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Abstract. We show rather unexpectedly and surprisingly the existence of a hyperbolic
Riemann surface W enjoying the following two properties: firstly, the converse of the cel-
ebrated Parreau inclusion relation that the harmonic Hardy space HM2(W) with exponent
2 consisting of square mean bounded harmonic functions on W includes the space HD(W)
of Dirichlet finite harmonic functions on W , and a fortiori HM2(W) = HD(W), is valid;
secondly, the linear dimension of HM2(W), hence also that of HD(W), is infinite.

1. Introduction. It is a traditional use of notation to adopt H(R) as the class of har-
monic functions on a Riemann surfaceR in the harmonic classification theory of Riemann sur-
faces (see e.g. [13]). In this paper we are mainly concerned with the linear subspaceHM2(R)

of H(R) consisting of those harmonic functions u such that u2 admits a harmonic majorant h
on R, i.e., u2 � h on R. This property is usually referred to as being square mean bounded
(cf. e.g. [1, p. 216]). The part M2 in the notation HM2(R) thus suggests the square mean.
Let {Ω} be the directed net of regular subregions Ω of an open (i.e., noncompact) Riemann
surface R, which serves as an exhaustion Ω ↑ R of R. Take a u ∈ H(R) and we examine
when u2 admits a harmonic majorant. We denote by HΩ

u2 the harmonic function on Ω with

boundary values u2 on ∂Ω . Since u2 is subarmonic on R, by a simple observation based upon
the maximum principle, we see that

(1.1) HΩ
u2 � HΩ ′

u2 (Ω ⊂ Ω ′)

on Ω and thus we conclude that

(1.2) lim
Ω↑R H

Ω
u2 =: h

exists and is either a positive harmonic function on R, i.e., h ∈ H(R)+, or h ≡ +∞. The
former case occurs if and only if h(o) < +∞ for one and hence for every reference point
o ∈ R and the convergence of (1.2) is of locally uniform onR. The former case is thus exactly
the case u ∈ HM2(R) and u2 � h on R in (1.2) which is not only a harmonic majorant of
u2 but also the least harmonic majorant of u2. This justifies the term, square mean bounded,
since
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HΩ
u2 (o) =

∫
∂Ω

u2dµΩ � h(o)

for every Ω , i.e., the square mean
∫
∂Ω
u2dµΩ is bounded by h(o) for every Ω containing o,

where µΩ is the harmonic measure on ∂Ω with the reference point o.
On the other hand the subharmonicity of u2, or the superharmonicity of −u2, can be

observed from the following different view point. Since −(u2 − HΩ
u2 ) is the Green potential∫

Ω g(·, z;Ω)dν(z), where g(·, z;Ω) is the Green function on Ω with its pole at z ∈ Ω , with
the measure ν whose density dν(z)/dxdy (z = x + iy) is given by the 1/2π times

�(u2 −HΩ
u2 ) = �u2 = 2|∇u|2

on Ω with the gradient ∇u of u, we have the Riesz decomposition

(1.3) u2 = HΩ
u2 − 1

π

∫
Ω

g(·, z;Ω)|∇u(z)|2dxdy
on Ω . As a counterpart of (1.1) we also have

(1.4)
1

π

∫
Ω

g(·, z;Ω)|∇u(z)|2dxdy � 1

π

∫
Ω ′

g(·, z;Ω ′)|∇u(z)|2dxdy (Ω ⊂ Ω ′)

on Ω and a fortiori, corresponding to (1.2), we deduce

(1.5) lim
Ω↑R

1

π

∫
Ω

g(·, z;Ω)|∇u(z)|2dxdy = 1

π

∫
R

g(·, z;R)|∇u(z)|2dxdy
exists on R, which is also either finite or infinite corresponding to h(o) < +∞ or h(o) = +∞
in (1.2). Here the limit g(·, z;R) := limΩ↑R g(·, z;Ω) exists on R, which is either the Green
function on R with its pole at z in R or +∞ on R. In the former (resp. latter) case, R is
referred to as being hyperbolic (resp. parabolic). In the hyperbolic case, the convergence of
the above limit is of locally uniform on R \ {z}. Therefore we get the following result.

THEOREM A. A nonconstant harmonic function u on R is square mean bounded, i.e.,
u ∈ HM2(R) if and only if R is hyperbolic and

(1.6)
∫
R

g(o, z;R)|∇u(z)|2dxdy < +∞
for one and hence for every reference point o in R.

We are unable to locate the place where the above statement exactly in this identical form
is mentioned but essentially it is found, for example, in the celebrated paper of Parreau [12]
and also in Doob [3] in the case of higher dimensions. Anyway an important point here is
the following. For locally Sobolev functions u on R, i.e., u ∈ W 1,2

loc (R), we can consider the
squared seminorm called the Dirichlet integral

(1.7) D(u;R) :=
∫
R

du ∧ ∗du =
∫
R

|∇u(z)|2dxdy � +∞
of u taken over R. The linear subspace HD(R) of H(R) consisting of functions u ∈ H(R)

with finite Dirichlet integrals D(u;R) < +∞ is one of long standing important classes of
functions in the classification theory of Riemann surfaces. Viewing the integral in (1.6) as a
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weighted Dirichlet integral, we are interested in comparing its finiteness with that of genuine
one in (1.7). Since the density in (1.6) is bounded (and even “vanishing” at the ideal boundary)
except in a vicinity of the singularity o which is of order log(1/|z|) in terms of local parameter
z at o and thus integrable in the vicinity of o with respect to the measure dxdy, we can say
that the condition D(u;R) < +∞ assures the inequality (1.6). This gives a notable Parreau
inclusion relation:

(1.8) HM2(R) ⊃ HD(R)

for any open Riemann surface R. This is the relation we are mainly concerned with in this
paper.

It may be a bit digressing from the subject at hand but let us mention the following. The
simplest subclass ofH(R) except {0} is the class R viewed as that of constant functions on R,
where basically R is used to indicate the real number field. Trivially

HM2(R) ⊃ R

is the case for every surfaceR. One might ask when the inverse inclusion relationHM2(R) ⊂
R holds, or equivalently, when HM2(R) = R holds. In the classification theory we denote
by OHM2 the class of Riemann surfaces R with HM2(R) = R. The primary theme of the
classification theory is to characterize the class OHX for various properties X of functions
related to harmonic functions and also compare OHX with OHY for different properties X
and Y . The inverse inclusion HM2(R) = R, or equivalently R ∈ OHM2 , thus yields quite
trivially the finite linear dimensionality of HM2(R), i.e., dimHM2(R) = 1 in the present
case, which is a kind of degeneracy of R. In analogy to the above mentioned frame, we
propose to study the inverse inclusion problem to (1.8): what kind of degenracy occurs to R
when the inverse incusion relation to (1.8) holds, i.e., HM2(R) ⊂ HD(R) or equivalently
HM2(R) = HD(R). More concretely, we ask whether the inverse inclusion relation

(1.9) HM2(R) = HD(R)

implies the degeneracy

(1.10) dimHM2(R) < +∞ .

Taking an exponent p in (1,+∞) other than 2, we can consider the p mean bounded class
HMp(R) exactly in the same fashion as in the case p = 2, i.e., u ∈ HMp(R) if and only if
u ∈ H(R) and there exists an h ∈ H(R) such that |u|p � h on R. The classes HMp(R) (1 �
p � ∞) with HM1(R) = HP(R), the class of essentially positive harmonic functions on
R (cf. Section 2), and HM∞(R) = HB(R), the class of bounded harmonic functions on R,
are also called harmonic Hardy spaces. Corresponding to the same question as above asked
to p ∈ (1,+∞) \ {2}, the first named author obtained the following result (see [5] and the
reference therein).

THEOREM B. If the class identity HMp(R) = HD(R) for a p with 1 < p � +∞
and p �= 2 holds, then the underlying Riemann surface R is so degenerate as to satisfy
dimHMp(R) < +∞.
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(For the part HM∞(R)(≡ HB(R)) = HD(R), see also [6], [7] and [9]. See also [10] for a
different and actually easier and simpler proof of the above theorem for p ∈ (1,∞) \ {2}).
Here, as is easily seen, HMp(R) ⊃ HM2(R) ⊃ HD(R) for every R if 1 < p < 2 and
therefore HMp(R) = HD(R) is certainly an inverse inclusion for 1 < p < 2 and a fortiori
Theorem B is the answer to the inverse inclusion problem. However, there are no inclusion
relations between HMp(R) and HD(R) for 2 < p � +∞ for general R. In this sense the
relation HMp(R) = HD(R) has nothing to do with the inverse inclusion and the meaning
of Theorem B might not be too clear beyond its mere formality for 2 < p < +∞. Anyway,
in view of this fact, i.e., Theorem B, it might be quite natural to expect that Theorem B
continues to hold even for p = 2. Therefore it may be a bit surprising that the answer to the
above question concerning (1.9) and (1.10) is negative, and to report on which is the main
purpose of this paper. Namely, we will prove the following result based upon the construction
of a suitable Riemann surface.

THE MAIN THEOREM. There is an open Riemann surface W such that although the
inverse inclusion relation HM2(W) = HD(W) holds and yet HM2(W) contains sufficiently
many functions in the sense that dimHM2(W) = +∞.

At the end of this introduction we state the outline of this paper. The paper consists of 7
sections including the present section. Since we essentially make use of the Wiener compact-
ification theory throughout this paper, we explain briefly its core part in Section 2 to an extent
we really use in this paper. Particular care is also done in this section on quasibounded har-
monic functions from the view point how they are controlled by their behaviors on the Wiener
harmonic boundary δR. In addition to two really basic properties of the class HM2(R), the
representation theorem HM2(R) = L2(δR,ω) (ω being the harmonic measure on δR) of
fundamental importance is given in Section 3. The proof of our main theorem essentially
starts from Section 4. We coined the term afforested surface in [11]. Surfaces under this name
are now well recognized to be very useful in many instances including the present construc-
tion required in the main theorem. We will construct an afforested surface W in this section,
which is the surface sought in the main theorem. The results obtained or explained in Sections
2 and 3 are speciallized in Section 5, from the general Riemann surfaces R to the particular
surface W constructed in Section 4. In general we cannot say anything about the relation
between the value w(o) (o ∈ R) (harmonic measure) and its Dirichlet integral D(w;R) for
harmonic measure function w on general Riemann surfaces R. However, on our W we have
a finite positive constant K such that D(w;W) � K · w(o) (o ∈ W) for every harmonic
measure function w on W . A specified form of this will be proved in Section 6. This result
is fatally impotant. We will not mention a remarkable fact that the mutual Dirichlet integral
−∞ � D(w1, w2;R) � 0 for harmonic measures w1 and w2 on a general surface R with
w1 ∧ w2 = 0 but a special part of this result for the special surface R = W is also added in
this section, which is used essentially in the proof of the main theorem. The proof of the main
theorem is completed in Section 7.
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2. Wiener harmonic boundary. Since we will make an essential use of the theory of
Wiener compactifications of Riemann surfacesR, we briefly compile it here to an extent really
needed in our proof of the main theorem (cf. e.g. [2], [13]). The results stated in this section
are of course all well known for specialists but still we added proofs to certain core facts
for convenience of the reader. A continuous function f on R is referred to as a (continuous)
Wiener function if |f | is dominated by some superharmonic function on R and harmonizable
in the following sense: the net (HΩ

f )Ω converges to an hf ∈ H(R) locally uniformly on R,
i.e.,

hf = lim
Ω↑R H

Ω
f

locally uniformly on R, where (Ω) is the directed net by inclusion of regular subregionsΩ of
R andHΩ

f is the PWB (i.e., Perron-Wiener-Brelot) solution of the harmonic Dirichlet problem
on Ω with the boundary data f on ∂Ω . A function g on R is said to be a quasipotential or
occasionally Wiener potential if |g| is dominated by a potential on R, i.e., a superharmonic
function with the vanishing greatest harmonic minorant on R (cf. e.g. [4]). We denote by
W(R) the class of continuous Wiener functions on R and by W0(R) the subclass of W(R)

consisting of continuous quasipotentials on R so that we have the following form of the Riesz
decomposition theorem:

(2.1) W(R) = HP(R)⊕ W0(R) (direct sum) ,

i.e., any f ∈ W(R) is uniquely decomposed into the sum f = hf + gf of the harmonic
component hf ∈ HP(R) and the quasipotential component gf ∈ W0(R), where HP(R) is
the class of u ∈ H(R) such that |u| admits a harmonic majorant so that HP(R) can also be
characterized by HP(R) := H(R)+  H(R)+, the class of differences of two nonnegative
harmonic functions on R. For this reason h ∈ HP(R) is occasionally said to be essentially
positive on R. The class HP(R) forms a vector lattice with lattice operations ∨ as join and ∧
as meet defined as follows: u ∨ v (resp. u ∧ v) for two harmonic functions u and v in H(R)
denotes the least (resp. greatest) harmonic majorant (resp. minorant) of u and v on R. Then
u ∨ v and u ∧ v exist on R and again belong to HP(R) as far as u and v belong to HP(R).
Since it can be easily ascertained thatHP(R) really forms a vector lattice, the canonical way
of decomposingHP(R) = H(R)+ H(R)+ is the Jordan decomposition

(2.2) u = u+ − u− (u+ := u ∨ 0 , u− := (−u) ∨ 0)

for any u ∈ HP(R) with u+ and u− in H(R)+. The decomposition (2.1) can also be used
to define the class W(R), i.e., a continuous Wiener function on R is a continuous function
on R expressed as a sum of an essentially positive harmonic function on R and a continuous
quasipotential on R. It can happen that there are no nonzero pontentials on R and in such a
case R is referred to as being parabolic and otherwise hyperbolic. We use the notation OG

for the class of parabolic Riemann surfaces R which are also characterized by the equivalent
condition that there is no Green function on R. We denote by OHP the class of Riemann
surfaces R such that HP(R) = R. Then we know (cf. e.g. [13]) that

OG ⊂ OHP .
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If R ∈ OG, then we understand that W(R) = W0(R) = CB(R), the class of bounded
continuous functions on R.

We need to add a few words on an important subclass R(R) of W(R) explained below.
The Dirichlet space L1,2(R) is the class of Dirichlet functions f on R characterized by f ∈
W

1,2
loc (R), the locally Sobolev (1,2) function space on R, and D(f ;R) < +∞. A continuous

Dirichlet function f on R, i.e., f ∈ L1,2(R)∩C(R), is also called as a Royden function on R
and the totality of Royden functions f on R is denoted by R(R). We also denote by R0(R)

the class of f ∈ R(R) such that there is a sequence (fn)n∈N ⊂ R(R) with the following
properties: each fn has a compact support in R (n ∈ N); fn → f (n → ∞) locally uniformly
on R; and, D(fn − f ;R) → 0 (n → ∞). We call f ∈ R0 a continuous Dirichlet potential
or Royden potential. We have

(2.3) R(R) ⊂ W(R) , R0(R) ⊂ W0(R) .

The Riesz decomposition (2.1) applied to R(R) is in particular referred to as the Royden-
Brelot decomposition and takes the form

(2.4) R(R) = HD(R)⊕ R0(R) (orthogonal decomposition) ,

i.e., every f ∈ R(R) is uniquely decomposed into the sum f = hf + gf of hf ∈ HD(R)

and gf ∈ R0(R) satisfying the Dirichlet principle:

(2.5) D(f ;R) = D(hf ;R)+D(gf ;R) ,
where, as already introduced in the introduction,

HD(R) := {u ∈ H(R);D(u;R) < +∞}
and it is known (cf. e.g. [13]) that the following Virtanen-Royden property is fullfilled:
HD(R) is a vector sublattice of HP(R), i.e., HD(R) ⊂ HP(R) and u ∨ v and u ∧ v

belong to HD(R) for every pair of u and v in HD(R), and, for example, u = limn→∞ u ∧ n
locally uniformly on R and limn→∞D(u − u ∧ n;R) = 0, where n ∈ N, the set of positive
integers.

The Wiener compactification R∗ of any given Riemann surface R is characterized by
the following 4 properties: R∗ is a compact Hausdorff space; R∗ contains R as its open and
dense subspace; every f ∈ W(R) can be extended uniquely to R∗ as a [−∞,+∞]-valued
continuous function on R∗; and, thus extended class W(R) separates points in R∗. We know
the unique existence of R∗ for every R. The set

γ = γR := R∗ \ R
is the Wiener boundary of R. The Wiener harmonic boundary, or simply harmonic boundary
when Wiener is clear,

δ = δR

of R is the set of points ζ ∈ γ such that

(2.6) lim
z∈R,z→ζ

g(z) = 0
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for every (not necessarily continuous) quasipotential g on R so that δ is also compact. Con-
sider the harmonic Dirichlet problem on R with a boudary data ϕ on γ treated by the usual
PWB (i.e., Perron-Wiener-Brelot) procedure. In case ϕ is resolutive we denote by HR

ϕ the
PWB-solution. It is seen that every bounded continuous function on γ is resolutive. We can
say that δ characterized by (2.6) is also defined as the set of regular points ζ ∈ γ in the sense
of the PWB procedure:

(2.7) lim
z∈R,z→ζ

HR
ϕ = ϕ(ζ )

for every bounded continuous function ϕ on γ . Observe that three properties R ∈ OG,

W(R) = W0(R) = CB(R), and δR = ∅ are mutually equivalent. (In this case the Wiener
compactification R∗ of R is nothing but identical with the Čech compactification of R, which
is the maximal ideal space of the normed ring CB(R) of bounded continuous functions on
R.) Another important role of δ is the so called comparison principle. We denote by HB(X)
the linear space of bounded harmonic functions u on an open subset X of a Riemann surface
R and by Y (resp. ∂Y ) the closure relative to R∗ (resp. the relative bounday relative to R) of
any subset Y of R∗. For any u and v in HB(X), the comparison principle says that

lim sup
z∈X,z→ζ

u(z) � lim inf
z∈X,z→ζ

v(z)

for every ζ ∈ (∂X) ∪ (X ∩ δR) implies that u � v on X. A harmonic measure ω = ωo on γ
with the reference point o ∈ R is given by

HR
ϕ (o) =

∫
γ

ϕdω

for every ϕ ∈ C(γ ). Since ω(γ \ δ) = 0, we may replace γ by δ in the above definition. Thus
the values of the boundary data ϕ on γ \ δ inHR

ϕ does not affect onHR
ϕ and therefore we only

have to give the boundary data ϕ on δ when we treat the PWB-solution HR
ϕ .

In this final part of Section 2 we mention the Parreau decomposition of essentially posi-
tive harmonic functions. A function u ∈ HP(R) is said to be quasibounded on R if

(2.8) u = lim
s,t∈R+,s,t↑+∞

(u ∧ s) ∨ (−t) ,

where the convergence is of locally uniform on R. We denote by HPq(R) or by HB ′(R) the
class of quasibounded essentially positive harmonic functions on R so that

HB(R) ⊂ HB ′(R) ≡ HPq(R) ⊂ HP(R) .

A function u ∈ HP(R) is said to be singular if

(2.9) (u ∧ s) ∨ (−t) = 0

on R for every s and t in R+. We denote by HPs(R) the class of singular essentially positive
harmonic functions on R. Then the identity

(2.10) HP(R) = HPq(R)⊕HPs(R) (direct sum)
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is referred to as the Parreau decomposition since it was pointed out by Parreau [12]. It is
easily checked that h ∈ HPq(R) (resp. HPs(R)) if and only if h+ and h− simultaneously
belong to HPq(R) (resp. HPs(R)). The following criterion is handy to use.

PROPOSITION 2.11. An essentially positive harmonic function u ∈ HP(R) on R is
quasibounded on R if and only if

(2.12) u = HR
u|δR

on R, and u is singular on R if and only if

(2.13) u|δR = 0 .

In paticular, the quasibounded component of u is HR
u|δ and the singular component of u is

u−HR
u|δ in the Parreau decomposition of u:

(2.14) u = HR
u|δ + (u−HR

u|δ) .

Before proceeding to the proof of the above proposition we insert here a remark on some
property of PWB-solutions. For two resolutive [−∞,+∞]-valued continuous functions ϕ
and ψ on δ = δR, we define ϕ ∪ ψ and ϕ ∩ ψ by

(ϕ ∪ ψ)(ζ ) = max(ϕ(ζ ), ψ(ζ )) , (ϕ ∩ ψ)(ζ ) = min(ϕ(ζ ), ψ(ζ ))

for every ζ ∈ δ, which are again resolutive [−∞,+∞]-valued continuous functions on δ. We
have the consistency between (∨,∧) and (∪,∩) in the following sense:

(2.15) HR
ϕ ∨HR

ψ = HR
ϕ∪ψ , HR

ϕ ∧HR
ψ = HR

ϕ∩ψ
on R. This will be used conveniently in the following proof of Proposition 2.11.

PROOF OF PROPOSITION 2.11. For simplicity we also write u for u|δ for [−∞,+∞]-
valued continuous functions u on R∗ such as u ∈ HP(R). First we show the condition (2.12)
for u ∈ HP(R) implies the quasiboundedness of u on R. In fact,

u = HR
u = lim

s,t∈R+,s,t↑+∞
HR
(u∩s)∪(−t )

= lim
s,t∈R+,s,t↑+∞

(HR
u ∧HR

s ) ∨HR−t = lim
s,t∈R+,s,t↑+∞

(u ∧ s) ∨ (−t)
on R, i.e., u = lims,t∈R+,s,t↑+∞(u ∧ s) ∨ (−t) so that u ∈ HPq(R). Conversely, we assume
that u ∈ HP(R) is quasibounded onR and we are to show that u satisfies (2.12), i.e., u = HR

u

on R. We may assume u � 0 on R without loss of generality. Let un := u∧ n (n ∈ N). Then
un ↑ u locally uniformly on R and un = u ∩ n ↑ u pointwise on δ as n ↑ +∞. Then

u = lim
n↑+∞ un = lim

n↑+∞HR
un

= lim
n↑+∞HR

u∩n = HR
u

on R, as required.
Next we show the equivalence of (2.13) u|δ = 0 and u ∈ HPs(R). We may again

assume that u > 0 on R, and in this case, u ∈ HPs(R) is characterized by u ∧ t = 0
on R for every t ∈ R+, which is equivalent to that u � h ∈ HB(R)+ implies h ≡ 0
on R. Suppose first u|δ = 0. Then u � u ∧ t on R for every t ∈ R+ and this implies
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that 0 = u|δ � (u ∧ t)|δ � 0. Since u ∧ t ∈ HB(R)+, the maximum principle (as a
consequence of the comparison principle) shows that u ∧ t = 0 on R so that u ∈ HPs(R).
Conversely, assume that u ∈ HPs(R). Then u ∧ t = 0 on R for every t ∈ R+ and, since
0 = (u ∧ t)|δ = (u ∩ t)|δ = (u|δ) ∩ t , we obtain (u|δ) ∩ t = 0 pointwise on δ for every
t ∈ R+, which implies u|δ = 0, i.e., (2.13), as required. �

COROLLARY 2.16. An essentially positive harmonic function u ∈ HP(R) on R is
quasibounded if and only if, firstly, u ∈ L1(δ, ω), i.e.,

(2.17)
∫
δ

|u|dω < +∞ ,

and, secondly, the Poisson representation

(2.18) u(z) =
∫
δ

udωz (z ∈ R)
holds, where ωz is the harmonic measure on δ with the reference point z ∈ R.

PROOF. Observe that u ∈ HB ′(R) is equivalent to u+ +u− ∈ HB ′(R) and u+ +u− =
|u| on δ. In general, we have HR

ϕ (z) = ∫
δ ϕdωz for every [−∞,+∞]-valued continuous

function ϕ ∈ L1(δ, ω). Hence, by Proposition 2.11, we see that u ∈ HB ′(R) if and only if
both of (2.17) and (2.18) are valid. �

At this point it might be merely a grandmotherly solicitude to once more confirm that
the Lebesgue space L1(δ, ω) is the quotient space consisting of equivalence classes of ω-
integrable functions, where two ω-integrable functions are equivalent when they are identical
ω-a.e. on δ. Thus, if we say that a function f belongs to L1(δ, ω), then we simply mean that
f is ω-integrable over δ, i.e.,

∫
δ
|f |dω < +∞. But if we say f ∈ L1(δ, ω) has a property P

(such as continuity, positivity, and the like), then it means that there is a representative g of
the equivalence class containing f (i.e., g is ω-integrable and g = f ω-a.e. on δ) such that
g has the property P . For example, let us recall the Bauer theorem (cf. e.g. [2]) maintaining
that a function f on δ is resolutive if and only if f ∈ L1(δ, ω), and in this case

HR
f (z) =

∫
δ

f dωz

for every z ∈ R. This theorem actually consists of the following two assertions: firstly, if f is
resolutive, then f is ω-integrable; secondly, if f ∈ L1(δ, ω), then we can find a resolutive g
on δ with g = f ω-a.e. on δ. Keeping these, possibly overcautious and unnecessary, remark in
mind, however, we rephrase the above corollary 2.16 as stated below. We denote by C(R; R)
with R = [−∞,∞] the space of [−∞,∞]-valued continuous functions on δ.

PROPOSITION 2.19. The following relations hold:

(2.20) HB ′(R)|δ = L1(δ, ω) ⊂ C(δ; R) .

PROOF. Once the first identity is established, then the last inclusion follows at once
since HB ′(R) ⊂ C(R∗; R) as a consequence of the definition of R∗. In view of (2.17), we
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see that the space HB ′(R)|δ is included in the space L1(δ, ω) and therefore to complete the
proof of (2.20) we only have to show that

(2.21) L1(δ, ω) ⊂ HB ′(R)|δ .
For the purpose choose an arbitrary f ∈ L1(δ, ω). By the Bauer theorem there is a g ∈
L1(δ, ω) such that g = f ω-a.e. on δ and g is resolutive on δ. Set u := HR

g on R. Since

trivially u = HR
u on R, we deduce that HR

u−g = 0 on R. Observe that, since (u − g)+ =
(u− g) ∪ 0,

HR
(u−g)+ = HR

(u−g)∪0 = Hu−g ∨HR
0 = 0 ∨ 0 = 0 .

Similarly, since (u− g)− = −((u− g) ∩ 0), we have

HR
(u−g)− = −HR

(u−g)∩0 = −(HR
u−g ∧HR

0 ) = −(0 ∧ 0) = 0 .

Finally, since |u− g| = (u− g)+ + (u− g)−, we see that HR|u−g | = 0 on R and of course at
o. Hence ∫

δ

|u− g|dω = HR|u−g |(o) = 0

so that |u − g| = 0 ω-a.e., and with which f = g ω-a.e. on δ implies f = u ω-a.e. on δ,
proving (2.21). �

3. Basics for square mean boundedness. We state three well-known fundamental
properties of the Hardy space HM2(R) of square mean bounded harmonic functions on a
Riemann surfaces R �∈ OG. By the same reason as in Section 2 we also add proofs for them
to stress how the Wiener compactification theory can be conveniently used for these purposes,
which is of course again entirely unnecessary for those familiar with classical harmonic Hardy
spaces and the ideal boundary theory or automorphic functions in the uniformization theory.
We saw in the introduction that R ∈ OG implies HM2(R) = R and therefore we impose
the restriction on R here and hereafter in this paper that R is hyperbolic in order to avoid the
trivial situation. Recall that HP(R) is a vector lattice with respect to the harmonic lattice
operations ∨ and ∧. Concerning this, we have the following fact.

PROPOSITION 3.1. The spaceHM2(R) is a vector sublattice of the spaceHP(R).

PROOF. We only have to show that u+ := u∨ 0 exists and belongs to HM2(R) for any
given u ∈ HM2(R). If u ≡ 0 on R, then nothing is left to prove and hence we may assume
that u �≡ 0 on R. Then there exists an h ∈ H(R)+ \ {0} such that u2 � h on R. The key
observation in this present proof is to note the following simple fact: h1/2 is superharmonic on
R as a consequence of �h1/2 = (−1/4h3/2)|∇h|2 � 0 on R. From u ∪ 0 � |u| and u2 � h,
or |u| � h1/2, on R, it follows that

u ∪ 0 � h1/2

on R. In view of the fact that u+ is the least harmonic majorant of the subharmonic function
u ∪ 0 on R and h1/2 is one of superharmonic majorant of u ∪ 0 on R, we deduce that u∪ 0 �
u+ � h1/2, or (u+)2 � h, on R, which amounts to the same that u+ exists and belongs to
HM2(R) so that HM2(R) is a vector sublattice of HP(R), as required. �
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The following is the most decisively important basic property of the class HM2(R) and
the furthest from the triviality among three basic properties discussing in this section.

PROPOSITION 3.2. Every square mean bounded harmoic function on R is
quasibounded on R, i.e., HM2(R) ⊂ HB ′(R) ≡ HPq(R).

PROOF. Take an arbitrary u ∈ HM2(R) and we are to show that u ∈ HB ′(R) ≡
HPq(R). Let u = u+ − u− be the Jordan decomposition of u in the vector lattice HM2(R)

so that u+ and u− are in HM2(R). If we can show that u+ and u− belong to HB ′(R), then
we may conclude that u ∈ HB ′(R). For this reason we can assume that u > 0, or u ∈
HM2(R)

+ \ {0}, on R to prove u ∈ HB ′(R). Let u = uq + us be the Parreau decomposition
of u into uq ∈ HPq(R) ≡ HB ′(R) and us ∈ HPs(R). Trivially u2

q � u2 and u2
s � u2

since uq � 0 and us � 0 on R along with u � 0 on R. We are thus to prove that if
u ∈ HM2(R)

+ ∩ HPs(R)
+, then u ≡ 0 on R. We prove this by contradiction. Assume

contrariwise u > 0 on R so that 2a := u(o) > 0, where o is the reference point in R. Let G
be the component of the open set {z ∈ R; v(z) > 0} containing o, where v := u − a. Since
u ∈ HM2(R)

+, there is an h ∈ H(R)+ with u2 � h on R. Hence

v2 = (u− a)2 � 2u2 + 2a2 � 2h+ 2a2 =: k ∈ H(R)+ .
In particular, v2 � k on G. By the definition of G, we have v|∂G = 0. Observe that GΩ :=
G ∩Ω for regular subregions Ω of R containing o constitute an exhaustion {GΩ} of G. Let
wΩ ∈ HB(GΩ)

+ with boundary data wΩ = 0 on (∂G) ∩ Ω and wΩ = 1 on (∂Ω) ∩ G.
Since (wΩ)Ω forms a decreasing net, the limit

wG := lim
Ω↑R wΩ

exists on G and the convergence is the local uniform one on G ∪ ∂G and is referred to as the
relative harmonic measure (function) of G. Then either wG ≡ 0 or wG > 0 on G and if we
have the former case, then we denote the situation byG ∈ SOHB (see [13]). By u ∈ HPs(R),
we have u|δ = 0 and a fortiori v|δ = −a < 0. Hence we see that

G ∩ δ = ∅ ,
which is known to be equivalent to G ∈ SOHB (see [13]). Therefore we have

wG = lim
Ω↑R wΩ = 0

on G. By using the harmonic measure νΩ on ∂GΩ with the reference point o ∈ GΩ and the
Schwarz inequality we see that

v(o) = HGΩ
v (o) = HGΩ

vwΩ
(o) =

∫
∂GΩ

vwΩdνΩ

=
∫
∂GΩ

v
√
wΩ

√
wΩdνΩ �

( ∫
∂GΩ

v2wΩdνΩ

)1/2( ∫
∂GΩ

wΩdνΩ

)1/2

= H
GΩ
v2wΩ

(o)1/2 ·HGΩ
wΩ
(o)1/2 = H

GΩ
v2 (o)1/2 ·HGΩ

wΩ
(o)1/2



244 H. MASAOKA AND M. NAKAI

� H
GΩ
k (o)1/2 ·HGΩ

wΩ
(o)1/2 = √

k(o)wΩ(o) ,

i.e., we have v(o)/
√
k(o) �

√
wΩ(o) for every admissibleΩ . On lettingΩ ↑ R, we derive a

contradiction 0 < v(o)/
√
k(o) �

√
wΩ(o) ↓ 0. �

Recall that the harmonic measure ω = ωo on the harmonic boundary δ = δR of R with
the reference point o ∈ R is the Borel measure on δ such that

HR
ϕ (o) =

∫
δ

ϕdω

for every ϕ ∈ C(δ). If we denote by ωz the harmonic measure on δ with the other reference
point z ∈ R switched from o, then we have

HR
ϕ (z) =

∫
δ

ϕdωz

for every ϕ ∈ C(δ). The following characterization of HM2(R) in terms of HM2(R)|δ will
be heavily used in our proof of the main theorem.

PROPOSITION 3.3. A function u on R belongs to the class HM2(R) if and only if
firstly u belongs to HB ′(R) ≡ HPq(R) and secondly u|δ belongs to the Lebesgue space
L2(δ, ω), i.e.,

(3.4)
∫
δ

u2dω < +∞ .

PROOF. Suppose u ∈ HM2(R). By Proposition 3.2, u is in HB ′(R). For the proof
of (3.4) we consider the Jordan decomposition u = u+ − u− of u and note that u+ and u−
belong again toHM2(R). Since u+ = u∪0 and u− = −(u∩0) on δ, we have |u| = u+ +u−
on δ. Therefore (3.4) is equivalent to

∫
δ(u

±)2dω < +∞. For this reason we may assume that
u > 0 on R to show (3.4). Let u2 � h ∈ H(R)+ on R. Then HR

(u∧t )2 is the least harmonic

majorant of the subharmonic function (u ∧ t)2 on R for any t ∈ R+ so that∫
δ

(u ∩ t)2dω =
∫
δ

(u ∧ t)2dω = H(u∧t )2(o) � h(o)

for every t ∈ R+. On letting t ↑ ∞ we deduce
∫
δ u

2dω � h(o) < +∞, i.e., (3.4) is derived.
Conversely, when u ∈ HB ′(R) satisfies (3.4), we are to show that u ∈ HM2(R). Using the
Poisson expression

u(z) =
∫
δ

udωz (z ∈ R)
of u ∈ HB ′(R), by the Schwartz inequality we deduce

u(z)2 =
( ∫

d

u · 1dωz

)2

�
( ∫

δ

u2dωz

)
·
( ∫

δ

dωz

)
=

∫
δ

u2dωz

for z ∈ R. In view of (3.4),
∫
δ
u2dωz defines a harmonic function h � 0 on R and thus

u2 � h ∈ H(R)+, i.e., u ∈ HM2(R), as required. �
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COROLLARY 3.5. The following representation theorem holds for HM2(R):

(3.6) HM2(R)|δ = L2(δ, ω)

so that every f ∈ L2(δ, ω) has a continuous representative in the extended sense.

PROOF. By Propositions 3.3 and 2.19, we infer that

HM2(R)|δ = (HB ′(R)|δ) ∩ L2(δ, ω) = L1(δ, ω) ∩ L2(δ, ω) = L2(δ, ω)

and we are done. �

4. An afforested surface. We have finished two preparatory discussions, one on the
Wiener compactifications and the other on the basic properties about square mean bounded
harmonic functions, but we still need to add one more preliminary material which we call
afforested surfaces introduced in [11]. By a slit γ in a Riemann surface X we mean a simple
arc inX such that there exists a parametric discU := {|z| < 1} onX in which γ is represented
as γ = [−r, r] := {z ∈ U ; �z = 0, |�z| � r} (0 < r < 1). By a common slit γ in two
Riemann surfaces X and Y we understand that there are slits γX in X and γY in Y such that
γX and γY can be identified with a slit γ both in X and Y . We denote by

(X \ γ )∪× γ (Y \ γ )
the Riemann surface obtained by pasting X \ γ to Y \ γ crosswise along γ . An afforested
surface R := 〈P, (Ti )i∈N, (σi)i∈N〉 consists of three ingredients: an open Riemann surface P ,
called a plantation; a sequence (Ti)i∈N of open Riemann surfaces Ti each of which is called
a tree; and a sequence (σi)i∈N of common slits σi in P and Ti (i ∈ N) called roots of trees
Ti or root holes in P , where σi are assumed to be mutually disjoint and not accumulating
in P (cf. the remark stated at the end of this section). Then the afforested surface R :=
〈P, (Ti )i∈N, (σi)i∈N〉 is given by

(4.1) R := · · ·
(((

P \
⋃
i∈N

σi

)
∪× σ1 (T1 \ σ1)

)
∪× σ2 (T2 \ σ2)

)
· · · ,

which is called the afforested surface formed by foresting each tree Ti to P at its root σi
for every i ∈ N. Although after all it amounts to the same, some might feel the following
expression of R is easier to understand than the above original form (4.1) of R:

R =
⋃
n∈N

((
P \

⋃
i∈N

σi

)
∪× σn (Tn \ σn)

)
.

We are ready to proceed to the proof of the main theorem of this paper: there exists a
Riemann surface W such that

(4.2) HM2(W) = HD(W)

and yet W carries sufficiently many square mean bounded harmonic functions in the sense
that

(4.3) dimHM2(W) = ∞ .
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The surface W is given as an afforested surface W := 〈P, (Ti)i∈N, (σi)i∈N〉 as described
below. First as the plantation P of W we take simply the complex plane C:

(4.4) P := C .

One of the major contributions in the history of the classification theory of Riemann surfaces
is the establishment of the nonemptiness of the class OHP \ OG, i.e., the discovery of a
hyperbolic Riemann surface T with HP(T ) = R independently by Sario and Tôki (cf. e.g.
[1], [13]). We fix such a T and let

(4.5) Ti ≡ T ∈ OHP \ OG (i ∈ N) .

Fix a sequence (Ui)i∈N of mutually disjoint discs Ui in C not accumulating in C explicitly
given by

(4.6) Ui := �(4i, 1) (i ∈ N) ,

where �(c, r) (resp. �(c, r)) is the open (resp. closed) disc with radius r > 0 centered at
c ∈ C. Fix a reference point o arbitrarily in C \ ⋃

i∈NUi but for definiteness we let o = 0,
the origin of C, unless otherwise is explicitly mentioned. We denote by Mi the Harnack
constant of the compact set {o}∪ ∂Ui with respect to the classH(C\⋃

k∈N(1/2)Uk)
+, where

(1/2)Uk = �(4k, 1/2), so that Mi is the infimum of λ ∈ [1,∞] such that

λ−1u(z1) � u(z2) � λu(z1)

for every u ∈ H(C \ ⋃
k∈N(1/2)Uk)

+ and for every pair (z1, z2) of points z1 and z2 in
{o} ∪ ∂Ui . Hence Mi ∈ [1,∞) and, in particular,

sup
∂Ui

u � Mi · u(o)

for every u ∈ H(C \ ⋃
k∈N(1/2)Uk)

+. In the copy Ti of the fixed T ∈ OHP \ OG we take a
disc Ûi viewed as a copy of Ui and take a slit σi in Ui given by

(4.7) σi := [−si, si ] + 4i (si ∈ (0, 1/2))

which is denoted also by σ̂i if it is considered in Ûi (i ∈ N). We require for (si )i∈N to satisfy
the two conditions

(4.8) 0 < si+1 � si < 1/2 (i ∈ N) ,

i.e., (si )i∈N is a nonincreasing sequence, and, more seriously,

(4.9) K := 2π
∑
n∈N

Mn

log(1/sn)
< +∞ ,

which is achieved if (sn)n∈N ↓ 0 enough rapidly. For example the choice

sn := exp

(
− 2n

∑
1�j�n

Mj

)
(n ∈ N)
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suffices. Then the afforested surface W := 〈C, (Ti)i∈N, (σi)i∈N〉 determined by (4.4), (4.5),
and (4.7) with the specification (4.8) and (4.9) is the one sought, i.e.,

(4.10) W := · · · (((C \Σ)∪× σ1 (T1 \ σ1))∪× σ2 (T2 \ σ2)) · · · ,
where we have set

(4.11) Σ :=
⋃
n∈N

σn .

Corresponding to the remark right after (4.1), the surface W in (4.10) may also be given by
the following equivalent form:

W =
⋃
n∈N

((C \Σ)∪× σn (Tn \ σn)) .

We conclude this section by stating a remark on the set σn, which is expected to be
useful for better understanding for what follows in the sequel. Originally σn is the common
slit [−sn, sn] in the parametric disc Un in C and that Ûn in Tn, whereUn and Ûn are identified.
The set σn is also the boundary of C\σn or of Tn\σn over σn. In this case σn can be understood
as a Jordan curve σ+

n ∪σ−
n or rather σ+

n −σ−
n , where σ+

n (resp. σ−
n ) is the upper (resp. lower)

edge of σn, i.e., the so called Carathéodory boundary σ+
n − σ−

n of C \ σn or Tn \ σn lying
over σn. When we consider σn in W it becomes an analytic Jordan curve homeomorphic to
σ+
n − σ−

n . Thus σn stands for either simply a slit [−sn, sn], a Jordan curve σ+
n − σ−

n as a
Carathéodory boundary of C\σn or Tn \σn over σn, or an analytic Jordan curve inW . In case
we talk about σn we will often not mention explicitly which one of the above three we mean
but mostly it can be easily understood which one of these three is the case from the context or
the situation.

5. Potential theory on W . Our goal is to show that the W given in (4.10) and (4.11)
satifies (4.2) and (4.3). Keeping this in mind we start by establishing some basic potential
theoretic properties of the above W constructed in (4.10) and (4.11). Both conditions (4.8)
and (4.9) are essential in establishing the validity of (4.2) and (4.3) shown in the sequel but
in the present section only (4.8) is needed and (4.9) is redundant for the time being. We use
essentially the Wiener compactification W∗, the Wiener boundary γ = γW , and the most
important Wiener harmonic boundary δ = δW ofW . We denote by δTn the Wiener harmonic
boundary of Tn. We can view that δTn ⊂ δW . Since Tn = T ∈ OHP \ OG, δTn consists of
only one point, say dn. Thus

δTn = {dn} ⊂ δW (n ∈ N) .

We will see that the subset

δ̂W :=
⋃
n∈N

δTn = {d1, d2, . . . , dn, . . . } ⊂ δW

plays an important role and is the core part of δW . The following fact shows this situation
clearly. Note that functions in HB ′(W) ≡ HPq(W) are [−∞,+∞]-valued continuous on
W∗ and are determined uniquely by their values on δW (cf. Section 2).
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PROPOSITION 5.1 (The unicity principle). If u ∈ HB ′(W) ≡ HPq(W) satisfies
u|δ̂W = 0, then u ≡ 0 on W . In particular, δW \ δ̂W is of harmonic measure zero and
hence δ̂W is dense in δW .

PROOF. We may suppose that u ∈ HB(W)+. Contrary to the assertion, assume that
α := supW u > 0. Since u|δTn = 0 and u � α on σ̂n, which is as before σn considered
in Ûn, the usual maximum principle yields that u|∂Ûn � β < α, where β is independent
of n ∈ N by virtue of (4.8). Since u � α on ∂Un and u � β on ∂Ûn, by considering u on
(Un \ σn)∪× σn = σ̂n (Ûn \ σ̂n) in the sense that (Un \ σn)∪× σn (Ûn \ σn) since σn = σ̂n, we
see that u � (α + β)/2 on σn = σ̂n so that u � (α + β)/2 on Tn for every n ∈ N. Let
E(z) be the harmonic function on C \ σ1 such that E has vanishing boundary values on σ1

and limz→∞E(z) = +∞. Comparing boundary values of (1/m)E + (α + β)/2 and u on
∂(C \Σ), we see that

0 � u � (1/m)E + (α + β)/2

on C \Σ for every m ∈ N. On letting m ↑ ∞ we have that u � (α + β)/2 on C \Σ . Hence
u � (α + β)/2 on W , which implies α � (α + β)/2, or α � β, a contradiction. �

PROPOSITION 5.2 (The comparison principle). If u ∈ HB ′(W) ≡ HPq(W) satisfies
u|δ̂W � 0, then u � 0 on W .

PROOF. By the [−∞,+∞]-valued continuity of u and by the unicity principle, we see
that u|δW � 0. Then by the comparison principle in Section 2, we must conclude that u � 0
on W . �

Fix an arbitrary i ∈ N and note that di is an isolated point in δW . We can find ϕ ∈ C(δW)
such that ϕ(di) = 1 and ϕ|(δW \{di}) = ϕ|(δW \δTi) = 0. Let ei = HR

ϕ . By using the unicity
principle we can conclude that ei is the unique function in HB(W) such that ei |δTi = 1 and
ei |(δW \ δTi) = 0. In particular

(5.3) ei |δTj = δij (the Kronecker delta)

for every pair (i, j) ∈ N × N. Let ω be the harmonic measure (cf. Section 2) on δW with
respect to the reference point o = 0 ∈ W . Then

(5.4) ω({di}) =
∫
δW

eidω = ei(o)

and, again by the unicity principle,
∑
i∈N ei ≡ 1 onW so that∑

i∈N

ei(o) =
∑
i∈N

ω({di}) = ω(δ̂W) = 1 .

Hence we see that

(5.5) ω =
∑
i∈N

ei(0)δi ,

where δi is the Dirac measure on δW supported at δTi (i ∈ N).
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The next proposition is nothing but the rephrasing of Corollary 2.16, but we repeat its
proof to get better understanding fitting to the present specified situation.

PROPOSITION 5.6 (The representation theorem). An essentially positive harmonic
function u on R is quasibounded on R if and only if there exists a unique sequence (ai)i∈N in
R with

(5.7)
∑
i∈N

|ai |ei(o) < ∞

such that u is represented by

(5.8) u =
∑
i∈N

aiei

on R. The convergence in (5.8) is the local uniform one on R.

PROOF. Suppose first that u ∈ HB ′(W) ≡ HPq(W) and put ai = u(di) (i ∈ N),
which are easily seen to be finite. We are to show that (ai)i∈N satisfies two conditions (5.7)
and (5.8). We start from the special case of u � 0 on R. Consider functions

ui :=
∑

1�j�i
aj ej (i ∈ N) .

By the comparison principle, (ui)i∈N is seen to be an increasing sequence in HB(W) domi-
nated by u on R. Hence there exists v ∈ HPq(W) such that ui � limj↑∞ uj = v � u for ev-
ery i ∈ N. Clearly v = u on δ̂W and a fortiori the unicity principle implies that v = u onW , or
(5.8) is valid locally uniformly on W . Clearly

∑
i∈N |ai|ei(0) = ∑

i∈N aiei(o) = u(o) < ∞,
i.e., (5.7) is valid. Then next we turn to the general case and let u = u+ − u− be the Jor-
dan decomposition of u in the vector lattice HPq(W). Like we have set ai = u(di) we let
a±
i = u±(di) for every i ∈ N. Then, since u+ = u ∪ 0 and u− = −(u ∩ 0) on δW , we see

that

ai = a+
i − a−

i

and

|ai | = a+
i + a−

i = either ai or − ai

according again to ai � 0 or ai < 0 for every i in N. Therefore, from
∑
i∈N |a±

i |ei(o) =∑
i∈N a

±
i ei(o) < ∞, it follows that∑

i∈N

|ai|ei(o) =
∑
i∈N

a+
i ei (o)+

∑
i∈N

a−
i ei (o) < ∞ ,

i.e., (5.7) is valid, and similarly, from the fact that u± = ∑
i∈N a

±
i ei locally uniformly on R,

it follows that

u = u+ − u− =
∑
i∈N

a+
i ei −

∑
i∈N

a−
i ei =

∑
i∈N

(a+
i − a−

i )ei =
∑
i∈N

aiei

locally uniformly on W , i.e., the condition (5.8) is also deduced.
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Conversely suppose the u is given by (5.8) with the sequence (ai)i∈N satisfying the con-
dition (5.7). Then, since u(di) = ai for every i ∈ N and u+ = u ∪ 0 and u− = −(u ∩ 0) on
δW , we see that

u+ =
∑
ai�0

aiei and u− = −
∑
ai<0

aiei ,

both of which are convergent at o and hence locally uniformly onW . Thus both of u+ and u−
belong to HPq(W) so that we can conclude that u = u+ − u− ∈ HPq(W), as required. �

At the end of this section we state a characterization of HM2(W) in terms of boundary
values of functions in HM2(W) on δ̂W , which is again simply a rephrasing of Proposition
3.3 or rather a specification to the present concrete surface W .

PROPOSITION 5.9 (Criterion of square mean boundedness). An essentially positive
harmonic function u on W belongs to HM2(W) if and only if there exists a unique sequence
(ai)i∈N in R with

(5.10)
∑
i∈N

a2
i ei(o) < ∞

such that the representation

(5.11) u =
∑
i∈N

aiei

holds on W , where the above series converges locally uniformly on W .

PROOF. Suppose first that u ∈ HM2(W). Since HM2(W) ⊂ HB ′(W) by Proposition
3.2, we see by Proposition 5.6 the existence of the unique sequence (ai)i∈N with (5.7) and
(5.8). Thus in particular (5.11) is valid. Applying Proposition 3.3 to our present u, we obtain

∑
i∈N

a2
i ei(o) =

∫
δW

u2dω < ∞ ,

i.e., (5.10) is valid. Conversely, assume that we have a sequence (ai)i∈N with (5.10) and (5.11)
for u. Then ( ∫

δW

|u|dω
)2

�
∫
δW

u2dω =
∑
i∈N

a2
i ei(o) < +∞

with (5.10) and (5.11) show that u ∈ HB ′(W) by Corollary 2.16 and u|δW belongs to
the Lebesgue space L2(δW,ω). Thus Proposition 3.3 shows that u belongs to the class
HM2(W). �

6. Dirichlet integrals of harmonic measures. Mostly there are no predominating
relations between harmonic measures µz(K) = ∫

K dµz of compact subsets K ⊂ δR, where
µz is the harmonic measure on the harmonic boundary δR of some general Riemann surface
R with respect to any reference point z ∈ R, and their Dirichlet integrals D(µ·(K);R); there
always exists a sequence (Kn)n∈N of compact subsets Kn of δR such that D(µ·(Kn);R) ↓ 0
and µ·(Kn) ↑ 1 as n ↑ ∞ and on the other hand it is not too rare that there exists a sequence
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(Kn)n∈N such that D(µ·(Kn);R) ↑ ∞ and µ·(Kn) ↓ 0 as n ↑ ∞. Hence it is remarkable if
there is an R such thatD(µ·(K);R) is uniformly estimated by µ·(K) for everyK . One of the
central purpose of this section is to show that the Riemann surfaceW in (4.10) is of this sort.

The harmonic measureω on the harmonic boundary δ = δW of the surfaceW is given by
(5.5) and hence ω is determined by its values of each one point subset {dn} = δTn of δ̂ = δ̂W :
ω({dn}) = ω(δTn) = en(o) (n ∈ N). Hence the comparison of the harmonic measure en(o)
and the Dirichlet integralD(en;W) is the essential task in this situation.

PROPOSITION 6.1 (The main estimates). The set of inequalities

(6.2) D(en;W) � K · en(o) (n ∈ N)

holds with the constantK given in (4.9).

PROOF. For each fixed n ∈ N we consider the subsurface

(6.3) Wn :=
(

C \
⋃
m∈N

σm

)
∪× σn (Tn \ σn)

of W and the function fn defined on W with the following conditions: fn ∈ C(W∗); fn ∈
H(Wn); fn = 1 on δTn = {dn}; fn = 0 onW \Wn. Instead of showing (6.2) directly, we first
complete the painstaking task of establishing

(6.4) D(fn;W) � K · fn(0) (n ∈ N)

and then derive (6.2) from the above (6.4) with the aid of simple relations

(6.5) D(en;W) � D(fn;W) and en(o) � fn(o) (n ∈ N) .

This is the plan of our proof here and we have to go long way to achieve this object. Before
proceeding to the main stream of our proof, we wish to finish here the proof of almost trivial
assertion (6.5) above. Since fn ∈ R(W) as is easily seen (cf. (2.3)) and clearly en is seen to
be the harmonic part of fn in the Royden-Brelot decomposition of fn (cf. (2.4) and (2.5)), we
see that the first inequality of (6.5) is valid. Using the comparison principle in Section 2 and
Proposition 5.1 on the subregionWn of W we see that en � fn on Wn and thus on W . Hence
in particular en(o) � fn(o), the second inequality of (6.5), is deduced. Thus the validity of
(6.4) implies that, by using (6.5) just established,

D(en;W) � D(fn;W) � K · fn(o) � K · en(o) ,
i.e., (6.2), so that the proof of Proposition 6.1 is complete. Thus from now on we concentrate
ourselves to the proof of (6.4).

With the aim of studying (Wn, fn) for every n ∈ N we introduce two more kinds of
auxiliary subregions and functions. For every n ∈ N we fix arbitrarily a regular exhaustion

(Tni)i∈N of Tn with Tni ⊃ Ûn. For each fixed n ∈ N we consider the subregion

(6.6) Wni :=
(

C \
⋃
m∈N

σm

)
∪× σn (Tni \ σn)
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of W for every i ∈ N and the function fni on W characterized by the conditions fni ∈
C(W∗), fni ∈ H(Wni), fni = 1 on Tn \ Tni, and fni = 0 on

⋃
m∈N\{n} Tm. Finally consider

the subregion

(6.7) Wnij :=
(
�(0, 4j + 2) \

⋃
1�m�j

σm

)
∪× σn (Tni \ σn)

for every n ∈ N, i ∈ N, and j ∈ N with j � n and the function fnij determined by
the properties fnij ∈ C(W∗), fnij ∈ H(Wnij ), fnij = 1 on Tn \ Tni , and fnij = 0 on
W \ (Wnij ∪ (Tn \ Tni)). For the existence of the above functions fn, fni , and fnij , see [13,
Chapter III], for example.

It is clear that the sequence (fnij )j�n is increasing and fnij � fni on W and therefore,
by the unicity principle, we have

(6.8) lim
j↑∞ fnij = fni

locally uniformly on W . Observe that fnij − fni(j+k) = 0 on W \Wni(j+k) for every j � n

and k ∈ N. By the Stokes formula we see that

D(fnij − fni(j+k), fni(j+k);W) = D(fnij − fni(j+k), fni(j+k);Wni(j+k))

=
∫
∂Wni(j+k)

(fnij − fni(j+k)) ∗ dfni(j+k) = 0 ,

which implies that D(fnij , fni(j+k);W) = D(fni(j+k);W). Here D(u, v;W) := ∫
W
du ∧

∗dv is, by definition, the mutual Dirichlet integral of u and v over W so that D(u, u;W) =
D(u;W). Thus we can now conclude that

(6.9) D(fnij − fni(j+k);W) = D(fnij ;W)−D(fni(j+k);W)
for every j � n and k ∈ N. By a standard simple argument, we can conclude by keeping (6.8)
in mind that (6.9) implies the validity of

(6.10) lim
j↑∞D(fni − fnij ;W) = 0

for every fixed n and i in N.
To derive the counterpart of (6.8) and (6.9) for the sequence (fni)i∈N we once more

use the sequence (fnij )j�n for each i ∈ N. As in the case of (6.8) it is again clear that the
sequence (fnij )i∈N is decreasing for any pair of n ∈ N and j � n and fn(i+k)j � fnij � 1 on
W . Letting j ↑ ∞ in the last sequence of inequalities, we deduce that fn � fn(i+k) � fni � 1
onW , i.e., the sequence (fni)i∈N is decreasing and fn � fni � 1 onW for every i ∈ N. Once
more, in view of the unicity principle we can conclude that

(6.11) lim
i↑∞ fni = fn

locally uniformly onW . Similarly as above we still use (fnij )j�n for any fixed n ∈ N and for
every i ∈ N. Observe that fnij − fn(i+k)j = 0 on ∂Wn(i+k)j for every i ∈ N and k ∈ N with
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fixed n ∈ N and every j > n. By exactly the same procedure as we did in the derivation of
(6.9), we obtain

D(fnij − fn(i+k)j ;W) = D(fnij ;W)−D(fn(i+k)j ;W)
for any fixed n ∈ N and any i and k in N and further for every j � n. Making j ↑ ∞ in the
above displayed identity, we obtain

(6.12) D(fni − fn(i+k);W) = D(fni ;W)−D(fn(i+k);W)
for every i and k in N with any fixed n ∈ N. As we derived (6.10) from (6.9), since we also
have (6.11), we can deduce that

(6.13) lim
i↑∞D(fn − fni;W) = 0

for every fixed n ∈ N.
By the Stokes formula we deduce

D(fnij ;W) = D(fnij ;Wnij ) =
∫
Wnij

dfnij ∧ ∗dfnij

=
∫
∂Wnij

fnij ∗ dfnij =
∫
∂Tni

∗dfnij .
The total flux of fnij across ∂Wnij is zero as a consequence of again the Stokes formula we
have

(6.14) D(fnij ;W) = −
∑

1�m�j ;m�=n

∫
σm

∗dfnij −
∫
∂�(0,4j+2)

∗dfnij

for every j � n. Observe that (fnij )j�n increasingly converges to fni locally uniformly on
W , 0 � − ∗ dfnij ↑ − ∗ dfni (j ↑ ∞) uniformly on each σm (m �= n), and − ∗ dfnij � 0 on
∂�(0, 4j + 2), for any fixed j � n. Thus the identity (6.14) yields

D(fnij ;W) � −
∑

1�m�j ;m�=n

∫
σm

∗dfnij � −
∑

1�m�j ′;m�=n

∫
σm

∗dfnij

for every j � j ′. Letting j ↑ ∞ in the above displayed inequality, (6.10) assures that

D(fni ;W) � −
∑

1�m�j ′;m�=n

∫
σm

∗dfni .

On letting j ′ ↑ ∞, we conclude that

(6.15) D(fni ;W) � −
∑

m∈N\{n}

∫
σm

∗dfni

for any fixed n ∈ N and i ∈ N. On the other hand we also derive from (6.14) that

(6.16) D(fnij ;W) � −
∑

m∈N\{n}

∫
σm

∗dfnij −
∫
∂�(0,4j+2)

∗dfnij
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for any j � n. We consider the annulus Anj := �(0, 4j + 2) \ Un (j � n) and the modulus
functionw ∈ H(Anj)∩C(Anj ) with w|∂Un = 1 andw|∂�(0, 4j+2) = 0. Clearly fnij � w

on Anj and therefore 0 � − ∗ dfnij � − ∗ dw on ∂�(0, 4j + 2). Hence we deduce that

0 � −
∫
∂�(0,4j+2)

∗dfnij � −
∫
∂�(0,4j+2)

∗dw

=
∫
∂Anj

w ∗ dw = D(w;Anj ) = 2π

modAnj
.

Here modAnj is the modulus of the annulus Anj , which is easily seen by a geometric obser-
vation to tends to ∞. Hence

(6.17) lim
j↑∞

(
−

∫
∂�(0,4j+2)

∗dfnij
)

= 0 .

Applying this when we make j ↑ ∞ in (6.16), we obtain

(6.18) D(fni ;W) � −
∑

m∈N\{n}

∫
σm

∗dfni .

Putting (6.15) and the above (6.18) together, we can conclude that

(6.19) D(fni ;W) = −
∑

m∈N\{n}

∫
σm

∗dfni

for every i ∈ N and for any fixed n ∈ N.
Finally recall that the sequence (fni)i∈N is decreasing and converges to fn locally uni-

formly on W and therefore

− ∗ dfni � − ∗ dfn(i+k) � − ∗ dfn � 0

on each σm (m �= n) and − ∗ dfni ↓ − ∗ dfn (i ↑ ∞) uniformly there. A fortiori we can
show, with a bit of consideration on the double limit business, that

lim
i↑∞

(
−

∑
m∈N\{n}

∫
σm

∗dfni
)

= −
∑

m∈N\{n}

∫
σm

∗dfn ,

and by making i ↑ ∞ in (6.19) we can deduce the identity

(6.20) D(fn;W) = −
∑

m∈N\{n}

∫
σm

∗dfn

for any fixed n ∈ N, which will play an important role in the derivation of (6.4).
We now come to the final stage of showing (6.4) based upon (6.20), i.e., we evaluate∫

σm
∗dfn for every m ∈ N \ {n} for each fixed n ∈ N. As the conformal coordinate z around

σm to calculate the above integral
∫
σm

∗dfn we employ the Joukowski coordinate z determined
by the relation

(6.21) w = sm

2

(
z

sm
+ sm

z

)
+ 4m ,
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where w is the natural coordinate on C. Let Vm be the Jordan region in the z-plane bounded
by the image of ∂Um in the w-plane under the correspondence (6.21). Then the Joukowski
mapping (6.21) maps Vm \ �(0, sm) onto Um \ σm in the w-plane conformally sending the
circle ∂Um = ∂�(0, 1) + 4m onto the Jordan curve ∂Vm and the slit σm, viewed as the
Jordan curve σ+

m − σ−
m with σ+

m (resp. σ−
m ) the upper (resp. lower) edge of σm, onto the circle

∂�(o, sm). Then we are to evaluate the integral

(6.22) −
∫
σm

∗dfn =
∫ 2π

0

[
∂

∂r
fn(re

iθ )

]
r=sm

smdθ (z = reiθ ) .

We let Cm := ∂�(0, µm) be the maximal circle contained in V m, which is seen to touch ∂Vm
at the point µm that correspond to 1 + 4m in ∂Um by (6.21). Then it is easily seen that

µm = 1 +
√

1 − s2
m > 1 .

Since max∂Um fn � Mmfn(o), it holds that 0 � fn � Mmfn(o) on Um \ σm, or on Vm \
�(0, sm), so that maxCm fn � Mmfn(o). Since fn|∂�(0, sm) = 0, we see that

0 � fn(z) � Mmfn(o)
log(|z|/sm)
log(µm/sm)

(sm � |z| � µm) .

Hence µm > 1 implies that

0 �
[
∂

∂r
fn(re

iθ )

]
r=sm

� Mmfn(o)

log(1/sm)
· 1

sm
(0 � θ � 2π)

so that by (6.22) we conclude that

0 � −
∫
σm

∗dfn � 2πMm

log(1/sm)
fn(o) (m ∈ N \ {n}) .

Therefore, by (6.20) and (4.9), we see that

D(fn;W)=
∑

m∈N\{n}

[
−

∫
σm

∗dfn
]

�
∑

m∈N\{n}

2πMm

log(1/sm)
fn(o)

=
[

2π
∑

m∈N\{n}

Mm

log(1/sm)

]
fn(o) = K · fn(o)

so that (6.4) is deduced. �

To show that the surfaceW given in (4.10) satisfies the required two properties (4.2) and
(4.3) we need one more preparation in addition to the essentially important fact (6.2) stated
in Proposition 6.1. It again concerns about the symmetric matrix (D(ei , ej ;W); i, j ∈ N) as
follows:

PROPOSITION 6.23. Every element not contained in the diagonal of the matrix
(D(ei , ej ;W); i, j ∈ N) is not positive, i.e.,

(6.24) D(ei , ej ;W) � 0

for every pair (i, j) of i and j in N with i �= j .
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PROOF. We fix an arbitrarily chosen and then fixed regular exhaustion (Tjm)m∈N of
each Tj (j ∈ N) such that Tj1 contains the closure of Ûj . Then we consider the regular
subregionWm of W given by

(6.25) Wm := ((· · · (((Sm ∪× σ1 (T1m \ σ1))∪× σ2 (T2m \ σ2))) · · · )∪× σm (Tmm \ σm))
for every m ∈ N, where

Sm := �(0, 4m+ 2) \
⋃

1�j�m
σj

(cf. (4.1) and the comment right after it). Thus W \ Wm consists of m components Tj \
T jm (1 � j � m) and the afforested surface

〈C \�(0, 4m+ 2), (Tj )m<j<∞, (σj )m<j<∞〉 ⊂ W .

Using these subregions Wm (m ∈ N) we form a regular exhaustion (Wm)m∈N of W . Let
γ0m := ∂�(0, 4m+ 2) and γjm := ∂Tjm (1 � j � m). Then

∂Wm = γ0,m + γ1m + · · · + γmm .

For each fixed n ∈ N we consider an approximating sequence (enm)m∈N of en as follows.
For each m ∈ N we consider the function enm on W given by the conditions enm ∈ C(W∗),
enm ∈ H(Wm), enm|(Tn \ Tnm) = 1, and enm = 0 on each component of W \Wm except on
Tn \ Tnm. In case n > m, enm ≡ 0 on W . Since enm − en(m+k) = 0 on ∂Wm+k , the Stokes
formula assures that

D(enm − en(m+k), en(m+k);W) = D(enm − en(m+k), en(m+k);Wm+k)

=
∫
∂Wm+k

(enm − en(m+k)) ∗ den(m+k) = 0 .

From this it follows that

(6.26) D(enm − en(m+k);W) = D(enm;W)−D(en(m+k);W)
for everym ∈ N and every k ∈ N. This shows that (D(enm;W))m∈N is a decreasing sequence
and (enm)m∈N is a Cauchy sequence in the D(·;W)1/2-seminorm. On the other hand, since
0 � enm � 1 on W and harmonic on Wm, the class {enm;m ∈ N} forms a normal family.
Choose any two subsequences (um)m∈N and (vm)m∈N of (enm)m∈N and let u (resp. v) be the
local uniform limit of (um)m∈N (resp. (vm)m∈N) onW . By applying the Fatou lemma to (6.26),
we see that

lim
m→∞(D(um − u;W)+D(vm − v;W)) = 0

so that
lim
m→∞D((um − vm)− (u− v);W) = 0 .

At the same time u−v is the local uniform limit of uniformly bounded sequence (um−vm)m∈N

on W . Since um − vm has a compact support in W , we can conclude that u− v is a Dirichlet
potential (cf. [13]) and hence a Wiener potential. Thus u−v = 0 on δ̂W and a fortiori u−v ≡
0 on W . We have thus seen that (enm)m∈N converges to a w ∈ H(W) both locally uniformly
on W and in D(·;W)1/2-seminorm. Therefore (enm − en)m∈N converges to w − en ∈ H(W)
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both locally uniformly on W and in D(·;W)1/2-seminorm. Again we see that enm − en = 0
on δ̂W and thus on δW , which implies that w − en = 0 on δW (cf. [13]). This proves that

(6.27) en = lim
m→∞ enm

locally uniformly on W and simultaneously

(6.28) lim
m→∞D(en − enm;W) = 0 .

Take arbitrarily two different numbers i and j in N (i.e., i �= j ) fixed for a while and
choose m ∈ N arbitrarily with m > max{i, j }. Then

D(eim, ejm;W)=D(eim, ejm;Wm) =
∫
∂Wm

eim ∗ dejm

=
m∑
k=0

∫
γkm

eim ∗ dejm =
∫
γim

∗dejm .

Observe that ejm = 0 on γim (i �= j) and ejm > 0 on Wm. Then the outer normal derivative
of ejm at every point in γim is nonpositive and thus ∗dejm � 0 on γim. Therefore

D(eim, ejm;W) =
∫
γim

∗dejm � 0 .

In view of (6.28), we deduce, by lettingm ↑ ∞ in the above displayed relation, thatD(ei, ej ;
W) � 0, as required. �

7. Proof of the main theorem. Thus far we have finished all the necessary prepa-
rations and hence we can now complete the proof of the main theorem stated in Section 1
quite easily in a few lines. Take the Riemann surface W constructed in (4.10) and we are to
show the validity of (4.2) HM2(W) = HD(W) and (4.3) dimHM2(W) = ∞. The latter
is now trivial. Let E(W) := {ei; i ∈ N} be the family of functions ei determined by (5.3)
ei(dj ) = δij (the Kronecker delta), where {dj } = δTj . Since E(W) ⊂ HB(W), we see that
E(W) ⊂ HM2(W). Choose any finite subset {ei1 , ei2, . . . , eik } ⊂ E(W) and let

(7.1) λi1ei1 + λi2ei2 + · · · + λik eik ≡ 0

on W for constants λi1 , λi2 , . . . , λik ∈ R. Considering the above (7.1) at each point diµ (1 �
µ � k) by using (5.3) eiν (diµ) = δiν iµ , we see that λi1 = λi2 = · · · = λik = 0. This proves
that E(W) is a linearly independent infinite subset ofHM2(W) so that (4.3) dimHM2(W) =
∞ is valid.

We turn to the proof of (4.2) HM2(W) = HD(W). As we have seen in (1.8), it holds
that HM2(R) ⊃ HD(R) for any Riemann surface R and in particularHM2(W) ⊃ HD(W).
Thus we only have to show that HM2(W) ⊂ HD(W) in order to conclude (4.2). Since
HM2(W) is a vector sublattice of HP(W) (cf. Proposition 3.1), what really we have to show
is that HM2(W)

+ ⊂ HD(W). For the purpose we take an arbitrary u ∈ HM2(W)
+ and we
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will show that u ∈ HD(W). By Proposition 5.9, there exists a unique sequence (ai)i∈N ⊂ R+
such that

(7.2) u =
∑
i∈N

aiei

on W , where the series is convergent locally uniformly on W , and

(7.3)
∑
i∈N

a2
i ei (o) < ∞ .

For each n ∈ N we consider the function

un :=
∑

1�i�n
aiei ,

which belongs to the class HB(W). Clearly (un)n∈N is increasing and

(7.4) u = lim
n→∞ un

locally uniformly on W . Hence, by the Fatou lemma in the integration theory,

(7.5) D(u;W) � lim inf
n→∞ D(un;W) .

Observe that

D(un;W)=D

( ∑
1�i�n

aiei,
∑

1�j�n
aj ej ;W

)
=

∑
1�i,j�n

aiajD(ei , ej ;W)

=
∑

1�i�n
a2
i D(ei;W)+

∑
1�i,j�n,i �=j

aiajD(ei, ej ;W) .

Since aj � 0 (i ∈ N), we deduce by (6.24) that

D(un;W) �
∑

1�i�n
a2
i D(ei;W) (n ∈ N) .

By (6.2) with (7.3), we finally conclude that

D(un;W) �
∑

1�i�n
a2
i ·Kei(o) � K

∑
i∈N

a2
i ei(o) =: C < +∞ .

This with (7.5) implies that D(u;W) � C < +∞ so that u ∈ HD(W), as required. The
proof of the main theorem is herewith complete. �
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