
SQUALL: a Controlled Natural Language for
Querying and Updating RDF Graphs

Sébastien Ferré
Team LIS, Data and Knowledge Management, Irisa

Controlled Natural Language, 30 August 2012, Zurich

The Web of Data

I How to search and explore the Web of data (RDF graphs) ?
I How to fill the gap between end users and formal

languages (RDF, OWL, SPARQL) ?

As of September 2010

Music
Brainz

(zitgist)

P20

YAGO

World
Fact-
book
(FUB)

WordNet
(W3C)

WordNet
(VUA)

VIVO UF
VIVO

Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UMBEL

UK Post-
codes

legislation
.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov

.uk

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

The Open
Library
(Talis)

t4gm

Surge
Radio

STW

RAMEAU
SH

statistics
data.gov

.uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

Semantic
Crunch
Base

semantic
web.org

Semantic
XBRL

SW
Dog
Food

rdfabout
US SEC

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS

KISTI
JISC

IRIT

IEEE

IBM

Eurécom

ERA

ePrints

dotAC

DEPLOY

DBLP
(RKB

Explorer)

Course-
ware

CORDIS

CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov

.uk

reference
data.gov

.uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

PSH

Product
DB

PBAC

Poké-
pédia

Ord-
nance
Survey

Openly
Local

The Open
Library

Open
Cyc

Open
Calais

OpenEI

New
York

Times

NTU
Resource

Lists

NDL
subjects

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

The
London
Gazette

LOIUS

lobid
Resources

lobid
Organi-
sations

Linked
MDB

Linked
LCCN

Linked
GeoData

Linked
CT

Linked
Open

Numbers

lingvoj

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Good-
win

Family

Jamendo

iServe

NSZL
Catalog

GovTrack

GESIS

Geo
Species

Geo
Names

Geo
Linked
Data
(es)

GTAA

STITCH
SIDER

Project
Guten-
berg
(FUB)

Medi
Care

Euro-
stat

(FUB)

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

Freebase

flickr
wrappr

Fishes
of Texas

FanHubz

Event-
Media

EUTC
Produc-

tions

Eurostat

EUNIS

ESD
stan-
dards

Popula-
tion (En-
AKTing)

NHS
(EnAKTing)

Mortality
(En-

AKTing)
Energy

(En-
AKTing)

CO2
(En-

AKTing)

education
data.gov

.uk

ECS
South-
ampton

Gem.
Norm-
datei

data
dcs

MySpace
(DBTune)

Music
Brainz

(DBTune)

Magna-
tune

John
Peel
(DB

Tune)

classical
(DB

Tune)

Audio-
scrobbler
(DBTune)

Last.fm
Artists

(DBTune)

DB
Tropes

dbpedia
lite

DBpedia

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Discogs
(Data In-
cubator)

Climbing

Linked Data
for Intervals

Cornetto

Chronic-
ling

America

Chem2
Bio2RDF

biz.
data.

gov.uk

UniSTS

UniRef

Uni
Path-
way

UniParc

Taxo-
nomy

UniProt

SGD

Reactome

PubMed

Pub
Chem

PRO-
SITE

ProDom

Pfam PDB

OMIM

OBO

MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Cpd

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Gen
Bank

ChEBI

CAS

Affy-
metrix

BibBase
BBC

Wildlife
Finder

BBC
Program

mes
BBC

Music

rdfabout
US Census

Media

Geographic

Publications

Government

Cross-domain

Life sciences

User-generated content

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/

Formal vs Natural Languages

I SPARQL: a formal language à la SQL
I very expressive and precise for querying and updating RDF

graphs
I requires understanding of low-level notions: relational

algebra and logic
I natural language interfaces (ex., Aqualog, FREyA)

I good usability through NL
I difficult problems: ambiguity and adequacy w.r.t. the

underlying system
I in practice, generally limited to simple questions (much less

expressive than SPARQL)
I ex., Aqualog queries are limited to 2-triples queries

Controlled Natural Languages (CNL)

I on the natural/formal continuum [Kaufmann&Bernstein
2010]

I combine natural syntax and formal semantics
I “There is no important theoretical difference between

natural languages and the artificial languages of logicians.”
(Montague)

I a few CNLs:
I ACE [Fuchs et al]: a general purpose CNL
I SOS, Rabbit: CNLs for verbalizing OWL axioms
I SQUALL: the first CNL for SPARQL queries and updates

What SQUALL is not...

1. a pure (grammatically correct) subset of English
I natural languages are a source of inspiration for flexibility,

expressiveness, concision, high-level forms
I I think that CNLs should be more regular than NLs because

they have to be learnt anyway
2. concerned with morphology (lexicon, agreements, etc.)

I should have the same requirements as SPARQL w.r.t. data
I should be able to refer to every resource without preprocess
I shares non-ambiguous notations with SPARQL

I author→ hackcraft:authoredBy or purl:author ... ?

3. a user interface
I querying is difficult, whatever the language

I syntax errors, empty results, preferences
I syntactic guided input (e.g., Ginseng) is not enough
I the objective is semantic guided input (done to a limited

extent in previous work with Sewelis)

What SQUALL is...?

I an alternative CNL syntax for SPARQL
I hence, same expressiveness as SPARQL
I hence, full adequacy to RDF data
I with natural high-level syntax

I its implementation is a compiler (3 phases)
1. parsing of the source sentence (SQUALL)
2. generation of an intermediate representation (Montague

λ-terms)
3. production of the target code (SPARQL)

RDF Graphs

I a RDF graph is a set of triples (labeled edges)
I a triple (of resources) has a subject, a predicate, and an

object
I a triple is a basic sentence
I ex., ex:John ex:loves ex:Mary .

I a resource denotes an entity or a concept or a literal value
(e.g., numbers, dates, strings)

I a property denotes a binary relation between resources
I a property can be a transitive verb (ex., ex:loves) or a

relational noun (ex., ex:author)
I a class denotes a set of resources

I a class can be a noun (ex., ex:woman) or an intransitive
verb (ex., ex:works)

I properties and classes are resources themselves

SPARQL 1.1: querying and updating RDF graphs

I SPARQL forms
I closed question: ASK graph pattern
I open question: SELECT vars WHERE graph pattern
I update: DELETE graph INSERT graph WHERE graph
pattern

I graph patterns
I relational algebra: joins, unions, complements, selections,

projections
I constraints: logic, arithmetic, built-ins
I named graphs
I subqueries
I aggregations

SPARQL query example

SELECT ?r
WHERE {

?r rdf:type :researcher .
BIND (?r AS ?X)
GRAPH :DBLP {

FILTER NOT EXISTS {
?p rdf:type :publication .
?p :author ?X .
?p :year ?y .
FILTER (?y >= 2000)
FILTER NOT EXISTS {

{ SELECT COUNT(?a) AS ?n
WHERE { ?p :author ?a . } }

FILTER (?n >= 2) } } } }

A Montague grammar of SQUALL

I Syntax and semantics
I Modules:

1. lexical conventions
2. triples as sentences
3. relational algebra as coordinations
4. natural constructs (headed NPs, relatives, ...)
5. queries with wh-words
6. quantifiers as determiners
7. subordination and n-ary predicates with reification
8. built-in predicates and aggregations
9. resolving syntactic ambiguities

Lexical conventions

The same as in well-known notations (Turtle, SPARQL, N3)
I proper nouns, nouns, and verbs (URIs)

I <http://dbpedia.org/resource/Berlin>: a full URI
for the Berlin city

I dbpedia:Berlin: an abbreviated URI with DBpedia
namespace

I :Berlin: an abbreviated URI with default namespace
I Berlin: a bare URI (default namespace)

I literals
I "Hello world!": a plain literal
I "42"ˆˆxsd:integer: a typed literal
I 42: a bare integer

I variables: ?X
I grammatical words (SQUALL reserved keywords)

I is, a, which, every, ...

Triples as sentences

S → NP VP { np vp } “[NPA] [VPknow-s B]”
NP → Term { λd .(d term) } “A”
VP → P1 { λx .(p1 x) } “[P1work-s]”

| P2 NP { λx .(np λy .(p2 x y)) } “[P2know-s] [NPB]”
P1 → ClassURI { λx .(type x uri) } “work”
P2 → PropertyURI { λx .λy .(stat x uri y) } “know”

Relational algebra as coordinations

They apply to most syntagms ∆: S, NP, VP, P1, P2, (next:
Rel , AP, PP).

∆ → not ∆1 { not δ1 } “not [VPknow-s B]”
| ∆1 and ∆2 { and δ1 δ2 } “[VPwork-s] and [VPcite-s X]”
| ∆1 or ∆2 { or δ1 δ2 } “[NPA] or [NPB]”
| maybe ∆1 { option δ1 } “maybe [VPknow-s B]”

Headed NPs

NP → Det NG1 { λd .(det (init ng1) d) } “[Deta] [NG1woman]”
| Det NG2 of NP { λd .(np λx .(det (init (ng2 x)) d)) }

“[Det the] [NG2author-s] of [NPX]”
Det → a(n) { λd1.λd2.(exists (and d1 d2)) }

| the { λd1.λd2.(the d1 d2) }
NG1 → thing AR { and thing ar } “thing [AR that cite-s A]”

| P1 AR { and p1 ar } “[P1woman] [AR?A]”
NG2 → P2 AR { λx .λy .(and (p2 x y) (ar y)) }

“[P2author] [AR?A]”
AR → App Rel { and app rel } “[App?A] [Rel that X cite-s]”

| App { app }
App → URI { λx .(eq x uri) } “A”

| Var { λx .(bind x var) } “?X”
| ε { λx .true }

Relatives

Rel → that VP { init vp } “that [VPknow-s B]”
| that NP P2 { init λx .(np λy .(p2 y x)) }

“that [NPX] [P2cite-s]”
| such that S { init λx .s } “such that [S?A work-s]”
| Det NG2 of which VP { init λx .(det (ng2 x) vp) }

“[Detan] [NG2author] of which [VPknow-s B]”
| whose NG2 VP ≡ the NG2 of which VP

“whose [NG2author ?A] [VPcites-s a colleague of ?A]”
| whose P2 is/are NP { λx .(np λy .(p2 x y)) }

“whose [P2author] [VP is a woman]”

Auxiliary verbs

VP → is/are AP { ap } “is [APa woman]”
| is/are Rel { rel } “is [Relsuch that ?A work-s]”
| has/have Det P2 AR { λx .(det (p2 x) ar) }

“have [Detan] [P2author] [AR that X cite-s]”
AP → Term { λx .(eq x term) } “A”

| a(n)/the NG1 { ng1 } “a [NG1woman]”
| a(n)/the NG2 of NP { λx .(np λy .(ng2 y x)) }

“the [NG2author] of [NPX]”

Queries with wh-words

S → whether S1 { ask s1 } “whether [SA know-s a woman]”
NP → what ≡ which thing

| whose NG2 ≡ the NG2 of what
“whose [NG2author ?A]”

Det → which { λd1.λd2.(select (and d1 d2)) }
| how many { λd1.λd2.(count (and d1 d2)) }

Quantifiers as determiners

Not present as such in SPARQL.

Det → some { λd1.λd2.(exists (and d1 d2)) }
| every { λd1.λd2.(forall d1 d2) }
| no { λd1.λd2.(not (exists (and d1 d2))) }
| at least i { λd1.λd2.(atleast i (and d1 d2)) }

S → for NP , S { np λx .s }
“for [NPevery publication ?X], [San author of ?X work-s]”

| there is/are NP { np λx .true }
“there are [NPat least 3 person-s that know A]”

Subordination and n-ary predicates with reification

NP → that S { λd .λa.λg.(s () λt .(d t a g)) }
“that [SA know-s B]”

PP → at/in Prep NP { λs.(np λz.(prep z s)) }
“at [Prepplace] [NP the city Rennes]”

| at/in Det Prep AR ≡ at Prep Det thing AR
“at [Detsome] [Prepvenue] [ARwhose place is Rennes]”

Rel → at/in which Prep AR S
{ init λx .(and (ar x) (prep x s)) }

“in which [Prepgraph] [SA work-s]”
Prep → graph { graph } | URI { arg uri }

I Prepositional phrases (PP) can occur at any position of a
sentence among the subject, verb, and object.

Built-in predicates and aggregations

P1 → Pred1URI { λx .(pred1 uri x) } “Monday”
P2 → Pred2URI { λx .λy .(pred2 uri x y) } “match”
NG1 → AggregURI of AP (per AP+

i)?
{ λx .(aggreg uri x ap (api)i) }
“count of [AP the publication ?P] per [AP the year of ?P]”

Translation to SPARQL (principle)

Starting with the λ-term produced when parsing a SQUALL
sentence:

1. replace some constants by their definition
I ex., count = λd .(select λx .(aggreg COUNT x d ()))

2. perform all β-reductions on the result
3. inductively generate SPARQL code

I 4 generators for: sentences, updates, queries, and graph
patterns

I [ask f] = ASK { [f]G }
I [select d] = [?x | d ?x]Q
I [forall d1 d2]G = [not (exists (and d1 (not d2)))]G
I [the d1 d2]G = [exists (and d1 d2)]G
I [the d1 d2]U = [forall d1 d2]U

Translation to SPARQL (example)

The SQUALL sentence
for which researcher-s ?X, in graph DBLP every
publication whose author is ?X and whose year ≥
2000 has at least 2 author-s

is parsed as

“[Sfor [NP [Detwhich] [NG1[P1researcher-s] [AR[App?X]]]],
[S[PP in [Prepgraph] [NPDBLP]] [S[NP [Detevery]

[NG1[P1publication] [AR[Rel [Relwhose [NG2 [P2author]] [VP is
[AP?X]]] and [Relwhose [NG2 [P2year]] [VP [P2≥] [NP2000]]]]]]]

[VPhas [Detat least 2] [P2author-s]]]]]”

Translation to SPARQL (example)

The SQUALL sentence
for which researcher-s ?X, in graph DBLP every
publication whose author is ?X and whose year ≥
2000 has at least 2 author-s

is parsed as

“[Sfor [NP [Detwhich] [NG1[P1researcher-s] [AR[App?X]]]],
[S[PP in [Prepgraph] [NPDBLP]] [S[NP [Detevery]

[NG1[P1publication] [AR[Rel [Relwhose [NG2 [P2author]] [VP is
[AP?X]]] and [Relwhose [NG2 [P2year]] [VP [P2≥] [NP2000]]]]]]]

[VPhas [Detat least 2] [P2author-s]]]]]”

Translation to SPARQL (example)

...whose internal representation is:

(select X (and
(triple X rdf:type :researcher)
(graph :DBLP

(forall (exists x3 x5 (and
(triple x3 rdf:type :publication) (triple x3 :author X)
(triple x3 :year x5) (pred2 ≥ x5 2000)))

(exists x6 (and
(aggreg COUNT x6 x8 x3

(exists x8 (triple x3 :author x8)))
(pred2 ≥ x6 2)))))))

Translation to SPARQL (example)

...which translates to the SPARQL query:

SELECT ?r
WHERE {

?r rdf:type :researcher .
BIND (?r AS ?X)
GRAPH :DBLP {

FILTER NOT EXISTS {
?p rdf:type :publication .
?p :author ?X .
?p :year ?y .
FILTER (?y >= 2000)
FILTER NOT EXISTS {

{ SELECT COUNT(?a) AS ?n
WHERE { ?p :author ?a . } }

FILTER (?n >= 2) } } } }

Implementation

I available as a Web form
I See http://www.irisa.fr/LIS/softwares/squall

I developed in OCaml (functional, type safe, concise)
I syntax (367 loc), semantics (295 loc), sparql (198 loc)

I extends the paper with
I semantic validation: variable scope and binding, semantic

restrictions (e.g., no built-ins in assertions)
I arithmetic expressions and function calls (NP, P2, AP)

I “what is the height * width of the rectangle-s whose
color is red ?”

I quoted NPs as verbs (P1, P2)
I “a publication has author a person ?”
I “a publication has ’which rdf:Property’ a person ?”

Perspectives as a language

I covering 100% of SPARQL 1.1 (nothing hard)
I CONSTRUCT and DESCRIBE forms
I query modifiers (ORDER BY, LIMIT, OFFSET)
I conditional expressions
I concise notation of RDF collections (list) and membership

test
I + type checking in expressions

I adding more natural constructs
I anaphoras: e.g., “some man ... this man” instead of “some

man ?X ... ?X”
I comparatives and superlatives
I adjectives and adverbs (as RDF classes)
I more forms of aggregations

I e.g., “what is the average age of the researcher-s ?”

Perspectives as a user interface

I even a CNL is not simple enough
I need for guided input

I syntax-based auto-completion (like in Ginseng)
I query-based faceted search (like in Sewelis)

Thanks!

Questions ?

