease of bone; SQSTM1 � sequestosome 1 gene.

In recent years, there has been a growing body of clinical, pathologic, and genetic evidence
supporting the idea that frontotemporal lobar degeneration (FTLD) and amyotrophic lateral
sclerosis (ALS) belong to the same clinicopathologic spectrum of disease.1–3

FTLD and ALS are genetically heterogeneous disorders. Mutations in the CHMP2B, FUS,
OPTN, PGRN, TARDBP, UBQLN2, and VCP genes and a repeat expansion in the C9orf72
gene have been reported to be associated with both diseases.4–11 Therefore, genes linked to both
diseases may converge into a common pathogenetic pathway, explaining the overlap of clinical
symptoms.
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The sequestosome 1 (SQSTM1) gene is lo-
cated on 5q35 and encodes p62, a multifunc-
tional protein implicated in several cellular
activities. There is accumulating evidence
of p62 involvement in neurodegeneration.
SQSTM1 knockout mice develop memory
impairment associated with the accumulation
of hyperphosphorylated � and neurofibrillary
tangles.12 Pathologic studies in humans have
shown increased p62 immunoreactivity in
several neurodegenerative disorders, such as
Alzheimer disease (AD), dementia with Lewy
bodies, FTLD, Parkinson disease (PD), and
Huntington disease (HD).13–15 Intriguingly,
pathologic studies showed that patients with
FTLD or ALS carrying the C9orf72 gene ex-
pansion present abundant neuronal p62-
positive inclusions.16,17

Mutations in the SQSTM1 gene result in
Paget disease of bone (PDB), a common dis-
order characterized by increased bone turn-
over.18,19 Recently, SQSTM1 mutations have
been identified in patients with ALS, suggest-
ing a role for this gene in the pathogenesis of
the disease.20

The aims of this study were 1) to confirm
the increased frequency of SQSTM1 muta-
tions in an Italian dataset of patients with ALS
and 2) to evaluate the frequency of SQSTM1
mutations in Italian patients with FTLD.

METHODS Participants. A total of 170 consecutive unre-

lated patients with FTLD (90 men, 80 women; mean age �

SD � 68.7 � 9.4 years) attending the Memory Clinics of the

Department of Neuroscience of the Universities of Torino and

Milano (Italy) were involved in the study. The diagnosis of

FTLD was made according to the criteria of Neary et al.21; 138

patients fulfilled the diagnostic criteria for behavioral variant

frontotemporal dementia, 6 for semantic dementia, and 19 for

progressive nonfluent aphasia. During the follow-up, 7 patients

with an initial diagnosis of FTLD developed motor neuron dis-

ease. Positive family history, defined as at least 1 first-degree

relative having dementia, was recorded for 42 patients (37.5%).

A group of 124 patients with sporadic ALS (70 men, 54 women;

mean age � SD � 62.3 � 9.8 years), diagnosed according to the

revised El Escorial criteria,22 were collected at the ALS Centre of

the University of Torino. Patients with FTLD and patients with

ALS, at recruitment, showed no sign or symptom of altered bone

metabolism. A group of 145 healthy subjects (78 men, 67 women;

mean age � SD � 65.7 � 7.9 years) was used as a control.

Finally, in order to estimate the frequency of SQSTM1 muta-

tions in PDB, 288 patients were recruited at the Unit of Geriat-

rics and Metabolic Bone Diseases, of the University of Torino

(152 men, 136 women; mean age � SD � 68.6 � 12.8 years).

At recruitment, no patient with PDB had a diagnosis of ALS or

FTLD. Patients and controls were of Caucasian origin and came

from the same area of Northern Italy.

Ethics. Written informed consent was obtained from all par-

ticipants, and the study was approved by the hospital ethics

committees.

Genetics and sequencing analysis of the SQSTM1
gene. Genomic DNA was isolated from peripheral blood leuko-

cytes with the Gene Eluate Blood Genomic DNA Kit (Sigma-

Aldrich, St. Louis, MO), according to the manufacturer’s

protocols. The SQSTM1 gene spans a 16-kb genomic segment

encoding a 2,870-bp transcript. We analyzed the SQSTM1 gene

by direct genomic sequencing of all 8 coding exons and 6 over-

lapping amplicons of the promoter region. Intronic primers cov-

ering the coding sequences were designed with at least 50 base

pairs of intronic sequence 3� and 5� of each exon. Sequencing

was done on an ABI Prism 3130 DNA sequencer with use of the

BigDye 03 Terminator Sequencing Standard Kit (Applied

Biosystems, Foster City, CA) and specific sequencing prim-

ers. Primers were generated with Primer3 software v0.04.0.

PCR reactions were performed in a final volume of 50 �L, with

use of 90 ng of genomic DNA, 0.4 unit of Taq Gold DNA

polymerase (Applied Biosystems), 250 nM of each primer, 1.5

mM MgCl2, and 50 mM dNTPs. PCR conditions were as fol-

lows: an initial denaturation at 95°C for 10 minutes, followed by

35 cycles at 95°C for 1 minute, specific temperatures for each

couple of primers for 40 seconds, 72°C for 1 minute, and a final

elongation at 72°C for 5 minutes. The PCR products were puri-

fied for sequencing after electrophoresis on an agarose gel with a

QIAquick PCR purification kit (Qiagen, Hilden, Germany).

The forward primer was used for mutation screening, and all

variations were confirmed by reverse sequencing. All exonic mu-

tations were verified with use of restriction enzymes. Sequences

were analyzed with Mutation Explorer v2.61 (SoftGenetics

LLC, www.softgenetics.com). When a variant was identified, it

was checked for the record in the dbSNP Short Genetic Varia-

tions, Exome Variant Server, and 1000 Genome Project. Pa-

tients with FTLD with mutations in the SQSTM1 gene were

also screened for MAPT, PGRN, and TARDBP genes, according

to previously described protocols.23,24 Furthermore, all patients

with ALS were sequenced for SOD1, TARDBP, FUS, and

OPTN.25 Finally, the presence of a pathologic expansion in the

C9orf72 gene was excluded in all FTLD and ALS carriers of an

SQSTM1 mutation, as previously described.9

Software analysis. A multiple protein alignment was con-

structed with multiple alignment at the HomoloGene site

(available at: http://www.ncbi.nlm.nih.gov/homologene/). The

PolyPhen 2 program (http://genetics.bwh.harvard.edu/pph2/in-

dex.shtml) and SIFT program (http://sift.bii.a-star.edu.sg/) were

used to predict effects on protein structure or function.

RESULTS The complete analysis of the SQSTM1
gene was conducted on a total of 722 subjects. Sev-
eral rare SQSTM1 variants were identified in the
isoform 1 (NM_003900.4). These variants are sum-
marized in table 1. Overall, 7 missense mutations
(K238E, V259L, E274D, E319K, K344E, P348L,
P438L) were identified in patients with FTLD or ALS.
The E274D substitution is known (rs55793208) and
was observed in both cases and controls (frequency:
2.9% in patients with FTLD, 8.9% in patients with
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ALS, and 2.8% in controls; �2 � 0.00, p � 0.92,
FTLD vs controls; �2 � 4.74, p � 0.03, ALS vs
controls). The K238E substitution (rs11548633)
was observed in 1 patient with ALS and has not been
reported previously to be associated with any disease.
One patient with FTLD presented the known substi-
tution E319K (rs61748794), without reported
association to any disorder. The remaining 4 missense
mutations—V259L, K344E, P348L, P438L—are
novel. The V259L substitution in exon 6 and the
K344E substitution in exon 7 were present in 2 pa-
tients with FTLD. The P348L substitution in exon 7
and the P438L substitution in exon 8 were identified
in 2 patients with ALS. DNA analysis of the 145
healthy controls and 288 patients with PDB failed to
detect any of the 4 novel variants.

The SQSTM1 gene codes a 440–amino acid pro-
tein (p62) with several different domains, including
PB1, ZZ, TRAF6, PEST, and UBA, enabling the
protein to act as a scaffold for the regulation of
ubiquination.26 K238E and V259L are located in or
nearby a tumor necrosis factor receptor–associated
factor 6 (TRAF6) binding site, E319K does not af-
fect any known domain, K344E is in the region that
interacts with LC3, P348L is in the PEST domain,
and P438L is in the C-terminal region.

In addition to the aforementioned mutations, the
analysis of noncoding regions revealed 3 novel varia-
tions. In the 5�UTR region we detected g5� � 49
G�C in 1 patient with ALS, whereas in intron 2 we
detected c753 � 40 G�A variant in 1 patient with
FTLD and c969 � 39 G�A variant in 1 patient

with ALS. The entire region of the promoter (around
1,700 bp) was sequenced, and novel variants (�1165
C�T, �1153 C�G, �673 T�C) were identified.
Furthermore, a polymorphism in the region of the
transcription factor– binding protein C-ets-1
(ETS-1) was found at �1221 G�A.

Neither patients with FTLD nor patients with
ALS carrying SQSTM1 missense mutations showed
mutations in known ALS or FTLD genes. As ex-
pected, 17.7% of patients with PDB showed several
mutations in the UBA domain (P387L, Y383X,
P392L, E396X, M404V, D423X, and G425R) of
SQSTM1, which is in agreement with previous
reports.18,19

Analyses of the potential functional significance
of the SQSTM1 mutations that were detected in ei-
ther patients with ALS or patients with FTLD
showed that 4 of the 6 mutated residues are highly
conserved in evolution (K238, K344, V259, and
P348), whereas E319 and P348 are only semiconserved
residues (table 2). Five of the mutations were predicted
to have a damaging role, by at least 1 of the 2 programs.
Only E319K was predicted to be benign.

Clinical characteristics of patients. Table 3 shows the
demographic and clinical characteristics of the pa-
tients carrying the SQSTM1 gene missense muta-
tions. Three patients had an initial diagnosis of
FTLD and 3 of ALS. All patients with FTLD car-
rying SQSTM1 mutation (E319K, V259L, and
K344E) presented the behavioral variant of the dis-
ease, showing aggressiveness, changes of mood, and

Table 1 SQSTM1 rare genetic variants in patients with FTLD, patients with ALS, and controlsa

Region Change, bp Variant dbSNP FTLD ALS Controls MAF %

Promoter �1221 G�A — Novel 4/170 0/124 0/145 —

Promoter �1165 C�T — Novel 1/170 0/124 0/145 —

Promoter �1153 C�G — Novel 1/170 0/124 0/145 —

Promoter �673 T�C — Novel 1/170 0/124 0/145 —

Intron 5 c753�40 G�A — Novel 1/170 0/124 0/145 —

Intron 7 c969–39 G�A — Novel 0/170 1/124 0/145 —

Exon 1 g.5�–49 G�C — Novel 0/170 2/124 0/145 —

Exon 5 c712 A�G K238E rs11548633 0/170 1/124 0/145 0.34

Exon 6 c775 G�C V259L Novel 1/170 0/124 0/145 —

Exon 6 c822 G�C E274D rs55793208 5/170 11/124 4/145 2.38

Exon 6 c955 G�A E319K rs61748794 1/170 0/124 0/145 0.03

Exon 7 c1032A�G K344E Novel 1/170 0/124 0/145 —

Exon 7 c1044C�T P348L Novel 0/170 1/124 0/145 —

Exon 8 c1313 C�T P438L Novel 0/170 1/124 0/145 —

Abbreviations: ALS � amyotrophic lateral sclerosis; bp � base pairs; FTLD � frontotemporal lobar degeneration; MAF �

minor allele frequency.
a Data retrieved with the Exome Variant Server, in the European American population (http://evs.gs.washington.edu/EVS/;
accessed March 2012).
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social detachment. MRI examinations showed asym-
metric frontotemporal atrophy. In 1 patient, CSF
phospho-� concentration was increased, whereas
total-� and �-amyloid were normal.

Patients with ALS with SQSTM1 mutation
showed remarkable variation in age at onset. The
K238E mutation was identified in a 78-year-old pa-
tient who presented with bulbar dysfunction and co-
morbid vascular dementia. The P348L mutation was
identified in a 53-year-old patient who had a rapidly
worsening clinical condition and died at age 55 years.
The patient with P438L variant died at the age of 81
years, of respiratory insufficiency after an 8-month
course of progressive motor neuron disease with bul-
bar onset.

DISCUSSION Our study confirms the presence of
SQSTM1 mutations in patients with ALS. In addi-
tion, we detected SQSTM1 mutations in patients
with FTLD. As for previously reported genes, such as
TARDBP and FUS, the frequency of SQSTM1 gene
mutations in either FTLD or ALS is low, around 3%
for our dataset. None of these mutations was present
in our patients with PDB, and they have not previ-
ously been reported to occur in such patients. This is
the first report describing the presence of SQSTM1
mutations in patients with FTLD, and additional
studies are warranted in order to support a role for
this gene in the pathogenesis of the disease.

The neurobiological bases linking SQSTM1 with
neurodegenerative diseases like FTLD and ALS are
unclear. P62 is a multifunctional protein containing
several protein–protein interaction domains that en-
able the protein to exert complex physiologic actions.
Furthermore, p62 forms highly stable dimers that in-
terfere with its ability to bind ubiquitin.27 Several of
the genetic variants highlighted in our study may sig-
nificantly alter the protein–protein interactions or
the UBA-related dimerization process, thereby pro-
moting protein aggregation and neurodegeneration.
However, the biological significance of the detected
variations requires assessment in future functional
studies.

In one of our patients with ALS, we found the
K238E mutation in exon 5 of the SQSTM1 gene. In
a recent study, a deletion at the same codon was
found in 2 North American patients with ALS.20

This substitution occurs in a TRAF6 binding site,
where p62 interacts with TRAF6, a critical compo-
nent of the NF-�B pathway involved in regulating
many aspects of cellular activity, especially in re-
sponse to proinflammatory cytokines.28 Impairment
of these functions may be of relevance for both
FTLD and ALS pathogenesis. One of the missense
mutations found in our patients with FTLD is lo-
cated at codon 344 (K�E), and this could therefore
interfere with the binding to LC3. P62 directly inter-

Table 2 Alignment of p62 sequences from different species

Species K238E V259L E319K K344E P348L P438L

H sapiens L K N D V E S E G S K E D P S P P L

P troglodytes L K N D V E S E G S K E D P S P P L

B taurus L K N D V E S G G S K E D P S P P L

M musculus L K N D V E S V G S K E D P S P P L

R norvegicus L K N D V E S V G S K E D P S P P L

G gallus L K N D V E P V P S K E D P S P S L

D rerio L K N D V E — — — A K E D P S G Q Q

Table 3 Demographic and clinical features of patients

Case no. Sex
Age at
onset, y

Age at
death, y Dementia MND

FTLD or
ALS subtype

Genetic
variation

F141 F 49 — Yes No bvFTD E319K

FM22 F 58 — Yes No bvFTD V259L

FM45 F 69 — Yes No bvFTD K344E

SLA21 F 76 — Yesa Yes Bulbar K238E

SLA5 M 53 55 No Yes Bulbar P348L

SLA87 F 80 81 No Yes Bulbar P438L

Abbreviations: ALS � amyotrophic lateral sclerosis; bvFTD � behavioral variant frontotemporal dementia; FTLD � fronto-
temporal lobar degeneration; MND � motor neuron disease.
a Vascular dementia.
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acts with LC3 to facilitate the degradation of aggre-
gated proteins. The surface of LC3 has a narrow
channel, and p62 binds within the latter, assuming
an elongated shape.29 Furthermore, mutations in p62
cause a reduced ability to bind to LC3. In experi-
mental animals, the expression of mutants with low
affinity for LC3 results in the formation of inclusions
positive for p62 and ubiquitinated proteins; in par-
ticular, the interaction of LC3 with p62 was found
to be severely reduced in the p62 LRS mutant 1
(L343A) and was virtually abolished in the p62 LRS
mutant 2 (D337/D338/D339A).30

One of our patients with ALS has a mutation in
the PEST domain (P348L) that is predicted to be
damaging. There are 2 PEST sequences in p62 (re-
gions from amino acids 266 to 294 and 345 to
377).31 The PEST domain is rich in proline, gluta-
mate, serine, and threonine; it has been found in
many short-lived proteins and acts as a signal peptide
for rapid protein degradation. Finally, the P438L is
located in the C-terminal tail of the p62 UBA do-
main. In transgenic mice lacking these residues, p62
UBA is unable to form dimers, and this may play a
role in regulating the lifetime of p62 in cells32; there-
fore, C-terminal amino acid residues may be impor-
tant for SQSTM1 functions. Mutations in the UBA
domain of SQSTM1 are a common cause of PDB.
Our patients with PDB show a mutation frequency
of 17.7% in the UBA domain, although mutations
detected in either patients with ALS or patients with
FTLD were not found in our PDB cohort and were
located outside of the UBA domain.

We also identified several genetic variants in the
promoter region of the gene, exclusively in patients
with FTLD. A number of potential binding sites for
known transcription factors are present in the p62
promoter region, revealing multiple regulatory fea-
tures of the p62 promoter for responding to different
signals. The expression of p62 is regulated at the
transcriptional level: the promoter of the gene is en-
riched in CpG and can be altered by oxidative stress,
causing a reduction in transcription levels of the pro-
tein. A recent study showed the presence, in several
neurodegenerative processes such as AD, FTLD,
HD, and PD, of an oxidative process in the promoter
of p62, which results in reduced expression of the
protein.33 This oxidative process has been reported to
be associated mainly with FTLD. Of the observed
variants, the �1221 G�A mutation is of particular
interest, being localized in the binding site for the
transcription factor ETS-1, which is part of a family
of transcription factors that share a highly conserved
DNA domain. All ETS factors bind to a nucleotide
sequence of the type “GGAA/T,” so alterations in the
amino acid sequence of the transcription factor can

lead to changes in binding specificity. The patho-
genic role of these variants in the promoter region
needs to be further investigated.

A large number of experimental and clinical stud-
ies provided evidence that p62 plays a major role in
autophagy, an evolutionarily conserved pathway for
the degradation of long-lived proteins and organelles.
Autophagy dysfunction may contribute to the pa-
thology of various neurodegenerative disorders,
which manifest with abnormal protein accumula-
tion. The autophagy pathway comprises 4 steps:
initiation/nucleation, autophagosome formation,
trafficking/maturation, and recycling/release. Dis-
tinct proteins act concertedly at each step to execute
successful autophagic recycling. P62 helps target
polyubiquitinated proteins and aggregates to the au-
tophagy machinery, facilitated by its ability to bind
LC3 proteins that are necessary for autophagosome
formation.29 A recent study showed that aggregation
of TDP-43, the main protein found in neurons of
both patients with FTLD and patients with ALS, is
significantly influenced by p62: overexpression of
p62 reduces TDP-43 aggregation in an autophagy-
and proteasome-dependent manner.34 Defective au-
tophagy has been implicated in the accumulation of
ubiquitinated TDP-43 inclusions in ALS, and in
ALS motor neuron degeneration due to mutations in
endosomal sorting complexes required for transport
subunit III (ESCRTIII) and charged multivesicular
body protein 2B (CHMP2B).35 It is of interest to note
that 2 other genes, VCP and the recently discovered
UBQLN2, mutated in families with FTLD or ALS, are
involved in different steps of the autophagic process.8,11

It is well known that mutations in the same gene
may be responsible for different diseases. Intrigu-
ingly, mutations in VCP encoding the multifunc-
tional valosin-containing protein cause hereditary
inclusion body myopathy associated with PDB and
frontotemporal dementia, and it has been proposed
that, as for SQSTM1, VCP mutations cause PDB by
compromising ubiquitin binding and targeting simi-
lar cellular pathways.36 Subsequently, mutations in
the VCP gene were also found in patients with ALS.8

In our study, we found that mutations in the
SQSTM1 gene may be associated with FTLD, ALS,
and PDB, thus supporting the idea that common
molecular mechanisms may be involved in the patho-
genesis of these diseases. In addition, our results
suggest that patients presenting with signs and symp-
toms of either FTLD or ALS should be monitored
for altered bone metabolism, whereas patients with
PDB must be carefully evaluated for signs of demen-
tia and motor neuron disease.

Finally, a new role for p62 in maintaining mito-
chondrial integrity has recently been described. A
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portion of p62 directly localizes within the mito-
chondria and supports stable electron transport by
forming heterogeneous protein complexes. P62 in-
teracts with several oxidation-prone proteins, includ-
ing a few components of the electron transport chain
complexes, as well as multiple chaperone molecules
and redox regulatory enzymes. Accordingly, p62-
deficient mitochondria exhibited compromised elec-
tron transport.37 Mutations in the Parkin gene are
frequent causes of recessive PD.38 Parkin is an E3
ubiquitin ligase that recruits p62 to mitochondria,
mediating the aggregation of dysfunctional mito-
chondria through polymerization via its PB1 do-
main.39 Intriguingly, a recent review highlighted the
role of p62 in several neurodegenerative diseases
other than PD but also in cancer, obesity, and insulin
resistance, suggesting that p62 could be critical for
several pathophysiologic pathways.40

We reported on extensive genetic screening of pa-
tients with FTLD or ALS, showing different previ-
ously unknown genetic variants that may be involved
in the pathogenetic mechanisms of neurodegenera-
tion. Our study enlarged the clinical spectrum of the
neurodegenerative phenotype associated with
SQSTM1 mutations, confirming the association with
ALS and supporting the role of this protein also in
FTLD pathogenesis. Whether SQSTM1 is a major
gene or a modifier gene for both FTLD and ALS is
not well defined. Additional clinical and experimen-
tal studies are needed in order to better elucidate the
role of this gene in FTLD and ALS and to evaluate
possible therapeutic targets.
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38. Lücking CB, Dürr A, Bonifati V, et al. Association be-
tween early-onset Parkinson’s disease and mutations in the
parkin gene. N Engl J Med 2000;342:1560–1567.

39. Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTM1 forms
protein aggregates degraded by autophagy and has a pro-
tective effect on Huntington-induced cell death. J Cell
Biol 2005;171:603–614.

40. Geetha T, Vishwaprakash N, Sycheva M, Babu JR. Se-
questosome 1/p62: across diseases. Biomarkers 2012;17:
99–103.

1562 Neurology 79 October 9, 2012


