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Abstract-We  present  several  new  algorithms,  and  more  generally  a new 
approach, to recursive  estimation  algorithms  for linear dynamical systems. 
Earlier  results in this area have been obtained by several others,  especially 
Potter, Golub, Dyer and McReynolds, Kaminskj, Schmidt,  Bryson,  and 
Bierman on what are known as square-root algorithms. Our results are 
more  comprehensive.  They also show  how constancy of parameters can be 
exploited to reduce  the  number of Computations  and to obtain  new  forms 
of the chaodrasekhar-type equations for  computing the filter  gain. Our 
approach is essentially based on certain  simple  geometric interpretations of 
the overall  estimation problem. One of our goals is to attract  attention to 
non-Rimti-based studies of estimation problems. 

I. ’ INTRODUCTION 

w E SHALL present some  new algorithms, and more 
generally a new approach, for linear least-squares 

estimation in the discrete-time state-space system, 

xi+ = q x i  + riUi ( 1 4  

y, = Hjx ,  + vi, i 2 0 (1b) 

Ez;.v!= * J  Ria,, Evj$=Cj8,, Euj$=Qi8, (IC) 

Exox;= no, Euix;=O= E~+x; .  ( 1 4  

The matrices {a, I?, H ,  Q, C ,  R } are  assumed to be known 
and all the random variables are assumed to have zero 
mean. Primes will denote transposes. The  dimensions of 
the vectors u,x,y are m,n,p ,  respectively. 

It is by now  well known (beginning with [l])  that with 
this  system we can associate a so-called matrix Riccati- 
type difference equation (recursion), 

~ ~ + ~ = ~ ~ p ~ c p a : + r ~ ~ , r : - ~ . ~ ; ,  ~ , = n ,  (2) 
- I  

where 
T 

K = K , ( R ; ) - 2  (3) 

~ . = c p , p , ~ ; + r ~ c ;  (4) 

R:= Ri+ HjPiH,‘>O ( 5 )  
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and 

Pi = the variance of the  error 
in the  one  step prediction of xi 

= E[., - 2 J p  , ] [X i  - zi,;- ,I. 
Let 

ziIi- =the linear least-squares estimate of xi given 

Y[O, i - 11 (7) 

where we use the notation 

[y;, - * ,y(f yb, i]. 
Now we can write the estimator equation 

2 j + ~ l i = ~ j 2 j l i - l + ~ i ~ j ,  2,(-,=O (8) 

where 

vi = ( R ,  ) - ’( yi - = the normalized innovations in y, 

giveny[O, i - 13. (9) 

1 

and we have used the notation 

R i  =any matrix such that Ri R i = R 

~5 = (R+)!. 

I T  

The above algorithm, known as the Kalman filter, has 
dominated the estimation field since the appearance in 
1960 of the fundamental  paper  [l]. In particular, the 
Riccati equation  has  been fairly  exhaustively studied (see 
[3] for a recent survey), and the Kalman filter has  been 
widely used. Despite this remarkable success it is useful to 
develop alternative algorithms. The most important rea- 
son, perhaps, is that diversity  is valuable for its own sake, 
provided there is a  fair possibility that the new algorithms 
have potential advantages in some respects, among which 
we should include things  like the complexity, accuracy, 
and the conditioning of computations. 

In the last few years, two sets of new algorithms have 
been  developed.  One is the family of “square-root” 
algorithms associated with the names of Potter [4], Golub 
[5], Hanson and Lawson  [6], Dyer and McReynolds [7], 
Schmidt [8], Kaminski and Bryson [9], [lo],  and Bierman 
[ll], [ 121. These algorithms recursively compute square 
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roots of the variance matrix (or its inverse), thus ensuring 
that the square is  always nonnegative definite and also 
allowing more significant digits to be used  in the actual 
calculation (the “condition number” for Pi is the square of 
that for P i ) .  However,  since P is also n X n ,  the price 
generally paid  in  such algorithms is a larger number of 
computations. 

More recently, we have been studying [ 13]-[ 171 another 
class of algorithms for constant (time-invariant) systems 
in which the Riccati-type difference equation is replaced 
by  another set of equations, which we have  named as 
being of Chandrasekhar-type.  The  main feature of these 
new algorithms is that they  work  with square-roots of 6Pi 
rather than of Pi, the point being that for constant systems 
the rank of 6Pj is often much  less than  that of Pi, so that 
the number of quantities to be  determined  can often be 
reduced from O(n2) to O(n). In addition we have the same 
advantages  on  condition  number  as  the  square-root 
algorithms,  and while  nonnegative-definiteness of Pi 
= Z j 6 P i  cannot be guaranteed, the algorithms are poten- 
tially better behaved in this regard than is direct solution 
of the Riccati equation. While the new algorithms based 
on the Chandrasekhar-type equations have several other 
interesting features ‘[for example, the problem of de- 
generate directions extensively studied by  Bucy er al. [ 181, 
[I91 can be handled  without difficulty and also the equa- 
tions have many  connections with earlier work  by  Levin- 
son, Durbin, Whittle, Wiggins and Robinson, and others 
(see references in [16])], our  aim in this paper is to explore 
the connections between the new algorithms and the ear- 
lier square-root algorithms. 

Section I1  gives a  quick look at some of our results and 
methods, applied for simplicity to models with Euiuj’ 
= Ci6u = 0. We first present an “instantaneous” derivation 
of a form of the previously known (covariance) square- 
root array-algorithms. Then we show  how the assumption 
of constant model parameters  can be exploited to reduce 
the number of variables in the array algorithm. Finally by 
explicitly specifying the orthogonal transformations used 
in the array  methods we obtain explicit updating equa- 
tions that give “fast” forms of the Potter-Andrews square- 
root  equations.  The  remaining sections treat several 
generalizations and new forms. The results so far will have 
been derived by starting with an initial matrix, which  is 
then factored in different ways to give the square-root 
arrays; however, the initial matrix is “pulled out of the 
air.” When in Section 111,  we begin to study the general 
model (Ci#O) and to ask for smoothing results and infor- 
mation forms, we begin to see the need for some general 
underlying principles. This is provided in Section IV  via a 
simple  geometric picture that allows us to write  down  all 
the arrays as (cross-correlation) coefficient matrices for 
representing certain variables of interest in terms of other 
given (sequentially orthonormalized) variables. 

Section  V  shows  that  square-root  information 
algorithms can be derived from the covariance forms  and 
vice  versa  by a simple inversion of triangular matrices. 

1 

This leads to  a new duality between the covariance and 
information forms, which  is also capable of handling  the 
case C,+O not readily obtained via the standard duality 
argument [9], [lo]. In Section VI  we  give the appropriate 
arrays for problems where covariance information is given 
in place of a state model. 

For reasons of space, we put off discussion of smooth- 
ing problems to another paper, but in Appendix A we  give 
as  an example  a new and potentially simpler fixed-point 
smoothing  formula  provided by our  approach.  Appendix 
B indicates how our results can be extended to certain 
classes of time-variant systems and Appendix  C provides 
some results for continuous-time and continuous-time dis- 
crete measurement systems. 

Finally we may emphasize  that the numerical promise 
of the various algorithms proposed here remains to be 
carefully studied. However,  it  is important  that we have a 
new  family of equations and  methods  that provide al- 
ternatives to the almost total emphasis in the last decade 
on the Riccati-equation Kalman filter algorithms. 

The results of Section I1  were first presented at the 1973 
IEEE Decision and Control  Conference,  San Diego, Cali- 
fornia, in December 1973, [29]. An earlier version of this 
paper  appeared as [22]; see  also  Section VI1 for other 
historical remarks and acknowledgments, especially  [23]. 

11. SOME SQUARE-ROOT ALGORITHMS 

To bring out the main ideas more  clearly in this section, 
we make the simplifying assumption that Equ,! = 0. 

Now  consider  the  following  (nonnegative-definite) 
matrix,  which arises also in the positice-real lemma, 
quadratic control, etc., 

P n 

We  now  claim that it  is  clear  by inspection that we can 
factor the 2 X 2 block matrix L% as 

P n m 

P n m 
(1 1) 

Next we note that the (2,2) element of the block matrix 
“X is the variance of the random variable 

x i ,  I - ;i+ = aii+- ,  +rjui. 
By using (1) and (8), we can rewrite  this variable as 

from which, by comparing variances, we get 
T 
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an identity that may also be  obtained  from  the Riccati 
equation (2). Now using (13) and the definitions (3)-(5), 
we can rewrite the matrix 92. of (10) as 

which can again be factored by inspection as 

P n m  

But since e, and C2 are  both factors of 9R they have to 
be related by an orthogonal transformation 5 (5 5’ = I ) .  
We  therefore see that  a  technique  for  updating  a 
“prearray” is to apply to e, any orthogonal transforma- 
tion 5 such  that we force a  pattern of zeros as shown in 
(16), where X, is a basis of the p-column vectors of the 
first block  row of e, and X3 forms  a basis for columns of 
el with zeros in the first p-components. 

P n m 

Then the quantities marked { Xi } will have to be equal 
(apart  from  orthogonal transformations) to (R,’)f, e, and 
P!+] , respectively. (The  nonuniqueness is irrelevant to 
the final calculation of Pi+, [or 2i+,,i via  (S)] and there- 
fore, in later discussions we shall disregard it.) 

The reader can now  verify that  what we have  in (16)  is 
the  known  square-root  algorithm,  except  that  the 
separately  treated  “time-update”  and  “measurement- 
update” steps [9], [lo] have been  combined  into one. We 
may note that  our derivation is  almost “instantaneous,” 
especially as compared with those in the literature. For 
reference, we also give the time update and measurement- 
update formulas. In the measurement up-date, we com- 
pute the “filtered” error variance PiiIi from knowledge of 
the “predicted” error variance Pii kl Pi , via the arrays 

E l i -  1 

I 

The filtered state estimate is  given  by Zi,,= 2+- I + Kipi 
and vi by  (9). In the time-update, we compute pi from 
knowledge of Pi’ via 

I i +  1 

and the predicted state estimate from ~ j + ~ l i = Q j ~ j l i .  The 
formulas (19, (18) can  be verified by squaring up  both 
sides.  We also note  that a little algebra will  show  how (17) 
and (18) can  be merged into  our  formula (16). The for- 
mula (18) was first given by  Schmidt [&], while the form 
(17) was first given by  Kaminski [9], [lo] (who  obtained it 
by  applying  a certain duality, further discussed in Section 
V, to a procedure of Dyer and McReynolds [7]). Actually 
the first square-root formulas were  given  by Potter (see 
[4],  [4a]),  whose formulas were actually somewhat  more 
explicit since they effectively  specified T1. This will be 
explored below, but let us first explain how the size of the ‘ 
arrays involved in the square-root algorithms can often be 
substantially reduced  from O(n2) to O(n) in certain prob- 
lems with time-invariant parameters (F,  G,  H, Q, R ) .  

Fast Algorithms for Time-Inuariant Systems 

When the model  parameters are constant, as noted 
earlier [13]-[17], computational benefits can  be  obtained 
by  working  with square roots not of Pi but of 6Pi. We  now 
explore this point here. 

To introduce the main ideas, let us first consider the 
special (but prototype) case of known initial conditions, so 
that 

no= 0. (19) 

In this  case,  we have shown  previously [ 131 that 6P,  is 
nonnegative-definite and of nonincreasing  rank, 

6Pi = Pi+ - Pi 2 0, rank6Pi > rank6Pi+ (20) 

Therefore, we can factor 6Pi as 

where 

a=rank of &Pi= P,-IT,=rQI”. (22) 

We note that 

a Q m, the number of inputs in the model (1). (23) 

(For reference, we may note that in [ 141 we factored 6Pi as 
YjMi Y;, and  obtained  separate recursions for Yi and Mi; 
here it  is more  convenient to work  with , f i=  YjMii . )  We 
shall now  show that the arrays in (16) can be replaced by 

P a P a 

Since a < m and m can often be  less than n, the use of (24) 
may result in a substantial reduction in storage and com- 
putational  requirements  compared to (16). 
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Derivation of the  Fast Algorithm for I I o  = 0 

If PiG = Pi+ L,L,' we can write, for some orthogonal 
I -  

matrix :lo, 

Therefore, we can write el of (1 1) as follows  (where  by 
A - B  we shall mean AA'= BB' or A o 5  =Bo with 5 5' 
= I ,  and A O = [ A , O ]  and BO=[B,O] are matrices suitably 
expanded by zero columns to  the same dimensions): 

where the last array is obtained by applying (16) to the 
first-, second-, and fourth-block  columns.  We can also 
write the e, of (15) as 

But C, and 2, are equivalent modulo orthogonal trans- 
formations on  the right, so that ignoring the (block)  col- 
umn with P i  , we get the arrays given  in  (24). 

The special  choice I I o = O  arises  whenever the initial 
conditions are known or when  they are deliberately  set 
equal  to zero  in order  to improve the computational 
accuracy by  keeping the contribution of the quadratic 
terms in  the Riccati equation low  (see  [25] and the end of 
Appendix C).  The case no= 0 also arises  in the dual 
quadratic regulator problems with  zero  terminal  cost  (see, 

Another  important special case is that corresponding to 
stationary signal  models, as  are often assumed in com- 
munication and system identification  problems.  Sta- 
tionary signal  processes are  obtained by  assuming  the 
following. 

e.g., 1271). 

1) is stable (i.e.,  all  its  eigenvalues  have  magni- 
tude less than unity). 

2) no= n, where is the unique nonnegative- 
definite solution of the Lyapunov equation % 

- rI=@iT@'+rQrf. 
With this  special initial condition we have  shown that [I41 

6Pi = Pi+ - Pi < 0, rank 6Pi 2 rank 6P,+ 

Therefore, in this  case we can  factor SPi as - -  - 
6Pi=-L iL , ! ,  L , = n X a  

where 

a=rankof  S P , = j , -   P o =  - @ n H ' ( H n H ' + R ) - l H n @ ' .  

(25) 

We note that a < p ,  the number of outputs  in the model 
(1). As far  as  the rank a goes, we note that, as pointed out 
in [ 141, it  may be useful  to  reinitialize the problem after n 
steps (where n is the number of states), because by then 
any degenerate (constant) directions of Pi will have been 
achieved. Now the  appropriate  arrays  are [cf.  (24)] 

P a 

(26) 
It might  now  seem that we  will need complex arithmetic 
to transform the left-hand array  to  the  one on the right. 
However note  that  the columns of (I?:)', i.e., of the first 
block  row on the right hand form a set of real  basis 
vectors for the space spanned by the columns of {(Rf- ,)$, 
v q  H i i - , } .  Therefore, Y can be constructed without 
complex arithmetic, for instance by adding simple  logic to 
the Householder algorithm (see  below),  which changes the 
sign in  operations with imaginary elements [lo, p.  771. 

The same remarks apply to  the general case of arbitrary 
no where 6Pi is indefinite and must therefore be factored 
in  the form 

- 

- -  
6Pi = L,;L;; - L2;L;; 

= LiSL1! 
- I  

where S is the signature matrix of 8Pl.  We forebear from 
giving the details.  However, we may note that efficient 
numerical methods of determining the factorization (27) 
are studied in  [28]. In particular. we emphasize that  it is 
not necessary to determine the  eigenvalues  in order to 
find the signature matrix S. 

Remark: We may note that it is the constancy of H and 
@ that allows  us  to carry out the above reductions [cf. 
(25)-(27)]. This suggests that we can relax our assumption 
of a constant (time-invariant) model  to  allow the parame- 
ters Ri and Ti, Q, to be time-variant. This can  in fact be 
done. as outlined in Appendix B. 

Explicit  Updating Equations 

So far we have not needed to consider the explicit  forms 
of the orthogonal transformations that  update our arrays 
and, in fact, they can be quite arbitrary. However, a 
popular choice  is to use the so-called Householder trans- 
formations, which  have good numerical properties. Other 
choices are the Givens transformations and the modified 
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Gram-Schmidt (MGS) method [2H5]. Bierman [ l l ]  has 
made the interesting observation that in the scalar mea- 
surement case ( p  = l), use of an explicit form of the 
Householder transformation for 5 yields  explicit  mea- 
surement-update equations that contain the Potter square- 
root  equations.  Namely, in the scalar time-invariant 
model  form of (17), 

position or by scalar Householder transformations) if we 
want to use the exqlicit form of 5 to compute the 
remaining  terms 4.P; in the array. 

This explicit formula (29) for ‘5 directly yields the 
Andrews generalization [ 1 Oa]  of the Potter equations. 

However we can, of course, also use  these  explicit 
formulas for our fast algorithms as well. Doing this for the 
constant  parameter  model yields the “new” equations (cf. 
[ 171) 
K =  -&-l(q-l)!(~;)-T T -  z k - @ ~ i - l i ; - l H ’ ( ~ ) - ~  I ,  

we can specify 5 explicitly as 1 -1  =a&- I +a&.[ 6 (R:)?] H G -  

For the vector measurements case ( p  > l), it can be  shown 
[17] that  a suitable 5 (equivalent to a  product of p scalar The best choice of I+ remains to be investigated, as  do 
Householder transformations) can be written as several other variations of the above  theme. However, our 

aim in this paper is to pursue the array  method  more 
5 = z -  u{[u~v]+}- ’u~  (28) deeply. 

where  (with I ,  an arbitrary signature matrix) 
111. COVARIANCE ARRAYS FOR C#O 

[ R:,HiPf] 3,,= [ -(R:)iI,,O] 
Partly as motivation for the geometric interpretations of 

U’=Z,(RI)- i[  (R:):Z* + ( R i ) i ,  H j P f ]  the next section, we introduce now an extended  matrix for 
the general state-model with C#O. This case has several 

= [ I + I , ( R ; ) - ~ ( R ; ) ~ ,  z * ( R ; ) - ~ H ~ & ]  A [ u ; , ~ ; ]  interesting features and, as we shall  see, it in fact gives 
“true” square-root decompositions. The matrix % of (10) 

(29) is  now replaced by the nonnegative-definite matrix 

and for this choice of U’ we can write 5 = I -  UUFTU’ H; pia; + c,r; 
since - 

Ki’ 

=Z+I,(R:)- f (R,):= u;, 
where we used the fact that for L a lower triangular 
matrix L=[L  + L’J+. [ 1, is the “lower-triangular-part“ AS in the previous section %3x3 can  be  factored in two 

operator (if M i  is lower triangular) defined such  that C?, will contain all the a priori values at stage i and is 
M + + IM - = M ,  where the 

. .  

ways as e, and e2. 
therefore called the “prearray.” 

i < j  - 

ijth element of M +  = and M -  = ( M + ) ‘ .  ( Rj - Cj Qi- ‘C;) Hi P: Ci Qi- 

0 0 Qt 

QiP) riQ! - (32) 

The proof of (28) can  be  found by verification that - 
e, contains  information related to the updated esti- 

TT’=Z- u{ [u~u]+} - ’ [ [u ’u ]++[u ’u ]~  mates (a  posteriori) and is called the “post-array.’’ 

- [ufu] ] { [u~u]-}- ’u ’=z.  0 0 

In the scalar case, m+ = m/2,  we pbtain again Potter’s 
equations. In the matrix case (R:)s is needed in  lower 
triangular form (obtained either by the Cholesky decom- 

A 
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where Di. E,, ci are quantities whose actual values are 
not necessary for determining I?;. and p i ; +  I .  However we 
shall see in Section V that these quantities are important 
in studying the so called  "information-filter'' form. 

Note again that C2 can be obtained  from el by  lower 
triangularization using for instance Householder trans- 
formations. Now we can repeat for the general case the 
variations that we dscussed in Section 11. However we 
shall not go through this here. On the other hand, we feel 
that the strilungly simple structure of e, and e2 and the 
fact  that they are triangular calls for a more direct ex- 
planation, which we provide in the next section. 

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, AUGUST 1975 

Iv. GEOMETRIC INTERPRETATIONS AND 
DERIVATIONS 

The triangular form of the factors of *nt, x 3  suggests 
that  there exists an underlying Gram-Schmidt orthonor- 
malization, which we bring out  as follows. 

Using the given statistics, the model equation, and the 
past data y (0, i - 1 } we can express the random variables 
{ yi,xi+ ui}  at stage i in terms of certain orthonormalized 
variables { %;, ' X i ,  G 2 L i  } which are obtained by sequen- 
tially (from right to left) orthonormalizing, by ordinary 
Gram-Schmidt, the random variables { y i ,x i ,u i } .  We have 

,. 
Yili - 1 1 
Uili - 1 

where 

and the means are 

9i,;-, = m i l i -  1, 2;+ ] l i -  1 = @;2;,;- 1, ;;I;- 1 = 0. (37) 

Note  that we have  obtained the prearray of (32) in the 

equation 

Similarly, we can get the post-array by expressing the 
varigbles { y i . x i +  I . u j }  in terms of the  variables 
{ v i ,  q i }  obtained by orthonormalizing  (from left to 
right) the variables {)'; .xi+ u ; }  given y [ i - 1 $01. 

where 

v i = ( R ,  

( R , ' ) ;  0 0 

i; P ; + ]  0 

Di E; @ 

i .  
c '  

1 

)-7(y;-y;ly[i-  LO]) 

J (39) 

=the normalized innovations 

R f =  EE;E:, ~ ~ = y ~ - ~ ~ ~ ~ - ~  

We  may note the useful fact that 2, and e2 can clearly 
also be expressed as cross covariances, 

z1 = E[y;,x,'+ 1, u;3'[ 9;, 3;, "u;] (41) 
- _ -  

and 

c= E[y;,x;+,,u;]'[  I ( ,  !ti+,, 4 .  
- 

(42) 

We  may also note that we did not need the Riccati 
equation to obtain these arrays; as a  matter of fact, the 
arrays  could be  used to derive the Riccati equation by 
squaring up  and comparing the (2,2) block elements  in 

e; and e2e;. 
v. INFORMATION FILTER 

I 
Instead of obtaining equations for updating Pi (or Pi'), 

it  is often convenient to use Si = Pi-', the inverse of the 
covariance matrix, especially if Po= (no knowledge 
about xo). Filters involving Si and S;: have been called 
information filters. In the past.  such filters have either 
been  derived  directly  (see, e.g., [7], [12]) or from 
covariance filters by using a certain duality between the 
coefficients of the predicted covariance (pili- arrays and 
filtered information (Silj) arrays (see,  e.g.,  [13], [lo]). Here 
we shall take a different route, which will actually expose 
a different duality from the one usually used. 

We start with the prearray equation (10) and solve for 
the sequentially orthonormalized "prior" variables to .get 
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where 

[ :, #o, Pj>O. 

A similar eqtation can be obtained for the posterior 
variables { v i ,  xi+ 3; }. Again the two sets of variables 
can clearly be related via an  orthogonal transformation ET 
(on the left). Explicit inversion of the matrices e, and e, 
gives the following prearray [e; ’, rnl] (where rn, denotes 
the last two columns of “mean” values): 

4) We can  apply this “inversion technique” to obtain 
information  forms of all previous results. Furthermore we 
can  obtain explicit equations either by  “squaring up” the 
arrays  or by using the explicit formulas (28) for the 
Householder transformation. 

.Squaring up gives the following equations for predicted 
state estimates: 

where 

where and the following duality table can be obtained by using 
I inversion 

1 e;=(%)-’ A (Ri-CiQi- lC;)-’ ,  $t)\k; 4 @,: 

Ci A (&.)-2[qa;1ri-  C,Q;-~]  
. I  1 Hit)R: 1 

(46a) 

and the following post-array [e; ‘,rn,] ri++Ti = f i ~ ;  

where I 

G L  - ( ~ ) - ‘ [ E i P - f i + l K s , - D i ( R f ) - i ]  

QCi k ( @ - K g i H i ) ,  Kgi 4 K i ( R f ) - ’ .  

Remark: 
1) I t  is customary  to  leave  the  state  estimates 

Pi- i2i,i- “normalized” if not explicitly needed. 
2) Note  that the estimates 2i,i- and 2;+ need  not be 

separately calculated as in the covariance forms. Here we 
can  transform the means “1 I y [  i, 01” directly by ET, thus, 
the  yi block column is not needed.- 5 )  The above duality relations are different from those 

3) The 3 x3 matrix provides us  with a  means of usually used  (see,  e.g.,  [9], [lo]), which  we may call the 
switching between the covariance and  information forms, “standard” duality. We may note however that the stan- 
(even of combining them if some states are completely dard duality gets rather complicated when Ci#O and no 
unknown [PIii= co and some are completely known [PIj formulas for this  case have  been explicitly  given  in the 
= 0). literature. Clearly also we  now have several  possible  ways 
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of relating predicted and filtered covariance and  informa- 
tion quantities, as diagrammed in  Fig. l. 

VI. GIVEN COVARIANCE INFORMATION 

An alternative solution to the filtering problem  can  be 
given if instead of a state-space model, we only  have 
covariance information in the form 

R l =  Hj@f--’Nj, i > j 
RJ = RY’. 

!I (47) 
If there is an underlying state-space model of the form  (l), 
we can identify 

N; = np; + ric;, nj A  EX,^,!. (48) 

The Riccati equation solution is  given by  [26] 

Zj+ 1,; =@& 1 + K;Y; (494 
1 - 

v j = ( v ) - * q ,  q=y.-H.?.  1 I 1 1 1 - 1  (49b) 

RJ=Rl-Hj2,H,’,   Kj=@l(Ni-Z,H,’)(R:)-2 (49~)  
- T - 

zj+ 1 = Qiz;@; + I?;I?;, z, = 0. (49d) 

However, we can also develop square-root algorithms. Let 

: % = - _ - - - _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  
c !  1 RL - HjZjH,’=  R; I ( N ; -  H j Z j ) @ j =  K; 

@.,(N;-Z,H,’)= K j l  - @ j z j @ ~ = K j ( R : ) - ’ K ~ - Z ; + l  ‘ 

I 

(50) 
Note  that  our previous 

Again we can factor L%c into e,?; and C2C;. where 

< =  
1 

and 

However. we  now have arrays with imaginary  columns, 
but  no complex arithmetic will be  needed  in  the computa- 
tion. We need  only to keep track of “purely imaginary” 
and “purely real”  columns [lo, p. 771. 

If @ and H are constant we can develop fast algorithms. 

where 
8 2 j = z j + l - 2 j = L ; L l ! .  (54) 

- I  

The proper initial values for these arrays needs  a separate 

l x ’  standard  Duality 

P i l i  4 e si/ i 
Inversion  Duallty 

Fig. 1. 

calculation described in  [14].  However in the stationary 
case, where N j  = N ,  R i  = R,Y = R& they are easily  specified 
as 

VII. CONCLUDING REMARKS 

For reasons of space, discussions of several extensions 
have  been  postponed to a later paper. However,  in the 
Appendices, brief dikussions  are given of some of these. 
Appendix  A briefly  discusses smoothing  problems, Ap- 
pendix B notes possible extensions to time-variant sys- 
tems, and Appendix C discusses continuous systems,  espe- 
cially those with discrete measurements. This last problem 
is capable of quite efficient numerical solutions as studied 
in  some detail by Potter and Womble  [25]; our presenta- 
tion  is made chiefly for completeness. 

There  are also relations to nonstochastic problems. 
Needless to say, by the well known duality [27], our 
results can  be applied to the quadratic regulator problem. 
We are also studying array methods for minimal realiza- 
tion and identification. In his dissertation, Dickinson [24] 
has  pursued the application of our fast algorithms to the 
explicit calculation of the various (controllability and  ob- 
servability) subspaces  that arise in the geometric theories 
of control of Wonham, Morse, et al. 

This last application was stimulated by a  paper of 
Payne and Silverman [23].  This paper contains a deve- 
lopment via a  dynamic  programming  argument of certain 
square-root  algorithms  for  the  Riccati  equation of 
quadratic control. In the time-invariant case, they obtain 
arrays dual to those in our  equation (24). They also 
established some connections with our explicit equations 
in [ 141. 

We are  happy to acknowledge  that [23] along with the 
work of Golub [5] and Kaminski [lo] were important 
stimuli for our work. 

APPEKDIX  A 

Arrclys for Smoothing 

There exists a host of smoothing equations and our 
method seems  to  be  powerful enough to rederive  all of 
them as well as some  new  ones. The choice of the proper 
variables and the many  possibilities of ordering them (to 
get the orthonormal coordinate systems) increases con- 
siderably for the smoothing  problem.  The choice of useful 
variables for the smoothing equations has been  more of 
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an  art  than  a science. We feel that the array-methods r i + l Q i + l r i + l = r i Q , r ~ + 6 ~ i  and SOi= U i q  (B2) 
provide  a  more systematic approach to this  choice (for 
instance by enumerating all  possible  ones), thereby also (where and might have columns)* 
filling some  gaps in earlier studies which  worked  with  only we have 
some of the possible  choices. A detailed study of smooth- 
ing problems will be deferred to  a later paper  but as an R f + l ~ [ R f , V i ] , r , + , Q f - [ r , Q ~ , ~ i ] .  (B3) 
example of our results, we give a new array  method for 
the fixed-point  smoothing  problem, where we have to esti- 

equation is 

We remark at this point that this expansion  should  not  be 
regarded as a trick, but rather as a  kind of first-order 

mate given {YLk9 + ‘ 9  . . 7 ‘17 ;klk- I 1- The prearray  Taylor series expansion of the variables of the fast-array 

“ J  i I 
0 0 PZli-1 

ui 0 0 

with initial conditions 

Pklxk = 0, R i k  I .  ( A 4  

Note  that all the quantities { %;, gi ,  6; } are  conditioned 
or “pinned” on x,, a feature that arises naturally in the 
G-S  procedure applied here. 

By a further modification of the array in (Al )  (i.e.,  by a 
second  “pass” over the data) we could derive for instance 
the smoothing  formula of Kaminski and Bryson [9], [lo]. 
However, a  somewhat simpler (one-pass) procedure  can 
be  given by triangularizing the prearray to get 

- 
Vi %kl; ‘ ;+ , l i , xk  ‘ i l i .xk,x,  11’- 1 

0 Hi2;Ii-l 

‘kli-1 (A31 

0 @2;li- 1 

Q; 0 

Remark: Notice  that in effect we could  augment the 
state xi by xk to get the above results from the filtering 
arrays (32), (33 ) ,  an idea apparently first used by Zachris- 
son [21]. 

APPENDIX B 

Generalization of the Fast Forms to Time  Variant R, and Q, 

The crucial facts for obtaining the fast algorithm of 
Section I1 was the constancy of H and @. Time variations 
of Ri and ri,Qi can  be  handled just as for Pi. Namely, 
suppose again that 

R i + 1 = R i + 6 R ,  and 6R,=V,V/  (Bl) 

or terms of variables of the prearray, noting that we then 
can disregard the “constant term” of the series, because it 
appears in both arrays. 

With  the use of the expansion (B3)  we can now expand 
the prearray (16) as 

P P n ffi- 1 m  m 

R f - ,  V j p l   H P f - ,  H i i - ,  0 

o w f - ,  r , - l ~ f - ,  vi-, O I  

P n m  P ai- 1 m 

(R:- l ) i  0 0 Vi -1   HLi - l  

Pf 0 0 @ii-l Ui-1 O I  

n 6, ai 

where ai is a  number  such that 

a i < p + m + c x - 1 = 6 i + c u i ,   a j < n .  

Unlike the case of constant R, and Qi there the rank of Li 
can increase or decrease with i and unless we  wish to 
particularly exploit  this fact, we  will have to reserve n 
columns  for the { Li},  so that, in general, we would need 
at most p wave columns  than for (16). However, in some 
applications ai might  be less than n - p  for all i ;  for 
instance, if the system has  more  than p degenerate direc- 
tions [ 191. 

General Time Variant  Case 

We note briefly that the requirements of constant H 
and @ can be circumvented by the artifice of reducing the 
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state  equation  for  a time varying system Z( Hi, (Di, r,) .to a 
time varying autoregressive moving average (ARMA) 
model of the form 

y , . + A , , ~ , - I + . . -  +A,,yi-,=wi,  i>n,Ao,i=Z 

where wi is a finitely-correlated MA process 

w,= Bl,,ui-l + . * + B,,,.ui-,,  i > n,  Bo,,.=O. 

The reduction to this model (see  [17]) corresponds to 
factoring the impulse response matrix of 2( H,, @;, r,) 

H i @ i - l ~ ~ - ( D , + l ~ j ,  i > j + l  
i = j +  1 
otherwise 

[E], = L, = HJ,, 

10, 
as 

C = @-’$, [@],=A,-,.,,, [‘%I,= B,-,,, 

where A - , .  = O  and B.5. = O  f o r j - i$ [O,n] .  Now it can be 
arranged [I61 that the innovations of { y i }  are equal to 
those of { wi}, so that we need only concern ourselves with 
the { w,.} processes. But since { wi} is’an MA process it  is 
easy to see that it can be represented in the state-space 
form ( ) with 

@ =  

But  now H , @  are constant so that the previous arguments 
can  be applied. We note that this constancy yields a 
“shift-invariance” property, which is exploited differently 
in [15] to get an innovations derivation of the Chandra- 
sekhar-type equations (see also [ 171, [20]). 

APPENDIX  C 

Square Root Techniques for Continuous- Time Systems 

There do not seem to be natural analogs in continuous 
time of the previous equations. To give an example of 
what is possible, note  that if we define 

P ( t ) = S ( t ) S ’ ( t )  

and assume P ( t )  > 0, then  from  the  continuous-time 
Riccati equation 

P ( r ) = F ( t ) P ( t ) + P ( t ) F ’ ( t ) - K ( t ) K ’ ( r ) +  Q ( t )  

K ( t ) = P ( t ) H ’ ( t ) +  C ( t ) .  

EEE TRANSACTIONS ON AUTOMATIC CONTROL, AUGUST 1975 

Andrews [loa] obtained with A + A ‘ =  0 the equation 

S= [ (  F -  C +  ? S S ’ H ‘ ) H ] S +  1 [ A + ? ( Q - C C ’ )  1 1 (S- ’ ) :  

(C1) 
This is not very convenient because of the need to use a 
similar equation for S - I .  However, the antisymmetric 
matrix A can be chosen such that S and S is triangular 
[loa], so that S is  easily computed. We may note that S 
obeys a nicer equation when Q - CC’ = 0 (i.e., there is no 
plant noise). 

Another variation that does not require P ( t )  > 0 but 
assumes knowledge of one solution of the Riccati equa- 
tion [e.g., of the algebraic hccati equation (for constant 
systems)] is the following. 

Let P,(t), P2( t )  be two solutions of the Riccati equation. 
Then we can show that 

~ , ( t ) = P , ( t ) + S ( t ) S ’ ( t )  (C2) 

S =  F -  P2+ -SS‘ H’+C H S ,  i [( I ]  
s (0) = [ P,(O) - P,(O)]+. (C3) 

More use can be made of square-root ideas if the 
continuous-time Riccati equation is replaced by a par- 
ticular discretized equivalent, as recently proposed by 
Potter and Womble [25]. They noted  that the solution of 
the continuous-time Riccati equation at discrete times 
O= to < r 1  < t,. could be computed via recursions that 
constant systems and uniform sampling (i.e., tk+ - rk = A), 
have the form 

P k + l =  P*+A[W+ P,-l]-IA’ (C4) 

where P,, A ,  W are quantities obtained by integration 
over A o f  a Riccati equation with zero initial conditions. 
As Potter and Womble note, these equations are in a form 
to which discrete-time square-root ideas can be readily 
applied. (This possibility was also noted by Bierman, 
personal communication.) Thus let 

Pk = s,s;. (C5) 

Then (C4) can be written 
I T  

s k + l s ~ + l = ~ ’ * ~ ’ ~ + A S k ( M ~ I ~ k ) - ’ S ~ A ‘  (‘26) 

where 

M;M,=I+s;w+&s,. (C7) 

Now it is obvious that 

Skcl-[ Pi*,AskMF1] tcw 
Mk- [ I ,  d s k ] .  (C8b) 

Note  that we can take Mk to be a triangular square-root 
so that its inverse can be more easily computed. 
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