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The Web of Data

I How to search and explore the Web of data (RDF graphs) ?
I How to fill the gap between end users and formal

languages (RDF, OWL, SPARQL) ?
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Formal vs Natural Languages

I SPARQL: a formal language à la SQL
I very expressive and precise for querying and updating RDF

graphs
I requires understanding of low-level notions: relational

algebra and logic
I natural language interfaces (ex., Aqualog, FREyA)

I good usability through NL
I difficult problems: ambiguity and adequacy w.r.t. the

underlying system
I in practice, generally limited to simple questions (much less

expressive than SPARQL)
I ex., Aqualog queries are limited to 2-triples queries



Controlled Natural Languages (CNL)

I on the natural/formal continuum [Kaufmann&Bernstein
2010]

I combine natural syntax and formal semantics
I “There is no important theoretical difference between

natural languages and the artificial languages of logicians.”
(Montague)

I a few CNLs:
I ACE [Fuchs et al]: a general purpose CNL
I SOS, Rabbit: CNLs for verbalizing OWL axioms
I SQUALL: the first CNL for SPARQL queries and updates



What SQUALL is not...

1. a pure (grammatically correct) subset of English
I natural languages are a source of inspiration for flexibility,

expressiveness, concision, high-level forms
I I think that CNLs should be more regular than NLs because

they have to be learnt anyway
2. concerned with morphology (lexicon, agreements, etc.)

I should have the same requirements as SPARQL w.r.t. data
I should be able to refer to every resource without preprocess
I shares non-ambiguous notations with SPARQL

I author→ hackcraft:authoredBy or purl:author ... ?

3. a user interface
I querying is difficult, whatever the language

I syntax errors, empty results, preferences
I syntactic guided input (e.g., Ginseng) is not enough
I the objective is semantic guided input (done to a limited

extent in previous work with Sewelis)



What SQUALL is...?

I an alternative CNL syntax for SPARQL
I hence, same expressiveness as SPARQL
I hence, full adequacy to RDF data
I with natural high-level syntax

I its implementation is a compiler (3 phases)
1. parsing of the source sentence (SQUALL)
2. generation of an intermediate representation (Montague

λ-terms)
3. production of the target code (SPARQL)



RDF Graphs

I a RDF graph is a set of triples (labeled edges)
I a triple (of resources) has a subject, a predicate, and an

object
I a triple is a basic sentence
I ex., ex:John ex:loves ex:Mary .

I a resource denotes an entity or a concept or a literal value
(e.g., numbers, dates, strings)

I a property denotes a binary relation between resources
I a property can be a transitive verb (ex., ex:loves) or a

relational noun (ex., ex:author)
I a class denotes a set of resources

I a class can be a noun (ex., ex:woman) or an intransitive
verb (ex., ex:works)

I properties and classes are resources themselves



SPARQL 1.1: querying and updating RDF graphs

I SPARQL forms
I closed question: ASK graph pattern
I open question: SELECT vars WHERE graph pattern
I update: DELETE graph INSERT graph WHERE graph
pattern

I graph patterns
I relational algebra: joins, unions, complements, selections,

projections
I constraints: logic, arithmetic, built-ins
I named graphs
I subqueries
I aggregations



SPARQL query example

SELECT ?r
WHERE {

?r rdf:type :researcher .
BIND (?r AS ?X)
GRAPH :DBLP {

FILTER NOT EXISTS {
?p rdf:type :publication .
?p :author ?X .
?p :year ?y .
FILTER (?y >= 2000)
FILTER NOT EXISTS {

{ SELECT COUNT(?a) AS ?n
WHERE { ?p :author ?a . } }

FILTER (?n >= 2) } } } }



A Montague grammar of SQUALL

I Syntax and semantics
I Modules:

1. lexical conventions
2. triples as sentences
3. relational algebra as coordinations
4. natural constructs (headed NPs, relatives, ...)
5. queries with wh-words
6. quantifiers as determiners
7. subordination and n-ary predicates with reification
8. built-in predicates and aggregations
9. resolving syntactic ambiguities



Lexical conventions

The same as in well-known notations (Turtle, SPARQL, N3)
I proper nouns, nouns, and verbs (URIs)

I <http://dbpedia.org/resource/Berlin>: a full URI
for the Berlin city

I dbpedia:Berlin: an abbreviated URI with DBpedia
namespace

I :Berlin: an abbreviated URI with default namespace
I Berlin: a bare URI (default namespace)

I literals
I "Hello world!": a plain literal
I "42"ˆˆxsd:integer: a typed literal
I 42: a bare integer

I variables: ?X
I grammatical words (SQUALL reserved keywords)

I is, a, which, every, ...



Triples as sentences

S → NP VP { np vp } “[NPA] [VPknow-s B]”
NP → Term { λd .(d term) } “A”
VP → P1 { λx .(p1 x) } “[P1work-s]”

| P2 NP { λx .(np λy .(p2 x y)) } “[P2know-s] [NPB]”
P1 → ClassURI { λx .(type x uri) } “work”
P2 → PropertyURI { λx .λy .(stat x uri y) } “know”



Relational algebra as coordinations

They apply to most syntagms ∆: S, NP, VP, P1, P2, (next:
Rel , AP, PP).

∆ → not ∆1 { not δ1 } “not [VPknow-s B]”
| ∆1 and ∆2 { and δ1 δ2 } “[VPwork-s] and [VPcite-s X]”
| ∆1 or ∆2 { or δ1 δ2 } “[NPA] or [NPB]”
| maybe ∆1 { option δ1 } “maybe [VPknow-s B]”



Headed NPs

NP → Det NG1 { λd .(det (init ng1) d) } “[Deta] [NG1woman]”
| Det NG2 of NP { λd .(np λx .(det (init (ng2 x)) d)) }

“[Det the] [NG2author-s] of [NPX]”
Det → a(n) { λd1.λd2.(exists (and d1 d2)) }

| the { λd1.λd2.(the d1 d2) }
NG1 → thing AR { and thing ar } “thing [AR that cite-s A]”

| P1 AR { and p1 ar } “[P1woman] [AR?A]”
NG2 → P2 AR { λx .λy .(and (p2 x y) (ar y)) }

“[P2author] [AR?A]”
AR → App Rel { and app rel } “[App?A] [Rel that X cite-s]”

| App { app }
App → URI { λx .(eq x uri) } “A”

| Var { λx .(bind x var) } “?X”
| ε { λx .true }



Relatives

Rel → that VP { init vp } “that [VPknow-s B]”
| that NP P2 { init λx .(np λy .(p2 y x)) }

“that [NPX] [P2cite-s]”
| such that S { init λx .s } “such that [S?A work-s]”
| Det NG2 of which VP { init λx .(det (ng2 x) vp) }

“[Detan] [NG2author] of which [VPknow-s B]”
| whose NG2 VP ≡ the NG2 of which VP

“whose [NG2author ?A] [VPcites-s a colleague of ?A]”
| whose P2 is/are NP { λx .(np λy .(p2 x y)) }

“whose [P2author] [VP is a woman]”



Auxiliary verbs

VP → is/are AP { ap } “is [APa woman]”
| is/are Rel { rel } “is [Relsuch that ?A work-s]”
| has/have Det P2 AR { λx .(det (p2 x) ar) }

“have [Detan] [P2author] [AR that X cite-s]”
AP → Term { λx .(eq x term) } “A”

| a(n)/the NG1 { ng1 } “a [NG1woman]”
| a(n)/the NG2 of NP { λx .(np λy .(ng2 y x)) }

“the [NG2author] of [NPX]”



Queries with wh-words

S → whether S1 { ask s1 } “whether [SA know-s a woman]”
NP → what ≡ which thing

| whose NG2 ≡ the NG2 of what
“whose [NG2author ?A]”

Det → which { λd1.λd2.(select (and d1 d2)) }
| how many { λd1.λd2.(count (and d1 d2)) }



Quantifiers as determiners

Not present as such in SPARQL.

Det → some { λd1.λd2.(exists (and d1 d2)) }
| every { λd1.λd2.(forall d1 d2) }
| no { λd1.λd2.(not (exists (and d1 d2))) }
| at least i { λd1.λd2.(atleast i (and d1 d2)) }

S → for NP , S { np λx .s }
“for [NPevery publication ?X], [San author of ?X work-s]”

| there is/are NP { np λx .true }
“there are [NPat least 3 person-s that know A]”



Subordination and n-ary predicates with reification

NP → that S { λd .λa.λg.(s () λt .(d t a g)) }
“that [SA know-s B]”

PP → at/in Prep NP { λs.(np λz.(prep z s)) }
“at [Prepplace] [NP the city Rennes]”

| at/in Det Prep AR ≡ at Prep Det thing AR
“at [Detsome] [Prepvenue] [ARwhose place is Rennes]”

Rel → at/in which Prep AR S
{ init λx .(and (ar x) (prep x s)) }

“in which [Prepgraph] [SA work-s]”
Prep → graph { graph } | URI { arg uri }

I Prepositional phrases (PP) can occur at any position of a
sentence among the subject, verb, and object.



Built-in predicates and aggregations

P1 → Pred1URI { λx .(pred1 uri x) } “Monday”
P2 → Pred2URI { λx .λy .(pred2 uri x y) } “match”
NG1 → AggregURI of AP (per AP+

i )?
{ λx .(aggreg uri x ap (api)i) }
“count of [AP the publication ?P] per [AP the year of ?P]”



Translation to SPARQL (principle)

Starting with the λ-term produced when parsing a SQUALL
sentence:

1. replace some constants by their definition
I ex., count = λd .(select λx .(aggreg COUNT x d ()))

2. perform all β-reductions on the result
3. inductively generate SPARQL code

I 4 generators for: sentences, updates, queries, and graph
patterns

I [ask f ] = ASK { [f ]G }
I [select d ] = [?x | d ?x ]Q
I [forall d1 d2]G = [not (exists (and d1 (not d2)))]G
I [the d1 d2]G = [exists (and d1 d2)]G
I [the d1 d2]U = [forall d1 d2]U



Translation to SPARQL (example)

The SQUALL sentence
for which researcher-s ?X, in graph DBLP every
publication whose author is ?X and whose year ≥
2000 has at least 2 author-s

is parsed as

“[Sfor [NP [Detwhich] [NG1[P1researcher-s] [AR[App?X]]]],
[S[PP in [Prepgraph] [NPDBLP]] [S[NP [Detevery]

[NG1[P1publication] [AR[Rel [Relwhose [NG2 [P2author]] [VP is
[AP?X]]] and [Relwhose [NG2 [P2year]] [VP [P2≥] [NP2000]]]]]]]

[VPhas [Detat least 2] [P2author-s]]]]]”



Translation to SPARQL (example)

The SQUALL sentence
for which researcher-s ?X, in graph DBLP every
publication whose author is ?X and whose year ≥
2000 has at least 2 author-s

is parsed as

“[Sfor [NP [Detwhich] [NG1[P1researcher-s] [AR[App?X]]]],
[S[PP in [Prepgraph] [NPDBLP]] [S[NP [Detevery]

[NG1[P1publication] [AR[Rel [Relwhose [NG2 [P2author]] [VP is
[AP?X]]] and [Relwhose [NG2 [P2year]] [VP [P2≥] [NP2000]]]]]]]

[VPhas [Detat least 2] [P2author-s]]]]]”



Translation to SPARQL (example)

...whose internal representation is:

(select X (and
(triple X rdf:type :researcher)
(graph :DBLP

(forall (exists x3 x5 (and
(triple x3 rdf:type :publication) (triple x3 :author X )
(triple x3 :year x5) (pred2 ≥ x5 2000)))

(exists x6 (and
(aggreg COUNT x6 x8 x3

(exists x8 (triple x3 :author x8)))
(pred2 ≥ x6 2)))))))



Translation to SPARQL (example)

...which translates to the SPARQL query:

SELECT ?r
WHERE {

?r rdf:type :researcher .
BIND (?r AS ?X)
GRAPH :DBLP {

FILTER NOT EXISTS {
?p rdf:type :publication .
?p :author ?X .
?p :year ?y .
FILTER (?y >= 2000)
FILTER NOT EXISTS {

{ SELECT COUNT(?a) AS ?n
WHERE { ?p :author ?a . } }

FILTER (?n >= 2) } } } }



Implementation

I available as a Web form
I See http://www.irisa.fr/LIS/softwares/squall

I developed in OCaml (functional, type safe, concise)
I syntax (367 loc), semantics (295 loc), sparql (198 loc)

I extends the paper with
I semantic validation: variable scope and binding, semantic

restrictions (e.g., no built-ins in assertions)
I arithmetic expressions and function calls (NP, P2, AP)

I “what is the height * width of the rectangle-s whose
color is red ?”

I quoted NPs as verbs (P1, P2)
I “a publication has author a person ?”
I “a publication has ’which rdf:Property’ a person ?”



Perspectives as a language

I covering 100% of SPARQL 1.1 (nothing hard)
I CONSTRUCT and DESCRIBE forms
I query modifiers (ORDER BY, LIMIT, OFFSET)
I conditional expressions
I concise notation of RDF collections (list) and membership

test
I + type checking in expressions

I adding more natural constructs
I anaphoras: e.g., “some man ... this man” instead of “some

man ?X ... ?X”
I comparatives and superlatives
I adjectives and adverbs (as RDF classes)
I more forms of aggregations

I e.g., “what is the average age of the researcher-s ?”



Perspectives as a user interface

I even a CNL is not simple enough
I need for guided input

I syntax-based auto-completion (like in Ginseng)
I query-based faceted search (like in Sewelis)



Thanks!

Questions ?


