
Squall: Fine-Grained Live
Reconfiguration for
Partitioned Main Memory
Databases

AARON J. ELMORE, VAIBHAV ARORA, REBECCA TAFT,
ANDY PAVLO, DIVY AGRAWAL, AMR EL ABBADI

Higher OLTP Throughput
 Demand for High-throughput transactional systems (OLTP)
 especially due to web-based services

◦ Cost per GB for RAM is dropping.

◦Network memory is faster than local disk.

 Let’s use Main-Memory

Scaling-out via Partitioning
 Growth in scale of the data

 Data Partitioning enables managing scale via Scaling-Out.

Approaches for main-memory DBMS*
 Highly concurrent, latch-free data structures – Hekaton, Silo

 Partitioned data with single-threaded executors – Hstore, VoltDB

 *Excuse the generalization

Client
Application

Procedure Name
Input Parameters

Slide Credits: Andy Pavlo

The Problem: Workload Skew
 High skew increases latency by 10X and decreases throughput by 4X

 Partitioned shared-nothing systems are especially susceptible

The Problem: Workload Skew
 Possible solutions:

 Provision resources for peak load (Very expensive and brittle!)

Demand

Capacity

Time

Re
so

ur
ce

s

Unused Resources

The Problem: Workload Skew
 Possible solutions:

 Limit load on system (Poor performance!)

Time

Re
so

ur
ce

s

Need Elasticity

The Promise of Elasticity

Demand

Capacity

Time

Re
so

ur
ce

s

Unused resources

Slide Credits: Berkeley RAD Lab

What we need…
Enable system to elastically scale in or out to dynamically adapt to changes in load

Reconfiguration

Change the partition plan

Add nodes

Remove nodes

Problem Statement
 Need to migrate tuples between partitions to reflect the updated partition plan.

 Would like to do this without bringing the system offline:
◦ Live Reconfiguration

Partition Warehouse

Partition 1 [0,2)

Partition 2 [2,4)

Partition 3 [4,6)

Partition Warehouse

Partition 1 [0,1)

Partition 2 [2,3)

Partition 3 [1, 2),[3,6)

E-Store
Normal

operation,
high level

monitoring

Tuple level
monitoring
(E-Monitor)

Tuple
placement
planning

(E-Planner)

Online reconfiguration
(Squall)

Load
imbalance
detected

Hot tuples,
partition-level
access counts

Reconfiguration
complete

New partition
plan

Live Migrations Solutions are Not
Suitable

 Predicated on disk based solutions with traditional concurrency and recovery.

 Zephyr: Relies on concurrency (2PL) and disk pages.

 ProRea: Relies on concurrency (SI and OCC) and disk pages.

 Albatross: Relies on replication and shared disk storage. Also introduces strain on source.

Not Your Parents’ Migration
 Single threaded execution model
◦ Either doing work or migration

 More than a single source and destination (and the destination is not cold)
◦ Want lightweight coordination

 Presence of distributed transactions
and replication

Squall
Given plan from E-Planner, Squall physically moves the data while the system is live

Pull based mechanism – Destination pulls from source

Conforms to H-Store single-threaded execution model
o While data is moving, transactions are blocked – but only on partitions moving the data

To avoid performance degradation, Squall moves small chunks of data at a time, interleaved with
regular transaction execution

Reconfiguration
(New Plan, Leader ID)

Pull
W_ID=2

Partition 2

Partition 3

Squall Steps

Pull
W_ID>5

Client

Partition 1

Partition 4

Partition 2

Partition 3

Partition 1

Partition 4

0 1

2

3 4

5 6

7

8 9

10
Partitioned by
Warehouse id

0 1

2

3 4

5 6

7

8 9

10
Incoming: 2
Outgoing: 5

Outgoing: 2

Incoming: 5

1. Initialization and Identify migrating data
2. Live reactive pulls for required data
3. Periodic lazy/async pulls for large chunks

Chunk Data for
Asynchronous Pulls

Why Chunk?
 Unknown amount of data when not partitioned by clustered index.

 Customers by W_ID in TPC-C

 Time spent extracting, is time not spent on TXNS.

Async Pulls
 Periodically pull chunks of cold data

 These pulls are answered lazily – Start at lower priority than transactions. Priority increases with
time.

 Execution is interwoven with extracting and sending data (dirty the range!)

Chunking Async Pulls

Async Pull Request

Destination

Data

Source

Data

Keys to Performance
 Properly size reconfiguration granules and space them apart.

 Split large reconfigurations to limit demands on a single partition.

 Redirect or pull only if needed.

 Tune what gets pulled.

 Sometimes pull a little extra.

Optimization: Splitting
Reconfigurations

1. Split by pairs of source and destination - Avoids contention to a single partition
◦ Example: partition 1 is migrating W_ID 2,3 to partitions 3 and 7, execute as two reconfigurations.

2. Split large objects and migrate one piece at a time

Evaluation
 Workloads

 YCSB

 TPC-C

Baselines

 Stop & Copy

 Purely Reactive – Only Demand based pulling

 Zephyr+ - Purely Reactive + Asynchronous Chunking with Pull Prefetching (Semantically
equivalent to Zephyr)

YCSB Latency

YCSB cluster consolidation 4 to 3 nodes YCSB data shuffle 10% pairwise

Results Highlight

TPC-C load balancing hotspot warehouses

All about trade-offs
 Trading off time to complete migration and performance degradation.

 Future work to consider automating this trade-off based on service level objectives.

I Fell Asleep… What Happened?
Partitioned Single Threaded Main Memory Environment -> Susceptible to
Hotspots.

Elastic data Management is a solution -> Squall provides a mechanism for
executing a fine grained live reconfiguration

Questions?

Tuning
Optimizations

Sizing Chunks
 Static analysis to set chunk sizes, future work to dynamically set sizing and scheduling.

 Impact of chunk sizes on a 10% reconfiguration during a YCSB workload.

Spacing Async Pulls
 Delay at destination between new async pull
requests.

 Impact on chunk sizes on a 10%
reconfiguration during a YCSB workload with
8mb chunk size.

Effect of Splitting into Sub-Plans
 Set a cap on sub-plan splits, and split on pairs
and ability to decompose migrating objects

	Squall: Fine-Grained Live Reconfiguration for Partitioned Main Memory Databases
	Higher OLTP Throughput
	Scaling-out via Partitioning
	Approaches for main-memory DBMS*
	Slide Number 5
	The Problem: Workload Skew
	The Problem: Workload Skew
	The Problem: Workload Skew
	Need Elasticity
	The Promise of Elasticity
	What we need…
	Problem Statement
	E-Store
	Live Migrations Solutions are Not Suitable
	Not Your Parents’ Migration
	Squall
	Squall Steps
	Chunk Data for Asynchronous Pulls
	Why Chunk?
	Async Pulls
	Chunking Async Pulls
	Keys to Performance
	Optimization: Splitting Reconfigurations
	Evaluation
	YCSB Latency
	Results Highlight
	All about trade-offs
	I Fell Asleep… What Happened?
	Tuning Optimizations
	Sizing Chunks
	Spacing Async Pulls
	Effect of Splitting into Sub-Plans

