
Ergod. Th. & Dynam. Sys. (1996), 16, 267-305 

printed in Great Britain Copyright © Cambridge University Press 

Square functions in ergodic theory 

ROGER L. JONESt 

Department of Mathematics, DePaul University, Chicago, IL 60614, USA 

IOSIF V. OSTROVSKII+ 

Institute for Low Temperature, Physics and Engineering, 47 Lenin Avenue, 

Kharkov 310164, Ukraine 

JOSEPH M. ROSENBLATI+§ 

Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA 

(Received 20 April 1994 and revised 5 January 1995) 

Abstract. Given the usual averages Anf = ~ I:Z=i f o rk in ergodic theory, let 

n1 S n2 S · · · and Sf = (I::1 IAnk+J - AnJl2)112. There is a strong inequality 

IIS/112 S 2511/112 and there is a weak inequality m{Sf > J,.} S (7000/J,.)11/111. Related 

results and questions for other variants of this square function are also discussed. 

0. Introduction 

This article concerns square functions in ergodic theory. However, the methods 

often concern estimates of Fourier transforms and the behavior of abstract convolution 

operators. For this reason, many of the results have parallels in real analysis, some of 

which we describe. In the first section, strong L2 estimates are the focus. In the second 

section, weak L1 estimates are obtained. In the third section, the connection of square 

functions to maximal functions with random shifts and large deviations is described. We 

have tried to state what we think are the most· interesting unresolved issues connected 

with this work, as we develop the material. 

l. Strong L2 estimates for square functions 

Let (X, {3, m) be a probability space and let r : X ~ X be an invertible {3-measurable 

transformation preserving m. Given f E Lp = Lp(X, {3, m), let Anf = ~ L~=I fort 

be the usual average in ergodic theory. The individual ergodic theorem says that there 

exists f* such that limn--+oo Anf (x) = f*(x) for m a.e. x, whenever f E Lp(X), 

I S p < oo. For this reason, it is obvious that for any increasing sequence (nk), if 
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f E L 1, limk--+oo Ank+i f (x) - Ank f (x) = 0 a.e. The questions that are addressed here 

are about ways of discussing the rate at which these differences go to O; for example, 

what can be said about L~1 IAnk+J(x) - AnJ(x)l2? 

This same question, but for more general averages than Anf, appears in a fundamental 

way in the work of Bourgain [5, 6] on the convergence of averages along certain 

subsequences of (re : l = 1, 2, 3, ... ). For example, the a.e. convergence of 

1 n 

An f = - L f O r'2 

n t=I 

for f E L2 was proved by deriving an estimate on the rate of growth of the partial sums 

J 

L IAnk+J-AnJl2 , 

k=I 

Such questions for sequences other than (l2) also appeared in Wierdl [21,22]. 

These results on square functions suggested the theorem of White [20], see Assani et 

al [l], that for rapidly growing (nk), the maximal squarefanction 

satisfies a strong Li-estimate II S* f 112 :::: C II f Iii for some constant C, depending only on 

(nk), The condition on (nk) given there is nk+1 ::::: nf However, by the same argument, 

one can see that the same result holds for nk+ 1 ::::: nk for some fixed ot > 1. It is not 

clear if any restriction on (nk) is really needed here for this fact to remain true. Indeed, 

in earlier work, Gaposhkin [12, 13] showed that the same strong Li-estimate holds for 

S* if there exists f3 ::::: ot > 1 such that a :::: nk+if nk :::: f3 for all k ::::: 1. See Bradley [7] 

for a good exposition of this result in a more general setting. 

The first question suggested by such square function bounds is whether there is always 

a strong L2-estimate for the square function 

THEOREM 1.1. For any f E L2(X), 

IIS/112:::: 2511/112. 

This theorem follows immediately from a somewhat more general principle. Let 

U : H -+ H be a unitary operator on a Hilbert space. Let Anf = ~ L~=I ut f for all 

f E H. For f E H' let 

THEOREM 1.2. For any unitary operator U and any f EH, Sf:::: 2511/IIH, 
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Proof of Theorem 1.1. For any N ::: l, the partial sum I:f=I IAnk+J -AnJl2 is in L1 
if f E L2 and 

Since f i-+ f o t' is a unitary operator, Theorem 1.2 says

Letting N -+ oo, the monotone convergence theorem says 

 
Proof of Theorem 1.2. It suffices to show 

L IIAnk+J-AnJlli � 2s2 11111i k=I 
for all N ::: 1. By the spectral theorem for unitary operators, this inequality follows from 
a similar one on the circle T = {y EC: IYI = l}. Let an(Y) = � I:;=1 ye . It suffices 
to show that for all y E T, 

L lank+1(y)-ank(y)l 2 � 252
• k=I 

To prove this result, fix y ET. Since an(l) = 1 for all n::: 1, we can assume y =f:. 1. 
Write y = e i9 where() E (0, 2rr). If() E [rr, 2rr), then ji = e irf> where </J = 2rr -() is in 
(0, 1l' ]. Since 

lant+i (y) -ant (y) I = lant+1 (ji) -ant (ji) I , 
we may assume with no loss of generality that() E (0, rr]. 

We will split the sum into two sums. First, 
1_1 (e int.+19 -1) _ 2_ (e in .t9 -1)1 2 

lant+1 (y) -an/Y)l 2 = 9 _9 __ nk+I e' - 1 nk e' - 1 
I (e ink+,e _ 1) (e int9 _ 1) 12 < 16 -�---nk+IO nk() 

because le i9 - 11::: !O for all() E (0, rr]. Then let F(z) = (e iz - 1)/z. We see that 
N N L lank+1 (y) -ant(Y)l2 

� 16 L IF(nk+10) -F(nk0)12 . k=I k=I 
Now split this last sum into two sums, I: 1 and I:2 , where I: 1 is the sum over all 

k = 1, ... , N with lnk+10 -nkOI < 1 and I:2 is the sum over all k = 1, ... , N with 
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lnk+18-nnOI 2: 1. Any term in the first sum estimates by the Cauchy-Schwarz inequality, 

IF(nk+18) - F(nkt9)12 = 11:;+19 F'(x)dxl2 

1nk+19 < lnk+1e - nk91 IF'(x)l2dx 
nt8 1nk+19< IF'(x)l2 dx. 

nk9

Hence, I:1 :::S I:f=l J�;19 1F'(x)l2dx. But F'(x) = (ixe ix - (e ix - 1))/x2 for x > O. 
Since F(z) is analytic, and IF'(x)I ::::; 1/x + 2/x2 for all x > 0, it is clear that 
Jo"'° IF' (x) 1 2 dx < oo. A straightforward computation gives 

I:1 :::S fo00 IF'(x)l2 dx S 10. 
To estimate I:2, we note that each term in I:2 is estimated by 

IF(nk+19) - F(nkt9)12 :::S 21F(nk+19)12 + 21F(nkt9)12. 
But suppose that (nk1 , nk1 +1, ... , nkL • nkL +1) are the pairs in increasing order appearing
in I:2. Then nk,.+I 2: nk, + 1/8 for alls = 1, ... , L. Because nk,+1 2: nk,+I, we have 
by induction nk,+ i 2: s/9 for s = 1, ... , L - 1 and nk,+I 2: s/8 for s = 1, ... , L .t Thus, 
since IF(n9)1 :::S 1 always, 

L L I:2 :::S 2IF(nk1 9)12 + 2 L IF(nk,+19)12 + 2 L IF(nk,9)12 

s=I s=2 

Combining the estimates for I:1 and I:2 gives 
N 

Llant+ 1 (y)-ant(Y)l2 < l6(I:1+E2) 
k=I 

< 16(10 + 29) :::S 252. 

Remarks 1.3. (a) If (nk) grows slowly, then the result of Theor�m 1.1 is trivial. Indeed, 
for any n2 2: n1, 
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< n1 I_!_ - _!_111/112 + n2 - ni ll/112 
n2 n1 n2 

= 2(n2:n1 )11tll2-

Hence, if p = I:~1(1-nk/nk+1)2, then IIS/112::: 2.Jpll/1'2 for all f E L2. Therefore, 

if (nk) is slowly growing, e.g. nk = k' for some fixed r = 1, 2, 3, ... , then p < oo and 

the strong inequality of Theorem 1.1 is immediate with 2.Jp in place of 25. Since p can 

certainly be oo, this argument is worthless in general. Actually, it is also the case that 

p < oo if and only if L~t suplvl=t lank+1 (y) - ank (y)l2 converges. This explains partly 

why the estimate in Theorem 1.2 is not generally possible if the terms are estimated 

uniformly first. 

(b) If (nk) grows rapidly, then the result of Theorem 1.1 is also well-known because 

the method of pointwise bounding L~t lant+i (y) -ank (y) 12 can be made more explicitly 

in terms of I y - 11. This is the beginning for estimates in Duoandikoetxea and Rubio 

de Francia [11]. Indeed, lan(Y) - 11 ::: nly - 11 and lan(Y)I ::: 2/nly - 11. Hence 

lant+i(y)-ant(Y)I::: 2nk+tlr-11 and lank+1(y)-ank(y)I::: 4/nklY-11- Thus, for 

L ~ 1, 

oo L 16 oo 1 

Llank+1(y)-ank(y)l2 :::4ly-112Lni+1+8+I _ 112 L 2 
~ ~ y b~~ 

because I:f.!i+t lank+i (y) - ank (y) 12 ::: 8 for all y E T. Thus, we can get a bound as in 

Theorem 1.1 if there is a constant C such that for each y E T, there is some choice of 

L ~ 1 with IY - 112 I:f=t ni+t ::: C and (1/ly - 112) L~L+3 1/ni ::: C. For example, 

if (nk) is lacunary with infk;,:t nk+i/nk ~ a > 1, then we can choose L to be the first 

value with nL+3 ~ 1/IY - 11- Then 

L 

IY - 112 Lni+1 ::: IY - 112C(a)ni+2 ::: C(a), 
k=I 

where C(a) = 1/(a2 - 1). But then also 

1 ~1 1 2 1 2 

I - 112 L..., 2::: I - 112a C(a)-2-::: a C(a). 
Y k=L+3 nk Y nL+s 

Hence, for such (nk), the strong inequality of Theorem 1.1 holds with a constant C0 (a) 

in place of 25. Since (nk) may fail to be lacunary, this method may not apply. But 

moreover, the constant Co(a) which is given tends to oo as a tends to 1. 

( c) Wittmann pointed out an easy proof of (b) if nk = 2k. First, if f E H, then by 

the p'll'allelogram law 

II/ - tu+ T)Ju2 = ill! - T/112 

= !111112 + !IIT/112 - ill!+ Tfu2 

< 11/112 - llt(J + T)/112 

for any contraction T : H ~ H. So 

IIAnf - A2nf11 2 = IIAnf - tu+ Tn)Anf 11 2 
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< IIAnfll2 - ll!U + Tn)Anfll 2 

= IIAn/112 - IIA2n/l12. 

Therefore, I:~1 IIA2H1f - A2kfll 2 = 11Az!Jl2 :S 111112. 

Theorem 1.2 also gives this immediate corollary. Let an be the discrete measure on 

Z, an=~ L1=, 8t. 

COROLLARY 1.4. For any (nk), nk :S nk+I for all k:::: 1, 

II ( t l(ank+1 -ank) * ¢l2)'
12t

2 
:S 2511¢llt2 -

This corollary could be used with the Calder6n transfer principle to give Theorem 1.1; 

however, the only proof we know of for Corollary 1.4 would be in the style of the proof 

of Theorem 1.2, either via the spectral theorem, or by using the Plancherel theorem to 

recast the estimate on T (which is essentially the same thing). 

Because of the strong parallel between ergodic theorems and differentiation theorems, 

one suspects there should be an analogous result to Theorem 1.1, but for the Lebesgue 

derivatives in R Such a result could be obtained by transfer from Corollary 1.4, but it 

is easier just to repeat the proof. Let <p8 = (1/s)lco.eJ E L1(lR). 

THEOREM 1.5. For any (sk), Sk :::: Sk+I > 0 for all k :::: 1, 

II (t l('Pek+I - 'Pek) * fl2)'
12 ilz :S 711fll2 

for all f E L2(lR). 

Proof It suffices to show that for all x :::: 0, 

00 

L l'Pek+1 (x) - 'Pe/x)l2 :S 49. 
k=I 

Here 
1 ( 1 - e-ixe) 

/Pe(X) = - . . 
e IX 

Hence, 

I 
(1 _ e-ixek+,) _ (1 _ e-ixek) I 

xsk+I xsk 

IF(xsk+1) - F(xsk)I 

where F(r) = (1 - e-i')/r for all r > 0, and F(O) = 0. Now split this sum 

I:~1 l'Pek+, (x) - <p8k(x)l 2 into two sums, I:1 and I:2, where I:1 is over k such that 

l(sk+1 - sk)xl < 1 and I:2 is over k such that l(sk+, - sk)xl:::: 1. As before, 

I:1 < t L:: IF'(r)l 2 dr 

< fo 00 

IF'(r)l 2 dr 

< 10. 
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To estimate :E2, let (k., : s = 1, 2, 3, ... , L) be the indices in increasing order with 

(6k., - Ek,+1>x � 1. Then EkL-s � (s + 1)/x for s = 0, ... ' L - 1 and EkL-s+I � s/x for
s == 1, ... , L - 1. Hence, 

L L :E2 ::: 2 L 1F(ek,+1x)l2 + 2 L IF(ek,x)l2 

s=I s=I L- 1 l L 1 < 21F(ekL+1 x)l2 + 8 8 (ek,+1 x)2 
+ 8 8 (ek,x)2. 

Since IF(r)I ::: 1 for all r > 0,
L- 1 1 x

2 L 1 x
2 2+s"- +s" L.., x2 (L - s)2 L.., x2 (L - s + 1)2 s=I s=I 

00 1< 2+16L2s=I S < 29. 
Combining the estimates for :E 1 and :E2 gives 

L lr.oek+1 (x) - 'Pet(x)l2 ::: 10 + 29 = 39. k=I 

Remark 1.6. (a) The reversal in direction of summation that occurs in the estimate of 
:E2 in the proof of Theorem 1.5, compared with the proof of Theorem 1.2, is typical in estimating expressions related to Lebesgue differentiation, as opposed to similar ones in 
ergodic theory. If there is a weight accompanying the index, this causes the parallel of 
these two analyses to break down. See Rosenblatt and Wierdl [16] where large deviation theorems are proved in ergodic theory, which generally fail for Lebesgue derivatives. (b) Theorem 1.5 can be generalized to other sequences that form an approximate
identity. For example, assume dm = p(x) dx where p e L 1 (JR), p � 0, f p(x) dx = 1. 
Assume that for some s > 0, p(x) exp(slx l) is in L2(JR). Let m0 be the dilation ma (E) = m((l/a)E). Then for any W = {(ak, bk): k � 1} which are pairwise-disjoint,

II ( t l(mbt - mat)* /12 Y12t::: /¥11p(x) exp(slxl) ll2 .xllf112 

for all / e L2(JR). This applies, of course, to any p which has bounded support. The 
proof of this theorem, and related ones for square functions similar to this, will appearin another article. 

(c) Theorem 1.5 suggests the following natural question. Let Ek f denote theconditional expectation for f e L 1 (JR) given by 
1 r<j+l)/2k 

Ed(x) = (I/ 2k) ]j/2t f (t) dt
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whenever x E [j /2k, j + 1/2k), j E Z. It is well-known that limk-+oo Ekf(x) = f (x) 

a.e. Indeed, this is the martingale convergence theorem for the martingale (Ek). By 

Burkholder's inequality [8], 

for all f E L2(R). Comparison of this fact with Theorem 1.5, and the close analogy of 

Ed with ({J112t * f, suggest the question whether I::~1 IEkf-<p112t * /12 < oo a.e., for 

all f E L2(R)? This would be an obvious consequence of a strong inequality 

Is there such an inequality? In a similar fashion, certain reversed martingales in e1 (Z) 

dominate the usually averaged <Xn * f = ~ I:;=1 f(j - e) for f E e1 (Z); see Rosenblatt 

and Wierdl [16). Is there a strong inequality for the square function of the differences 

between a 2• * f and the associated reversed martingale on e2(Z), similar to the one 

suggested above? Recently, we have seen that the answer to these questions is affirmative; 

these results will appear elsewhere in joint work of Jones, Kaufman, Rosenblatt and 

Wierdl. 

There are two main directions of generalization of Theorem 1.1 of interest: one is 

to other operators and other averages, the other is to square functions of block maxima 

as in Bourgain [6]. First, it is straightforward to improve Theorem 1.1 to a general 

contraction. 

THEOREM 1.7. Let T be a contraction on a Hilbert space H. Let (nk) be a sequence in 

z+ with nk ~ nk+I for all k 2: 1. Let An(T)f = ~ L~=I Tl f for all f EH. Then 

for all f EH. 

Proof By the dilation theorem, see Sz-Nagy and Foias [19), there exists a Hilbert space 

L containing H as a closed subspace, an orthogonal projection P : L ~ H, and a 

unitary mapping U : L ~ L with put f = Ti f for all e::: 0 and f EH. But then for 

/EH, 

N N 

L II Ank+1 (T) f - Ant (T) f 111" = L IIP(Ank+l (U) - Ank(U)f)ll1" 

k=I k=I 
N 

= IIPll2 L IIAnt+JU)f - Ant(U)/111-
k=I 

< 252 11/111-

by Theorem 1.2 and the fact that II P II ~ 1. D 
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Square functions for other averages are also of interest. For example, recently the 

behavior of iterates of an average of the form µ,f(x) = L~-oo µ(f,)f(r:ex), with 

respect to a probability measure µ on Z, have received considerable attention in ergodic 

theory. The associated square functions is the following: fix (nk), nk :'.S nk+l, and let 

s,J = ('E,:1 lµnH1 f - µnk f 12)112. The problem is to obtain a strong inequality with 

suitable conditions on (nk) and spec(µ)= cl{P,(y) : y E T}. Here is an example. 

THEOREM 1.8. A necessary and sufficient condition for there to be a constant C such that 

for all f E L 2, and all dynamical systems (X, {3, m, r:), is that there is a closed circular 

disc Cp of radius 1 - p centered at p > 0 in C with spec(µ) C CP. 

Proof First, using the spectral theorem to obtain the strong inequality, it suffices to have 

I::1 IP,k+1(y)- µ,k(y)l 2 :'.SC for ally ET. That is, lfl(y)- ll2 'E,:11P,(y)l2k must 

be bounded. If lfl(y)I < 1 for all y -:j:. 1, then this is the same as having 

lfl(y)-112 1A )12<C 
1 - lfl(y)l2 µ(y -

for all y E T, y -:j:. 1. But if spec(µ) c Cp, Cp a circular disc as above, then for some 

constant Kp, supyET,y#J lfl(y)-11 2/(1-1µ,(y)I) :'.S KP. So the condition on spec(µ,) is 

sufficient for the strong inequality. Conversely, if there is a strong inequality, valid for 

all dynamical systems, then lfl(y) - 112 'E.:1 lfl(y) 12k is uniformly bounded. Hence, 

lµ(y)I < 1 except for y = 1, and lfl(y) - ll 21µ,(y)l 2 :'.S C(l - lfl(y)l2) for ally ET. 

But then, for some p > 0, spec(µ) C Cp. D 

Remark 1.9. If for some aperiodic (e.g. ergodic) non-atomic finite dynamical system there 

is a strong inequality as in Theorem 1.8, then there is such an inequality for all dynamical 

systems with the same constant. This can be seen by the Conze principle. See Bellow et 

al [2] or Rosenblatt and Wierdl [16] for a discussion of this principle and examples of its 

use. Alternatively, one can use the Rokhlin Lemma and the Calderon transfer principle 

to prove the same thing. 

It turns out that the spectral criterion of Theorem 1.8 is implied by the more familiar 

one of strict aperiodicity. We say that a probability measureµ on Z is strictly aperiodic 

if lµ(y) I < 1 for all y E T, y -:j:. I, i.e., µ is strictly aperiodic if and only if its support 

is not contained in a proper arithmetic progression on Z. 

Let 

I A it lfl(eir) - 112 
[µ(e )] = 1 - lfl(eit)l2 

THEOREM 1.10. Ifµ is a strictly aperiodic probability measure on Z, then I[µ,(e; 1 )] is 

bounded. 

To prove this, we first prove two lemmas. 
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LEMMA 1.11. If there exists a k E Z such that I[µ,(ei 1)eikr] is bounded, then I[µ,(ei 1)] is 

bounded. 

Proof We have 

l(µ,(eit)eikt _ l)e-ikt + (e-ikt _ l)l2 

1 _ ltl(eit)eikr 12 

le-ikr _ 11 2 

< 2/[µ,(eir)eikr] + 2 ~ . . 
1 - lµ,(e1t)l2 

Denoting by µ, 1 the measure defined by the equality tl1 = lt11 2, we have 

. . 1 - ltl(ei1) 12 
hmmf--.--­

HO 1e-1kt - 112 

1 1. . f 1 - Re µ, 1 (ei 1) 

= - 1mm 
k2 t->0 t 2 

1 1 .. f""' 1-cosnt = 2 1mm ~µ,1(n) 2 
k t->0 neZ t 

1 . . N 1 - cosnt 
> 2 hmmf L 1,1,1(n) 2 

k t->0 n=-N t 

1 N 

= 2k2 L /1,1 (n)n2 
n=-N 

for any natural N. If N is large enough, the last term is strictly positive. That proves 

the lemma. D 

LEMMA 1.12. Ifµ, is strictly aperiodic, then I[µ,(ei 1)] is bounded overt -:f:. 0 if and only 

if 

Proof We have 

hence 

j[µ,] = limsup J[µ,(eit)] < 2. 
t->0 

I ~ it - 1 - Re µ,(eit) + J[µ,(eit)] 

[µ,(e )] - 1 + Reµ,(eit) - J[µ,(eit)], 

limsupI[µ,(ei 1)] = j[~] 
HO 2 - J[/,1,] 

Because µ, is strictly aperiodic, this proves the lemma. D 

Proof of Theorem 1.10. By Lemma 1.11 we may suppose that µ,(O) > 0 without loss of 

generality. By Lemma 1.12 we may restrict ourselves to proving j[µ,] is bounded away 

from 2. Consider the identity 

L µ,(n) sin2 ; L µ,(n) cos2 ; - (L µ,(n) sin; cos ;)
2 

neZ neZ neZ 

= ~ L µ,(n)µ,(m) (sin (n ~ m)t)2 

n,meZ 
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Neglecting all terms with m =f:= O on the right-hand side, we see that the right-hand side 

is not less than 

!JL(O) L µ(n) sin2 ;. 

nEZ 

Note that 

. '°' . 2 nt 1 - Re µ,(e' 1 ) = 2 L.., µ(n) sm 2 . 
nEZ 

. '°' nt nt 
Im µ,(e 11 ) = 2 L.., µ(n) sin - cos-. 

.. 2 2 
nE1u 

Therefore we have 

40 - Re µ,(ei 1)) L µ(n) cos2 ; - (!Jm µ,(eit)) 2 ~ !JL(O)!O - Re µ,(e; 1)), 

nEZ 

hence 

and 

So, Theorem 1.10 is proved. D 

COROLLARY 1.13. If J.l is a strictly aperiodic probability measure on Z, then for some 

constant C, 

for all f E L2. 

Proof The estimate in Theorem 1.10 is precisely what is needed for the spectral 

hypothesis in Theorem 1.8 to hold. D 

Remark I.I4. The bound on µ, which is inherent in Corollary 1.13 is exactly what is 

needed to give the ideal improvement of the subsequence theorem in Gaposhkin and 

Rosenblatt [14]; no moment condition on J.l is really needed for the subs-:quence results. 

For example, if J.l is just a strictly aperiodic probability measure on Z and r is invertible, 

then for any subsequence (nm) with nm+I ~ n::i for some fixed a > 1, the averages 

µ,n., f (x) converge a.e. for all f E L2(X). See [14] for the details and why this improved 

estimate for the spectrum of J.l gives such a subsequence theorem. 

Corollary 1.13 concerns S,,J at one extreme, where (nk) grows slowly. At another 

extreme, with (nk) arbitrary, we have this result. For a < n, let Sa be the usual 

Stolz region for non-tangential convergence at 1, with aperture a, that is, Sa can be 

characterized as a region on which there is a bound 11 - zl/(1 - lzl) S Ca for all z E Sa. 

THEOREM 1.15. If JL is a probability measure on Zand spec(µ) C Sa, then there is a 

constant Ca such that for all (nk), nk S nk+I fork ~ 1, we have 

II ( t IJLnk+, f - /1,nk fl2y12t S Callf112 

for all f E- L 2, and for all dynamical systems (X, {3, m, r). 
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Proof If O ~ r ~ l, then 

00 00 

L (rnk+1 _ rnt )2 ~ 4 L (rnk _ rnk+t) = 4rn• ~ 4. 

k=I k=I 

But then if z E Sa, we have 

00 00 

L lznk+I - znk 12 = 
k=I 

L iz12nk iznk+1-nk - 112 
k=I 

00 

< L 1z12nt 1z - 112<1 + ... + 1z1nk+i-nt-1>2 
k=I 

00 

< c~ L 1z12nko - 1z1>20 + ... + 1z1nk+i-nt-1>2 
k=I 

00 

= c~ L iz12nko -1z1nt+1-nt>2 
k=I 
00 

= c~ L<1z1nk - 1z1nk+1)2 
k=I 

< 4C2 
a 

by letting r = lz I and using the estimate above. 

But now by the spectral theorem, to prove the strong inequality above, it suffices to 

prove I:~1 IJ1(y)fft+1 - µ,(y)nk 12 ~ CJ. But spec(µ) C Sa and the estimate above gives 

such a result. D 

Remark 1.16. It is probably the case that the only way the strong inequality of 

Theorem 1.15 can hold for some (all) dynamical system(s) is to have spec(µ) in some 

Stolz angle. See Bellow et al [3] for other facts about µ which has a spectrum that is 

restricted as in Theorem 1.15. 

Another version of this problem is to fix the probability measure µ, and depending on 

spec(µ), obtain conditions on (nk) for which the strong inequality holds. Corollary 1.13 

shows that nk = k will do for any strictly aperiodic measure. Actually, if (nk) is more 

rapidly growing, then it will also work. 

THEOREM 1.17. Let (nk) be a sequence of natural numbers such that nk+1 ::: nf for some 

p > 1. Then, for any strictly aperiodic probability measure µ, the sum 

00 

S(y) = L IJ1nk+t(y)- µ,nt(y)l2 
k=I 

is uniformly bounded on the unit circle IYI = 1. 

Proof This argument is similar to the one in Remark 1.3b. Define for any natural L, 

L L 

SL = L IJLnk+t _ µ,nkl2 = L IJ112nkll _ J11211 + ... + µ,nk+1-nr112 

k=I k=I 
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< ll-µ,1 2 t(nk+1 -nk)2 ::: ll-µ,1 2(tnk+1-nky 

< Cll-P-l2nz+1· 

Moreover, using estimates as in the proof of Theorem 1.15, we have 

00 

RL = L lµ,nk+1 - p,nk 12 < 

k=L+3 

< 

11 - 012 2 f: (IP-Ink - IP-Ink+! )2 
(l - lµ,I) k=L+3 

411 - µ,12 I A 1ni+J 

0 - IP-1)2 µ, . 

Since for every strictly aperiodic µ, we have by Theorem 1.10 that 

11 - µ,1 2 ::: C(l -1µ,I), 

then 

SL :'.:: C(l - lµ,l)nz+1 

RL :'.:: 4C(l - lµ,l)- 1 lµ,lnL+3. 

Choose L in the following way: 

nL+1 ::: (1 - IP-1)112 < nL+2-
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d 

Then SL ::: C. Since p > 1, we can choose d 2:: 1 with pd > 2. Then nL+2+d 2: nr+2· 

But, in addition, 

1 1 lµ,lnL+2+d 

log 1 - IP-I = -nL+2+d log IP-I + log 1 _ IP-I 

pd 1 1 
< -nL+2 Iog IP-I + log 1 - IP-I 

< 
1 1 1 

----log-+ log--­
(1 - lµ,l)Pd/2 IP-I 1 - IP-I 

I A I d /2 1 
< - 2 (1 - 1µ,I) -p + log 1 _ IP-I --+ -oo as IP-I--+ 1. 

Thus, Rud-I is bounded. But the choice of d is independent of L and so S ::: 

SL+ 4(d + 1) + RL+d-1 is also bounded. D 

Despite Theorem 1.17 and Corollary 1.13, not every sequence (nk) will do for every 

strictly aperiodic measure µ,. 

Example 1.18. Letµ,= 4(80 + 81). Then 

µ,(eit) = !O + e-it) = !e-itf2(eit/2 + e-it/2). 

So µ,(e; 1) = e-itf2cos(t/2). Let S(ei1) = I:~1 lµ,nk+1(ei1) - p,nk(ei1 )1 2. Choose 

nk = 1 + 3 + ... + 3k-l = (3k - 1)/2 and tp = 2rr/3P. Then 

S(/'") - t. (cos 'fr ( 1 +(cos'; r -2 (cos'; )"cos (3''f)) 



280 R. L. Jones et al 

> t,(cos;f (1+(cos;)"' +2(cos;)") 
> 

2p ( )3k 32p 

~ cos ~ ~ p ( cos ~) 

The last expression tends to +oo when p tends to +oo since 

32p 

lim (cos !E.) = exp(-rr2 /2). 
p-+oo 2 

Remark 1.19. (a) It is not hard to compute examples that link the choice of (nk) to the 

shape of spec(µ,). The computations in Bellow et al which lead to [2, Theorem 1.14] 

actually give a prescription for such examples. However, it would be better to resolve 

what is really the general pattern. For example, let G(z) = I:~1 znk, lzl ::: 1. In terms 

of the mapping properties of G, can we determine precise conditions on spec(µ,) which 

are necessary and sufficient for Theorem 1.17 with that choice of (nk) and µ,? 

(b) In a similar manner to the proof of Theorem 1.7, one can show that if µ,(T)f = 
L~-oo µ,(£)Te f (with T invertible if supp µ, <t. z+), then for the choice of (nk) in 

Theorem 1.17, and for any contraction T on a Hilbert space H, 

00 

L 11µ,(Ttk+I f - µ,(Tr !111:::: C2 llflla 
k=I 

for all f EH. 

The question of getting strong estimates for square functions of block maxima is also 

quite worthwhile, especially because it has the potential of giving stronger inequalities 

than the usual maximal inequalities in the individual ergodic theorem. Fix (nk), 

nk :S nk+I · The square maximal function in question is as before: 

( 
oo ( )2)1/2 

s* f = '°' max IAnf - AnJI r=f nk:::n:::nk+I 

We will also want to discuss, in the next section, a somewhat more restricted version of 

S* f. Let M be a sequence (mk: k ~ 1) in z+, then 

( 
2)1/2 

S':tf = ~ ( max IAnf -AnJI) 
~ nk:'.:=n::'.Snk+l 
k=I nEM 

In Assani et al [l], a theorem of White's is proved, which has some precedents in 

Bourgain [5, 6]. 

THEOREM 1.20. Let (nk) satisfy nk+I ~ n't for some a > 1. Then there is a constant 

C = C(a) < oosuchthat IIS*f112::: C(a)llfll2forall f E L2, andforalldynamical 

systems. 

Remarks 1.21. (a) The actual hypothesis in [1] is that nk+1 ~ nf However, by the same 

proof (or by passing to subsequences of (nk)), the result holds for any a > 1. Because 
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of Theorem 1.1, it is not unreasonable to hope that Theorem 1.20 remains true for all 

(nk). 

(b) The same proof as given in [l] shows that for (ek), if for some a > l, Bk+I :::; ef 
for all k ~ l, then for all / E L2(lR), 

II ( f: sup l(<pe - (/lek) * /12)
112

11 :S Cll/112-
k=I Ek+1:::e:9k 2 

Here C depends only on a. 

The same type of result on block maxima is at least true with no restriction on (nk), 

if one uses S'itf instead of Sf. See Theorem 4.10 in Rosenblatt and Wierdl [17]. 

THEOREM 1.22. Let (nk) be any increasing sequence and let M be a lacunary sequence. 

Then there is a constant C < oo, depending only on the degree of lacunarity of M, such 

that IISM/112:::; C(a)ll/112/or all f E L2, and/or all dynamical systems. 

2. Weak LI estimates for square functions 

In this section, two different approaches to obtaining weak inequalities in L I for the 

square function will be given. The first approach only applies to lacunary (nk), but 

is also better for obtaining strong LP estimates and will be used for other purposes in 

§3. The second approach uses the Calder6n-Zygmund decomposition. Both approaches 

require having a strong inequality somewhere at the outset. 

In Jones [15], it is shown that for 

Sf=(~ l(Ak+1 -Ak)/12)
112 

there is a weak estimate, m{Sf > )..} :::; (C/)..)11/lli, valid for some constant C < oo and 

arbitrary / E L 1. The same method can be tried in general, but only seems to yield a 

strong Lp inequality for 1 < p < oo, and that only when (nk) is a polynomial function 

of k. This is one reason for the interest in the following result. 

THEOREM 2.1. Suppose (nk) is lacunary, with nk+if nk ~ f3 > l for all k ~ l. Then there 

is a constant C ({3) such that for all f E L 1, 

Proof We use a theorem on vector-valued Calder6n-Zygmund operators from Benedek 

et al [4]. This result says that we can get a weak L1 inequality from a strong L2 

inequality, and certain properties of the operator in question. See also Rubio de Francia 

et al [18]. 

First, by the Calderon transfer principle, it suffices to prove the analogous result in 

Z, namely, with an = ~ I::;=1 8t, 



282 R. L. Jones et al 

for all <p Ee, (Z). (See Bellow et al [2] or Rosenblatt and Wierdl [16] for some general 

forms of the Calderon transfer principle [10] which would work here.) However, it is 

equivalent to show that if </Jn = ~ lco.nJ, that with respect to the Lebesgue measure on JR, 

if f E L 1 (JR), then 

{ ( 
oo 2)112 } C(/3) 

m 8 l('Pnk+I - </Jnk) * fl > A :S -).-llfllt. 

(See Bellow et al [2] where a similar transfer from JR to Z is used to translate a theorem 

of Duoandikoetxea and Rudio de Francia [11] from JR to Z.) 

Now define the kernel operator K : JR-+ l 2(Z+) by 

K(x) = (-1-lco.nk+iJ(x) - _!._lco.nkl(x): k = I, 2, 3, ... ) . 
llk+I llk 

This is the appropriate operation in this case to which to apply the main result from 

Benedek et al [ 4]. Indeed, Af = f K (x - y) f (y) dy has 

IIAfllt2(z+) = (tl(</Jnk+I -<pnk)*fl2)'
12 

and so an estimate on m{IIAfllt2(z+) >).}is exactly what is required. 

Theorem 1.1 and the definition of A show that the proof of Theorems 1 and 2 in [4] 

give Theorem 2.1 here, if K satisfies the Hormander condition: 

{ IIK(x - y) - K(x)llt2cz+> dx:::: C2 
f1xl>41yl 

where C2 < oo is independent of y E JR. 

To check the Hormander condition in this case, we need to evaluate l'Pnk(x - y) -

</Jnk(x)I for lxl > 4lyl. Let us first take the case x > 4y, y > 0. Then 

= 

1 
-llcy.y+nk](X) - lco.nk](x)I 
llk 

{ d;(-1[0,y](X) + l[nk,y+nk](X)) 

because if x > 4y, then x > nk and x > y + nk when y > nk. So for x > 4y, 

1 
l'Pn/X - y) - 'Pnk(x)I = -lcnk,y+nk](X) 

llk 

if nk 2:: y, and it is O otherwise. This means that for fixed y, 

f IIK(x - y) - K(x)llt2cz+> dx 
X>4y 

< 1 (f l</Jnk+I (x - y) - 'Pnk+ 1 (x)12)
112 

dx 
X>4y k=I 
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But since nk+tf nk ::::: {J > 1, there is a constant C({J) such that Lysnk 1/nk .::: C({J)/y. 

Hence, fx>4y IIK(x - y) - K(x)lle2cz+) dx .::: 2C({J) for ally> 0. 

Similar calculations can be used in the other cases. For instance, if y .::: 0 and 

x > 41 y I, then we need to compute 

1 
l'Pnk(x - Y) - 'Pnk(x)I = -ll[y,y+nk](X) - l[o,nk](x)I 

nk 

again. But for similar reasons as before, this is (1/nk)l[nk+Y,nkl(x) for x > 4lyl. Hence 

for all y. 

1 IIK(x - y) - K(x)llt2(z+)dx.::: 2C({J) 
x>41yl 

Finally, for y > 0 and x < 0, 'Pnk(x - y) - 'Pnk(x) = 0. Also for y < 0 and x < 0, 

But if also lxl > 41yl, then x < 4y and so l[y,y+nk](X) = 0 again. That is, if x < 0 and 

lxl > 41yl, then IIK(x - y) - K(x)lle2cz+) = 0 for any y. 

The conclusion is that for (nk) lacunary, the Hormander condition holds. Hence, for 

(nk) lacunary, the associated square function is weak L1• D 

Remarks 2.2. (a) The condition needed for Hormander's inequality in the proof is really 

This is only true if (nk) is essentially lacunary (a finite union of lacunary sequences) 

because it implies that if n(y) = #{nk : nk .::: y}, then n(2y) - n(y) is bounded. 

(b) The question is whether Theorem 2.1 holds without any condition on (nk), For 

example, if nk = k2, then 

Sf = ( 
00 ,-(2k + 1) k

2 1 (k+I)2 12)1/2 

~ (k + l)2k2 8 f o .e + (k + 1)2 ef 1 f o .e 

< ( 
oo 1 )1/2 ( oo 1 )1/2 

C ~ k2 IAk2fl2 + C 8 k2 IAu+d o •k2l2 



284 R. L. Jones et al 

since E:1 1/ k2 < oo; the first term is dominated by C supk>I IAkfl. Because 

supk>I IAdl is weak L1, it is easy to see that with nk = k2, the square function 

of Theorem 2.1 is weak L1 if and only if <E:1(1/k2)1Ad o -rk2 12) 112 is ·weak L 1• 

This is very interesting because the method in Jones [15] does not apply here. Also, 

(Akf o -rk2 
: k :::: 1) does not converge a.e., so supk IAkf o -rk2 1 is not weak L1. But in 

Rosenblatt and Wierdl [16] it is shown that 

oo C 
Lm{Ad > J,.k} ~ -ll/111, 
k=I A 

Hence, limk-->oo Ak f o -rk2 
/ k =:= 0 a.e., for f E Lt. The unresolved question is whether 

(Anf o-rk2 
/ k) goes to O fast enough for E:1 (Ad o-rk2 /k)2 < oo a.e.? See Theorem 2.6 

for a proof that this is indeed true. 

The method in Duoandikoetxea and Rubio de Francia [11] shows that the square 

function Sf of Theorem 2.1 is strong Lp for all p, 1 < p < oo. However, the weak 

inequality does not follow from their method directly. The method of Theorem 2.1 also 

gives this strong LP result. 

THEOREM 2.3. If (nk) is lacunary, then there is a constant C such that 

for all f E Lp, 1 < p < oo, and all dynamical systems. 

Proof See Duoandikoetxea and Rubio de Francia [11] or the proof of Theorem 2 in 

Benedek et al [4]. D 

It would be quite worthwhile to also apply the method of Theorem 2.1 to the maximal 

square function S* f. Unfortunately, this does not seem to work. Instead, the best that 

can be obtained by this method, in a straightforward manner, is this more restricted 

version which applies to SM f for suitable M. 

THEOREM 2.4. Suppose (nk) and M = (mk) are lacunary. Then S'lvtf is weak L 1 and 

strong Lp for 1 < p < oo, for all dynamical systems. 

Proof As in Theorem 2.1, by Theorem 1.22, it suffices to show that a certain Banach 

space valued convolution operator K satisfies the Hormander condition. In this case, the 

operator K is given from B1 = JR to B2, an e2 sum of finite-dimensional e00 spaces. 

Specifically, we write the general element d E B2 as d = ((dm : nk ::: m ~ nk+I, m E 

M) : k > 1); then 

Then let K : B1 - B2 given by 

K(x) = ( (~ l[o,mJ - :k l[O,ntl: nk ~ m ~ nk+t,m EM): k:::: 1). 
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The condition that is needed to prove Theorem 2.4 then becomes 

{ IIK(x - y) - K(x)lls2 dx ::::: C2 for ally ER.. 
Jlxl:::41yl 

Also, M is lacunary and (nk) is lacunary. Therefore, as in the proof of Theorem 2.1, 

there is a constant C2 = C(o:, {3), where a is the lacunarity constant for (nk) and f3 is 

the lacunarity constant for M, such that the above Hormander condition holds. D 

Remark 2.5. (a) It is clear from the manner in which the constant C(o:, /3) is determined 

that C(o:, /3) oQly becomes unbounded as a ..j.. 1 and/or f3 ..j.. 1. So there is some C < oo 

such that C ::: C(o:, /3) whenever a ::: 2 and f3 ::: 2. It follows that the weak inequality 

of Theorem 2.4 directly gives the usual weak inequality in the ergodic theorem. That is, 

we fix n 1 = 1 and n2 ::: 1. Then by Theorem 2.4, 

where C does not depend on the choice of nz. Hence, 

{ } 
2C + 2 

m suplAzt/1 > J.. :::: --11/111 
k:::1 J.. 

by applying the monotone convergence theorem. Of course, for any n > 1, if 

2k :::: n ::::: 2k+1, then IAnf I :::: 2A2t+1 I/ I. So 

m {sup IAn/1 > A} :'.:: 4C 11/111, 
n:::1 J.. 

for all J.. > 0 and / E L 1• However, this is no advantage because (1) the derivation 

of Theorem 2.4 is a long way around to get the usual weak L1 inequality of the 

ergodic theorem, and (2) maximal inequalities from the ergodic theorem are used 

twice in the proof, once in White's theorem [20] and essentially once (in the form of 

the Hardy-Littlewood maximal inequality) in the derivation of the Calder6n-Zygmund 

decomposition in the proof of Theorem 2 in [4]. 

(b) It would be really striking to obtain directly in (X, {3, m) or Z, a weak inequality 

for S* f which was valid with a constant independent of the choice of (nk), However, 

Theorem 2.4 is probably the correct ergodic theoretical version of this corresponding 

result for martingales. Using Burkholder [8] and Burkholder et al [9], Burkholder has 

commented in a private communication that there exists a constant such that for all 

martingales Un) which are conditional expectations E (f I f3n) for some f E L1, for any 

(nk), 

(c) There is an analogous result for Lebesgue differentiation to Theorem 2.4. The 

proof uses the same method, based on the inequality in Remark l.2l(b). 

(d) It would be worthwhile to extend Theorem 2.4 to other square functions, in 

the same way that Theorem 1.1 was extended. For instance, it is not clear for which 
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probability measures µ, on Z and (nk), the square functions 

S,;J = ( t l(µ,nk+I - µ,nk)/12 )'/2 

is weak L 1• Also, it would be worthwhile to know if 

can be weak L 1• For such measures µ,, Theorem 1.10 in Bellow et al [3] gives a very 

simple proof that supn~l lµ,n f I is weak L1. 

We now consider the same question of a weak inequality on L,, but we use, instead 

of the previous singular integral method, the Calder6n-Zygmund decomposition directly. 

THEOREM 2.6. Let (nk) denote any increasing sequence of positive integers. Let 

Sf (x) = ( t IAnk+J(x) - AnJ(x)l2 )'
12 

Then Sf is weak type (1, 1) and strong type (p, p) for 1 < p ::: 2. 

The proof will follow from a number of lemmas. We use both IBI and #B to denote 

the cardinality of a set. 

LEMMA 2.7. (The Calder6n-Zygmund decomposition.) Let f be a function in £1 (Z). Let 

). > 0. Then we can write f = g + b where g E £2, and 

CZ - 1 llglle1 :::: 11/llel' 

CZ- 2 llglloo:::: 2)., 

CZ - 3 b = I>i(x) where each bi satisfies : 

CZ - 3(a) bi is supported on an interval Bi, 

CZ- 3(b) 'I:,bi(j) = 0 for each i. 
j 

1 1 
CZ - 3(c) IB-I ~ lbi(J)I:::: 4). and).:::: IB·I ~ 1/(J)I 

1 ]EB; 1 ]EB; 

CZ-3(d) BinBj=0foreachi-:f.j. 

Remark. Note that the above imply 

Also, if A ::: ll/11 00 , then we take f = g and b = 0. 

Proof Find an interval / of length 2n with n so large that 1}i LjEI If (})I :::: ). and 

1/(J)I :::: A for j ff. I. Now divide I into two equal pieces, / 1 and [z. Look at the 
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average of If I over each of these pieces. If the average is more than A on any interval, 

keep that interval. If the average is less than A then divide that interval into two equal 

intervals, and repeat the procedure. The procedure ends with a collection of intervals, 

the average over which is at least A, but because of the construction, the average is no 

more than 2J.... Off the selected intervals, the function is at most A, since clearly any 

point where If I is more than J... would be in some selected interval, possibly an interval 

containing only the point itself. Denote the selected intervals by Bi, B2, .... Now define 

g(j) = f (j) for j not in any of the selected intervals. For j in a selected interval Bi, 

define 
1 

g(j) = -IB·I L f(r). 
1 reB; 

Define b(j) = f(j)-g(j). From the construction each of the required properties follow 

easily, with bi= b1B;· D 

Let Bi denote an interval oflength 51Bil and with the same center as Bi. Let B = Ui Bi. 

Let j ¢ B. We have 

00 

Sb(j)2 = L IAnk+ 1b(j) - Ankb(j)l2 

k=I 

= t 1Ank+1 ( ~ bi(j)) - Ank ( ~:)i(j)) 12 

= t I ~(Ank+ibi(j) - Antbi(j))l
2 

Note that for any i for which the average includes all the points in Bi, the average is 

0 by CZ-3(b) above. Thus for each fixed k, Ant+ibi(j) - Antbi(j) is non-zero only if 

j + 1 E Bi, i.e. at least the average starts in Bi, or one of j + nk E Bi, or j + nk+I E Bi, 

i.e. at least one of the averages ends in Bi. The first possibility, starting in Bi, is excluded 

since j ¢ B. Hence for each fixed k and j, Ank+ibi(j) - Antbi(j) =/. 0 for at most 2 

values of i, an ending value for Ank+ibi(j) and an ending value for Antbi(j). Thus we 

know 
00 

Sb(j)2 < 2 LL IAnk+1bi(j) -Antbi(j)l2 

k=I i 

We now have 

#{j I Sb(j) > J...} = #{j I Sb(j)2 > J... 2} 

= #{j I j (/. B, Sb(j)2 > J...2} +#{j I j E iJ, Sb(j)2 > J...2} 

< ~ L Sb(j)2 + IBI. 
}.. -

j¢B 

We have 
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For this reason, the following lemma is needed. 

LEMMA 2.8. For each i we have 

1""' ·2 64 >..2 ~ Sb;(J) ::; IB;I. 

j(/.B; 

Proof. Because translation by an integer is measure preserving, we can assume, without 

loss of generality, that B; = [O, N - 1] where IB;I = N. Note that since we only need 

to consider j E Bf, we do not need to consider j E (-2N, 3N), and since we are only 

looking at forward averages, we only need to consider j E (-oo, -2N]. To have a 

non-zero value of Ank+i b; (j) we must reach the support of b;. Hence, we must have 

nk+I + j ::: 0. Thus, nk+1 ::: Iii- But we might have nk + j ::: 0 or nk + j < 0 for 

that particular value of k. Let n(j) be the smallest integer such that nn(j)+I ::: Iii- Then 

nn(j) + j < 0 and so we have arranged b;(j + r) = 0 for all r = 1, ... , nn(i)· 

Sb;(j)2 = L IAnk+lb;(j) - Ankb;(j)l2 =:; ( L IAnk+lb;(j) -Ankb;(j)1)
2 

nk+1~1il nk+l~lil ·. 

< ( L {I (-1 
- 2-) tb;(j +r)I + - 1 I: lb;(j +r)1})

2 

nk+i~lil nk+I nk r=I nk+I r=nk+I 

< ( L (2- --1-) t lb;(j + r)I + L -1- I: lb;(j + r)1)
2 

nk+i~lil nk nk+I r=I nk+t~lil nk+I r=nk+I 

< 2( L (2- --1 ) t lb;(j + r)1)
2 

n&+idil nk nk+I r=I 

+2( L -1- I: lb;(j + r)1)
2 

nk+1~1il nk+I r=nk+I 

< 2( I: (2- --1 ) I: lb;(r)1)
2 

k=n(j)+I nk nk+I r=O 

+2( I: -1- I: lb;(j + r)1)
2 

k=n(j) nk+I r=nk+I 

( 
1 1 N-1 )

2 ( oo 1 nk+1 )2 
< 2 -n---NNLlb;(r)I +2 I:-n--- L lb;(j+r)I 

n(J)+I r=O k=n(j) n(J)+I r=nk+I 

( 1 ) 2 
( 1 1 N-1 )

2 

< 32 --N>.. + 2 --N- L lb;(r)I 
nn(j)+I nn(j)+I N r=O 

< 32 (-1-N>..)
2 

+ 32 (-1-N>..)
2 

nn(j)+I nn(j)+I 

< 64 (-l-N>..)2 
nn(j)+I 
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We now consider 

I:sb;(j)2 ( 1 r :'.:: L 64 --N>.. 

j¢B; j~-2N nn(j)+I 

(1 y :'.:: L 64 -;NA 
j~-2N J 

:'.:: 64N2)..2 L _.!_ 
'2 

j~-2N J 

:'.:: 64>..2N 

= 64>..2 IB;I. 

Proof of Theorem 2.6. We first establish the weak type (1, 1) inequality. We have 

#{j : Sf > >..} ::::: # { j : Sg > ~} + # { j : Sb > ~} . 

For the first term we have, by Theorem 1.1, 

#{j: Sg > ~} 
4 

< )..2 ~Sg(j)2 

J 

:'.:: 
25001: . 2 7 . g(J) 

J 

5000 
:'.:: 7 ~>..lgU)I 

J 

5000 
:'.:: ->..- ~ lf(j)I. 

J 

For the second term we have 

289 

D 

We use Lemma 2.8 to conclude that the first term is dominated by 512 Li IB;I. The 

second term in this expression is controlled by the same type of sum. Thus 

{ >..} 1032 
# j I Sb(j) > 2 ::::: 516~)Bd ~ ->..-llfllv, 

Hence, 
6032 

#{j : Sf > >..} :'.:: ->..-llfllt1 · 

The transfer principle of Calder6n gives the theorem with the same constant. The fact 

that Sis strong type (p, p), 1 < p ::::: 2, now follows by interpolation between the weak 

type (1, 1) just established and the strong type (2, 2) of Theorem 1.1. D 
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Remark 2.9. It is not yet clear whether Sf is also always going to satisfy a strong LP 

estimate for 2 < p < oo. 

The same argument as in Theorem 2.6 will give weak inequalities for other square 

functions, if there is a strong inequality in L2• 

THEOREM 2.10. Let {nd denote an increasing sequence of integers and define 

S* f(x) = ( t nk:'.5:~ugk+l IAnf(x) - AnJ(x)l2 Y/2 

If there is a constant C such that IIS* fll2 :'.S Cllfll2for all f E L2(X) then S* is weak 

type (l, 1). 

Proof The proof will follow as in Theorem 2.6. Write f = g + b as before, and use the 

hypothesis that IIS*gll2 :'.S Cligll 2 to handle g. Thus it remains to control S*b. 

We first need to show that for i </. B we have S*b(j)2 :'.S 2 Li S*bi(j). Fix 

i </. B. Since b is supported in a finite interval, for each i and k there is an integer 

n(j, k, b) E [nk, nk+tl such that 

CX) CX) 

L sup IAnb(j) - Ankb(J)l2 = L IAn(j,k,b)b(j) - Ankb(J)l2. 

k=I nk:'.5:n:'.5:nk+l k=I 

Using this fact, we argue as before: 

CX) 

S*b(J)2 = L IAn(j,k,b)b(j) - Ankb(J)l2 

k=l 

= t IAn(j,k,b) (~bi(})) - Ank (~bi(})) 1
2 

= t I L(An(j,k,b)bi(j) - Ankb;(J))l
2

-

k=l i 

As before, An(j,k,b)bi(j) - Ankh;(}) can be non-zero for at most two values of i, if 

i + n(j, k, b) E Bi and if i + nk E Bi. Thus 

CX) 

S*b(j)2 :'.::: 2 LL IAn(j,k,b)bi(j) - Ankbi(J)l2 = 2 L S*b;(J)2. 

k=l i i 

We now need the analog of Lemma 2.8. This follows easily once we understand 

the proof of Lemma 2.8. The only real change is to replace nk+l with n(j, k, b) in 

several places, and use the fact that nk < n(j, k, b) :'.S nk+I · Also, here nn(j) < Ii I and 

nnU)+I ~ Iii, but also n(j, k, b) ~ Iii, if the term being considered is not zero. 

S*bi(J) 2 = L IAn(j,k,b)b;(J) - Ankbi(J)l2 

nk+1 °':UI 

< ( L IAn(j,k,b)bi(j) - Ankbi(J)ly 

nk+1°':UI 
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< ( { I ( I I ) nk I I: - - I:b·(j +r) 
nk+1~UI n(j, k, b) nk r=I I 

1 n(j,k,b) } ) 2 

+ n(. k b) L lbi(j +r)I 
J, ' r=nk+I 

( (1 1 ) nk < L. ;--n('kb) Llbi(j+r)I 
nk+1~l1I k J, ' r=I 

l n(j,k,b) y 
+ L 'kb L lbi(j+r)I 

nk+1~UI n(J' ' ) r=nk+I 

( (1 1 ) nk y < 2 L. ;- - n(' k b) L lbi(j + r)I 
nk+1~l1I k J, ' r=I 

( l n(j,k,b) ) 2 

+2 L . k 1 L lbi(j + r)I 
nk+1~UI (j, ' ) r=nk+I 

< ( 
00 

(1 1 )N y 2 L - - Llb·(r)I 
k=n(j)+I nk n(j, k, b) r=I , 

( oo l n(j,k,b) ) 2 

+2 L 'kb Llbi(j+r)I 
k=n(j)n(J, '),=nt+I 

( )' 1 1 N-1 oo 1 nk+1 2 

< 2 -n -. -N NL lbi(r)I + 2( L --;- L lbi(j + r)I) 
n(J)+I r=O k=n(j) IJ I r=nk+I 

( )' 1 2 1 1 N-1 

< 32(--N}..) +2 f'jN- Llbi(r)I 
nn(j)+I J N r=O 

< 32(-
1
-NAY +32(fiNAY 

nn(j)+I J 

< 64C~1NAY 

The rest of the proof is the same as in the proof of Theorem 2.6. D 

This result combines with White's theorem and Gaposhkin's theorem to give: 

THEOREM 2.11. For any (nk) with nk+t > ni for some p > 1, or fJ ~ nk+t / nk ~ a for 

some fJ ~ a > 1, S* f is weak Li and strong Lp for 1 < p ~ 2. 

Remark 2.12. As in Remark 2.5(a), this result implies the usual maximal inequalities in 

the ergodic theorem. Furthermore, with a similar proof, the same result as the one in 

Theorem 2.11 holds for SM f for arbitrary (nk) and lacunary M because of Theorem 1.22. 

The problem with extending Theorem 2.11 to cover all (nk) is that we do not know 

when the strong L2 inequality holds. By White's result, if nk+1 ~ nf for some p > 1, 

then this is the case. But even in this case, it is not clear when S* f is strong Lp, 

2 < p < oo. But it is important to remark in this regard that Bourgain [6] has shown 
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that functions related to the square function are always strong L2• For example, using 

his result and the technique in Theorem 2.10, one can see that for any (nk), 

s:f = (f sup IAnf-AnJl 4)
114 

k=l nt:::n:::nt+1 

is weak (1, 1) and strong (p, p) at least for 1 < p:::; 2. 

It is worthwhile to point out that there is always these easier facts about square 

functions for block maxima. Here we use the usual maximal function f*(x) == 

supn~l IAnf (x)I. 

THEOREM 2.13. Let (nk) denote an increasing sequence of integers. lfnk = p(k)for some 

polynomial p of degree s > 0, then there is a constant C such that II S* f II 2 .::: CII f 112 for 

all f E L2(X) and consequently S* is weak type (1, 1). Furthermore, there is a constant 

Cp,for 1 < p::: oo, such that IIS*fllp.::: Cpll/llpforall f E Lp(X). 

Proof. We have 

S* f (x) = ( t nt:::~int+i IAnf (x) - AnJ(x)l2 Y'2 

( 

00 I ( 1 1 ) 1 n l2)1,2 
< L sup - - - nkAnJ(x) + - L f (r:r x) 

k=l nt:::n:::nt+1 n nk n r=nt 

< ( 2 t nt:::~itit+1 In~ nk AnJ(x{ + 2 t nt:::~itit+1 I~ t f(r:r x{Y'2 

( 

00 In n 12 oo 1 n 1
2 )1/2 

< 2f*(x)2~nt:::snint+i ~ k +2~nt:::~int+1 ;;-~f(r:rx) 

< ( 2J'(x)2 t ( ""~; n, )' + 2 t (:J~ If(,' x)I)' )"' 

( 
oo c 2 oo (C 1 nt+1 )

2)1/2 
< 2/*(x)2 ~ (,J + B k k•-l ~ lf(r:rx)I 

( 
oo c ( l nt+1 )

2)112 
< cf*(x) + 8 k2 k•-1 ~ lf(r:rx)I 

Thus the result will follow if we can show that the operator 

( 
oo 1 ( 1 nt+1 )

2)1/2 
Sf(x) = 8 k2 k•-1 ~ lf(r:rx)I 

is strong type (2, 2). This follows easily by just integrating and interchanging the order 

of integration and summation. To see S* is strong (p, p), use the above computation 

and observe that f* and S are bounded operators on L 00 • Then interpolate using the 

weak type (1, 1) that follows by the above and Theorem 2.10. D 

Remark 2.14. The obvious conjecture from all the above, is that for any (nk) increasing, 

S* is weak (1, 1) and strong (p, p), 1 < p < oo. 
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3. Square functions and random translations 

There is an interesting aspect of square functions that is especially useful in ergodic 

theory: for strong L2 estimates, the terms may be translated randomly. Indeed, fix (nt), 

nk+, 2'.: nk, and (mk). Then 

II ( t l(Ank+1 - Ank)f o •mk12
)'

12t = II ( t l(Ank+l - Ank)f12
)'

12L 
This fact and the transfer methods from (X, {J, m, r) to (Z, +1) give this corollary to 

Theorem 1.1. 

THEOREM 3.1. For any (nk), nk+I 2'.: nk for all k 2'.: 1, and for any (mk), 

lls~p l(Ank+1 - Ank)f O •mk( :'.:: 2511/lb 

There is also another immediate corollary of bounds for the square function. 

COROLLARY 3.2. Let (nk) be arbitrary, nk :::: nk+I for all k 2'.: 1. Then 

00 625 
Lm{l(Ank+1 - Ank)fl >A}:'.:: )}11/11~ 
k=I 

for all dynamical systems (X, fJ, m, r). 

Proof. Clearly, 

00 

Lm{l(Ank+1 - Ank)fl > A} 
k=I 

1 00 

< ).2 L ll(Ank+l - Ank)/11~ 
k=I 

= }d(tl(Ank+l -Ank)/12
)'

12
[ 

< 
625 2 

)}II/lb-

D 

The important point to be made here is that the condition of Theorem 3.1 is equivalent 

to Theorem I.I, and the constant does not need to be independent of (mk). This follows 

from the following theorem. 

THEOREM 3.3. Let (dk) be a sequence of finite measures on Z. Then the following are 

equivalent: 

(1) there is a constant C with 

(2) there is a constant C such that for all (mk), 

lhp ldk * Omk * 'Pl t
2 

:'.:: Cll'P lle2 ; 
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(3) for each sequence (mk), there is a constant C such that 

lls~p ldk * 8mk * 'Pl t
2 
~ Cll'Plle2 • 

Proof Clearly (1) implies (2) and (2) implies (3). Also, each of (1), (2), and (3) 

holds for (dk) if and only if it holds for any sequence of finite measures d{ with 

L~t lldk -dk, lie, < oo. So without loss of generality, we can assume the (dk) have finite 

support. Assume (2) and that <p has finite support. Choose (mk) so that (dk * 8mk * <p) 

are disjointly supported; then, 

Hence, 

( f ldk * 8mk * 'P1 2)
112 

= sup ldk * 8mk * 'Pl-
k=I k 

00 

I: 11dk * q,11~2 
k=I 
00 

= I: 11dk * 8mk * <put 
k=I 

= lls~p ldk * 8mk * 'Pl [ 

< C2 ll'Pllt 

Hence, (1) holds for all <p with finite support. A routine approximation argument proves 

(1) holds for all <p. 

Now assume (3) and fix O =/: <p E e2. Let Ek > 0 with L~t Ei ~ llq,11~2 and choose 

finite sets Ek C Z with ll(dk * <p)lEk - dk * q,112 ~ Ek. Then choose (8mk) such that 

([(dk * <p)lEk] * 8mk) are pairwise disjointly supportcj; :! . ., .• 

We have 

f ll(dk * <p)lEk * 8mk llt = II sup l(dk * <p)lEk * 8mk 11
2 

. 
k=I k l2 

00 

I: lldk * <p11~2 

k=I 
00 

< 2 L(ll(dk * <p)lEk llt + Ei) 
k=I 
00 

= 2L(ll(dk*<p)1Ek*8mkllt+Ei) 
k=I 

00 

< 211q,llt + 2 L ll(dk * <p)lEk * dmk llt 
k=I 
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= 2llq,ll:2 + 2 lls~p l(dk * q,)1Et * dmt I [ 

S 211q,ll:2 + 4 lls~p ldk *CJ}* 8mt I [ 

+4 lls~p l(dk * q, - (dk * q,)1Et) * dmt I [ 

CX) 

< 2llq,ll:2 + 4Cllq,llt + 4 L lldk * q, - (dk * q,)lEt 11t 
k=I 

CX) 

< 211"'11t +4cn"'11t +4 :Eel 
k=I 

< 2llq,llt + 4Cllq,llt2 + 411q,ll:2 

= Cll'Plli2 

for some constant C, depending on (mk). 

COROLLARY 3.4. For a sequence of finite measures (dk) on Z, consider: 

(1) for some constant C, ll(E~, lddl 2) 112 lli2 S Cll/lli2; 
(2) for some constant C, II supk~t ldd o rmt I lli2 S Cllflli2 for all (mk); 

(3) for each (mk), II supk~t ldd o rmtllli2 S Cllf lli2 for some constant C. 

295 

D 

If ( 1 ), (2 ), or ( 3) holds for some aperiodic non-atomic finite dynamical system, then they 

all hold for all dynamical systems. 

Proof If (1), (2), or (3) hold for some aperiodic non-atomic system, then by using the 

Rokhlin lemma, it is easy to see (1), (2), or (3) respectively of Theorem 3.3 holds. So 

by the Calderon transfer principle, the proof is complete. D 

There are many alternative versions of the idea above. Here is a particular one that is 

representative of this. We state this principle for (Z, +I), but it holds in any dynamical 

system; indeed, either property holds in (Z, +1) if and only if it holds for some (or all) 

aperiodic dynamical systems. 

THEOREM 3.5. For a sequence of finite measures (dk) on Z, the following are equivalent 

for 1 Sp S oo; 

(1) for some constant C, 

for all (mk); 

(2) for each (mk), there is some constant C 

Proof Clearly (1) implies (2). 
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Assume (2) and that (1) fails to hold, then we can inductively choose (<pj), ll<pilltp as 

small as we like, with 

as large as we like for suitable (m{). To be explicit, fix Ek > 0 with I:~1 Ek ::: 1 and 

let 1i<p1 Iii,, ::: E1, but for suitable N1, m;, ... , m~1 , 

Now choose <p2 with 1i<p21ltp ::: E2 and for some N2, mf, ... , mi2 , 

This is possible because 

11 ( t ldk * (()2 * 8mi 1
2 y12

tp ::: t lldkll11l(()zlltp. 

which can be made small by decreasing 1i<p21ltp, independent of the choice of 

(mD. Continue this inductively to generate <p = I:;:1 <pi e lp and (mk) = 
( I I 2 2 ) 'th mi, ... , mN1m 1, ... , mN2 , ••• WI 

But now 

j oo Nj+I 

~ Kj+1 - CL ll(()s lleP - L L lldk llt1 ll(()s lleP, 
s=I s=j+2 k=I 
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where C is the constant guaranteed by (2), which depends on (mk), This shows 

II ( t Id, * ~ * s., 1')"'11,, 2c K1+< - C t ,, -,t+, ,, t lld, II,, 

Clearly, by an inductive choice of (sj) going to zero rapidly, and (Kj) going to infinity 

rapidly, this underestimate can be made to tend to oo. But then <p E eP and 

contradicting (2). So (2) implies (1). D 

Now a particular consequence of the idea of random translations is the following 

theorem. 

THEOREM 3.6. Let (nk) be an arbitrary non-decreasing sequence and let 2 ::: p < oo. 

Then there is a constant C P depending only on p such that 

for all dynamical systems (X, {3, m, r). 

Proof Fixing (nk), we take dk = ank+i - ank· Then as in Theorem 3.1, Theorem 1.2 

implies that for arbitrary (mk), supk:::t ldk*<fJ*8mk I satisfies a strong e2 maximal inequality. 

It also clearly satisfies a strong f, 00 maximal inequality. So it satisfies a strong eP maximal 

inequality for 2 ::: p .::: oo. As in Theorem 3.3, the constant in this strong eP maximal 

inequality does not depend on (mk), although the independence of the constant is fairly 

obvious in this case anyway. So for fixed p, 2 ::: p .::: oo, for some constant Cp, we 

have 

#{supldk*<fJ*8mkl >A} ::S cgli<fJilf,. 
k:c:I )._P I 

Assume <p is finitely supported. Then with suitable (mk), dk * <p * 8mk would be disjointly 

supported. Hence, in this case 

00 

L # { ldk * ({J * 8mk I > A} 
k=I 

= #{supldk*<fJ*8mkl>A} 
k:::1 

< 
c: p 

vll<fJllep· 

But the left-hand side of this inequality does not depend on (mk)- So 

An approximation argument gives the same for all <p. Now we use the Calderon transfer 

principle to transfer this to any dynamical system. D 
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The technique above can be used to some limited extent to extend the estimates for 

square functions to other powers. Namely, let 

for f E L1. 

COROLLARY 3.7. For arbitrary increasing (nk) and for any q, 2::: q < oo, Sq/ is strong 

Lp for all p, 2 ::: p :::: q. 

Proof. The proof of Theorem 3.6 shows for all q, 2 ::: q < oo, 

lls~p(dk * <p * Omk)lltq :S Cq ll'Pt, 

where Cq does not depend on (mk). If <p has finite support and (mk) is properly chosen, 

then (dk * <p * Omk) are disjointly supported. Hence, then 

So 

00 

= L II ldk * <p * Omk lq llt1 

k=I 

00 

= L llldk *'Plqllt. = IISq<pllt-
k=I 

So IISq<fJlli < c; ll'Plli for such <p. By approximation, this follows with the same constant 
q -

for all <p. Now use the Calderon transfer principle to transfer this to any dynamical 

system. 

But in addition, since 2::: q :::: oo, then Sq/ :::: Sif. Hence, the strong L2 estimate 

for S2f of Theorem 1.1 and interpolation gives the existence of a strong Lp inequality 

for Sq/ for all p, 2::: p:::: q. D 

The above results for large deviations of differences and strong inequalities for q­

functions cannot be generally extended to 1 ::: p < 2, even for lacunary (nk)- The 

example that we present here that shows this is due to Michael Lacey and Mate Wierdl. 

Example 3.8. Let rk denote the kth Rademacher function, 

rk(x) = { 1 if x e ~q/2k, (q + 1)/2k) for even q, O::: q < 2k 

-1 otherwise. 

and, for a large integer N, let the function f: [O, 1)-+ JR be defined by 
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Let m be the Lebesgue measure and let Dk denote the Lebesgue derivative 

2-t 

Dkf(x) = 2k · { f(x + y) dm(y) . 
.lo 

We are going to show that 

Lm{IDn-Nf(x)- Dn·N-if(x)l 2: 1/2} 2: !./ii· llfllL1 • 

n~N 
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The proof of this inequality depends on the following three lemmas. In all three 

lemmas, we assume that x e [0, 1-1/2N-t). This is so that the averages formed by Dk 

for k 2: N - 1 will stay in the unit interval. 

LEMMA 3.8(a) Let l > k 2: N. Then 

Proof. This is because in computing Dkrt(x), we average on an interval of length 2-k, 

and 2-k is an integer multiple of 2 · 2-t, the period of rt. D 

LEMMA 3.8(b) Suppose k > l 2: N, and that xis not in an interval of the form 

(q 1 q) 
2t - 2k' 2t . 

Then 

Proof. This fact holds because in computing Dkrt(x), we average on an interval (of 

length 2-k) on which rt is constant (+l or -1). D 

LEMMA 3.8(c) Suppose k 2: N, and that x is not in the middle half of an interval of the 

form [q /2k, (q + 1)2k); that is, x is not in an interval of the form 

[ (q + 1/4) ;k, (q + 3/4) ;k] . 
Then 

IDkrk(x)I 2: t· 
Proof. Just note that the function g(y) = Dkrk(Y) is linear on [q/2k, (q + 1)2k), and 

either g(q /2k) = 1 and g((q + l)/2k) = -1, or g(q /2k) = -1 and g((q + 1)/2k) = I. D 

We now remove certain 'bad' sets from the interval [O, 1). (In fact, we remove sets 

on which the oscillations are potentially small-so from another viewpoint, this is the 

good set.) Our first bad set does not depend on n; it is 

We easily get the estimate 
N 

m(E) <4· -
- 2N' 
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so the measure of E is as small as we want. 

For each n, we further remove a 'bad' set; let 

I = 2u··N [q + 1/4 q + 3/4] . 
n 2n·N ' 2n·N 

q=I 

Then mUn) = 1/2 and hence the measure of the 'good' set 

G = [0, 1)\(E U In) 

is as close to 1/2 as we want-and certainly greater than 1/3. It remains to show that if 

x E G then 

IDn·N f(x) - Dn-N-if (x)I 2:: 1/2. 

Indeed, by Lemmas 3.8(a) and 3.8(b), we have for x E G, 

Dn·N f (x) = I::>u-N(X) + Dn·N'n-N(X), 
u<n 

and 

u<n 

Hence, by Lemma 3.8(c), we have for x E G, 

IDn-Nf(x) - Dn·N-if(x)I = IDn·N'n-N(x)l 2::: 1/2. 

But this inequality says that 

L m{IDn·N f(x) - Dn·N-if(x)I 2:: 1/2} 2:: iN, 
n::,;N 

Since llf11L2 = ./N, we have by Holder's inequality 

L m{IDn·N f(x) - Dn·N-if(x)I 2:: 1/2} 2:: 1./N · 11/llo. 
n::,;N 

There is also the Lp result: for 1 ::: p < 2, we have by Holder's inequality 

L m{IDn·N f(x) - Dn-N-if(x)I 2:: 1/2} 2:: 1 · Nl-p/211/llf P. 

n::,;N 

Although this computation was done in [O, l], it could equally well be done in Zand 

this would deny the analogous inequalities in any ergodic dynamical system. That is, 

using Proposition 3.8 in Rosenblatt and Wierdl [16], this estimate shows that for any 

ergodic dynamical system, and any p, 1 ::: p < 2, there exists a function f E Lp such 

that 
00 

Lm{l(A2t+1 - A2t)fl > 1} = oo. 
k=I 

In addition, using random translations and Sawyer's principle, as described in Lemma 2.8 

in [16], one can show for any ergodic dynamical system, and any p, 1 ::: p < 2, there 

exists a sequence (mk) and a function f E Lp such that 

sup l(A2t+1 - A2t)f o rmt I = oo a.e. 
k 
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Moreover, in contrast to the positive results which were proved in Theorem 3.7, the 

associated q-functions cannot be bounded here. That is, for any ergodic dynamical 

system, and any q, 1 :::: q < 2, and p, 1 :::: p < oo, there exists a function f E Lp such 

that Sq f = oo a.e. 

Corollary 3.7 and Example 3.8 suggest several very interesting questions concerning 

large deviations of differences. The most obvious one is what conditions are needed on 

(nk) for there to be a large deviation result in some Lp as in Corollary 3.7. But more 

specifically, the question is when does the randomly translated maximal function 

D* f = sup l(Ant+i - Ant)f o rmt I 
k 

satisfy a weak Li-estimate. If it does, then it is strong Lp, 1 < p < oo, by Marcinkiewicz 

interpolation. It would follow by Theorem 3.2, that Theorem 1.1 holds, a significantly 

different approach than the spectral method used previously. Moreover, we can see if 

D* f is weak L 1, then the constant does not depend on (mk) and there is a large deviation 

inequality: 
oo C 

Lm{l(Ant+i -Ant)fl > >..} ::S: illfll1. 
k=I 

Example 3.8 is showing that for lacunary (nk) there are no such results. For this reason, 

the following from [15] is worth pointing out here. 

THEOREM 3.9. There is a constant C such that for all dynamical systems, 

oo C 
Lm{l(An+I - An)fl >A}:::: illf111. 
n=I 

Proof. Clearly, 

1 1 
l(An+I - An)fl :::: n + l Anlfl + n + 1 IJ o rn+\ 

Hence, by a theorem in Rosenblatt and Wierdl [16], 

CX) 

L m{l(An+I - An)f I > >..} 

n=I 

0 

Remarks 3.10. The strong Lp estimate for supk l(Ak+I - Ak)f o rmtl when 1 < p < oo 

that is a consequence of Theorem 3.5 is trivial since II Ak+1 -Ak llp :::: C / k and so trivially 

CX) 

< L ll(Ak+I - Ak)f o t'mk II; 
k=I 
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00 

L ll(Ak+I - Ak)fll; 
k=l 

The fact that Cp does not need to tend to oo as p ~ I is the only point given by 

Theorem 3.5 for Lp, p > 1. 

The same argument as in Theorem 3.5 actually gives the following. 

THEOREM 3.11. Let nk = kL for some fixed L E z+. Then for some constant C1, 

f m { sup IAn -Ank)fl >A}:':: C ll/111, 
k=l nk:Sn:Snk+l A 

for all f E L1. 

Proof This follows immediately from a result in Rosenblatt and Wierdl [16] and the 

inequality that for nk ::: n ::: nk+1, 

D 

Let us make one last observation about weak L 1 inequalities for D* that was 

commented on before in a special case. 

THEOREM 3.12. For a sequence (dk) of finite measures Z, the following are equivalent: 

(1) there is a constant C such that 

# { s~p ldk * cp * Omk I > ). } :':: ~ llcplle, 

for all (mk); 

(2) for each (mk), there is a constant C with 

# { s~p ldk * cp * Omk I > ). } :':: ~ llcplle,, 

(3) 
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proof. Clearly (1) implies (2). Also, (1) implies (3) by separating the supports of dk * <p 

with suitable mk, in the case of supp (<p) being finite. Furthermore, (3) clearly implies 

(1) because 

00 

< L#{ldk *'P*Omkl > A} 
k=t 
00 

= L #{ldk * 'Pl > A}. 
k=t 

It remains to prove that (2) implies (1). This can be done in a manner similar to the 

proof in Theorem 3.5. So assume (2) and that (1) fails. Then for each constant C, and 

s > 0, there is <p, ll'Pllt ::: E, and some (mk) such that for some A, 

s~p A# { s~p ldk * <p * Omk I > A} > C. 

Hence, there is some ml, ... , m1, and At with 

At# I sup ldk * <p *Omli> AJ} > C. 
I::::k::::N1 

We inductively choose Ct, Et, 'Pl and mf, ... , mit so that ll'Pt llt, < Et and for some 

J..t > 0, 

At# I sup ldk *'Pl* omi I > At} > Ct. 
Nt-1+t::::k::::Nt 

Let <p = :E~1 'Pt· Now for each e, e::: 2, 

~t# I sup ldk * <p * Omf I > At} 
• Nt-1+1::::k::::Nt 

> At# I sup ldk * 'Pt * Omf I > 3At} 
Nt-1+1:Sk:SNt 

-At#{ sup ldk * I: 'Ps * Omf I > At} 
Nt-1+1:Sk::::Nt s=I 

-At#{ sup ldk * t 'Ps * Omf I >At} 
Nt-1+1::::k::::Nt s=l+I 

> At# I sup ldk * 'Pl * Omf I > 3At} 
Nt-1+1:::J::::Ni 

l-1 I A } - L At sup ldk * 'Ps * Omf I > e ~ l 
s=t Ni-1+1::::k::::Nt 

-At#{ k=t+I ldk * s~l 'Ps * Omf I > At} 

> Ct - I:<e - l)Cll'Pslll1 - II t ldk * t 'Ps * 0mk 111 

s=t k=Ni-i+l s=l+I l1 
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where C is a constant depending on (mD guaranteed to exist by (2). Since 

by a suitable choice of (ce), Ce, we can guarantee that 

Ae# I sup ldk * <p * Omz I > At) 
N1-1+I:ock:ocNt 

is unbounded as e tends to oo. But then with mk being (mf : e 2: 1, k = 1, ... , Ne), 

Ae# { s~p ldk * rp * 8m* I > At} 

is unbounded as e tends to oo, so (2) fails form. Hence, (2) implies (1). D 

This last result should clarify the connection between any weak L 1 estimate for 

a randomly translated maximal function and the large deviations of the operators in 

question. In particular, when both hold, 

00 

Lm{ldk *fl> A}< oo, 
k=I 

for all A > 0, f E L 1. In this context, this itself is usually enough to give the 

homogeneous inequalities of Theorem 3.12. Indeed, from Theorem 3.12, we see that 

the issue of proving a large deviation result like 

oo I 
Lm{l(Ank+1 - An*)fl >A}~ ;::11/111 
k=I 

can be equivalently formulated as showing that for any fixed (nk), and f E L 1, if (mk) 

as arbitrary (perhaps even rapidly enough increasing) then 

(Ank+I -Ank)f O rm*(x)-+ 0 a.e. X. 

Moreover, by the usual transfer methods, such a result would hold in some aperiodic 

dynamical system if and only if it held in them all. But the non-homogeneous inequality 

above would give this convergence result in any dynamical system in which it held. 

Note. In joint work of R. Jones, R. Kaufman, J. Rosenblatt and M. Wierdl done after 

this article was in press, a number of the questions unresolved here have been answered; 

this work will appear soon elsewhere. 
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