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Square Root-based Multi-Source Early PSD

Estimation and Recursive RETF Update in

Reverberant Environments by Means of the

Orthogonal Procrustes Problem
Thomas Dietzen, Simon Doclo, Senior Member, Marc Moonen, Fellow, and Toon van Waterschoot Member

Abstract—Multi-channel short-time Fourier transform (STFT)
domain-based processing of reverberant microphone signals com-
monly relies on power-spectral-density (PSD) estimates of early
source images, where early refers to reflections contained within
the same STFT frame. State-of-the-art approaches to multi-
source early PSD estimation, given an estimate of the associated
relative early transfer functions (RETFs), conventionally mini-
mize the approximation error defined with respect to the early
correlation matrix, requiring non-negative inequality constraints
on the PSDs. Instead, we here propose to factorize the early
correlation matrix and minimize the approximation error defined
with respect to the early-correlation-matrix square root. The
proposed minimization problem – constituting a generalization
of the so-called orthogonal Procrustes problem – seeks a unitary
matrix and the square roots of the early PSDs up to an arbitrary
complex argument, whereby non-negative inequality constraints
become redundant. A solution is obtained iteratively, requiring
one singular value decomposition (SVD) per iteration. The esti-
mated unitary matrix and early PSD square roots further allow
to recursively update the RETF estimate, which is not inherently
possible in the conventional approach. An estimate of the said
early-correlation-matrix square root itself is obtained by means
of the generalized eigenvalue decomposition (GEVD), where we
further propose to restore non-stationarities by desmoothing the
generalized eigenvalues in order to compensate for inevitable
recursive averaging. Simulation results indicate fast convergence
of the proposed multi-source early PSD estimation approach
in only one iteration if initialized appropriately, and better
performance as compared to the conventional approach. A
MATLAB implementation is available.

Index Terms—Early PSD estimation, RETF estimation, or-
thogonal Procrustes problem, unitary constraint, singular value
decomposition, generalized eigenvalue decomposition.

I. INTRODUCTION

IN many multi-microphone signal processing applications,

the recorded microphone signals constitute a mixture of

several spatially diverse components, originating from differ-

ent sources, bearing reverberation and noise. As far as speech

is concerned, early reflections are perceived jointly with the

direct component and are said to colorize and reinforce it,

while late reverberant components deteriorate the perceived

T. Dietzen and T. van Waterschoot are with KU Leuven, Dept. of
Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems,
Signal Processing and Data Analytics and ETC Technology Cluster Electrical
Engineering, Leuven, Belgium. S. Doclo is with University of Oldenburg,
Dept. of Medical Physics and Acoustics and the Cluster of Excellence
Hearing4all, Oldenburg, Germany. M. Moonen is with KU Leuven, ESAT,
STADIUS.

quality and intelligibility [1]. In order to process the mixture,

e.g., for the purpose of speech enhancement [2]–[5], many

techniques heavily rely on power spectral density (PSD)

estimates [6]–[16] of the various mixture components or the

direct-to-reverberant ratio (DRR) [17], [18], for instance in the

spectral gain computation of the multi-channel Wiener filter

(MWF) [4].

In recent years, a number of multi-microphone approaches

to PSD estimation have been proposed, which rely on a spatial

correlation matrix model in the short-time Fourier transform

(STFT) domain [6]–[18]. In order to estimate the PSDs

of the mixture components, i.e. the early speech PSDs, late

reverberant PSDs, and/or noise PSDs, the associated spatial

parameters of the correlation matrix model are assumed to

be known or estimated beforehand, namely the direction(s)

of arrival (DoA(s)) or alternatively the relative early transfer

function(s)1 (RETF(s)) associated to the source(s) [6]–[14],

[18], the spatial coherence matrix of the noise and/or the

late reverberant component, where in particular the latter is

commonly modeled as a spatially diffuse sound field [7]–[9],

[11]–[19]. It should be noted that the majority of these

approaches consider a single source [6], [9], [11]–[15], [18],

while only some consider multiple sources [7], [8], [10], [16],

which is the focus of this paper.

Given such spatial knowledge, different estimation ap-

proaches may be taken. In [9], [11], the early speech and

late reverberant PSD estimates are obtained by maximum-

likelihood estimation, where in [9], both are estimated jointly,

and in [11], the late reverberant PSD estimation relies on

blocking the early speech component. Other estimators seeking

the PSD of a particular mixture component rely on Frobenius-

norm minimization of the approximation error defined with

respect to the associated correlation matrix component [6]–[8],

[10], [12], [13], [16], [18]. Specifically, in [6], the speech PSD

is estimated by minimizing the approximation error to the

speech-only correlation matrix component (while reverbera-

tion is not considered). In a similar manner, in [7], considering

multiple sources, the early PSDs are estimated from the early

correlation matrix component. In [8], the late reverberant

PSD is estimated from a blocking-based correlation matrix,

generated by blocking the direct components, while the mul-

1The RETF vector can be thought of as a generalization of the DoA steering
vector in reverberant environments, which models level and phase differences
across microphones due to both the direct component and early reflections.



2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2020.2966891, IEEE/ACM

Transactions on Audio, Speech, and Language Processing

2

tiple early PSDs are estimated according to [7]. Likewise,

one may also jointly estimate the PSDs of multiple mixture

components, i.e. one may jointly estimate early speech PSD(s),

the late reverberant PSD, and/or the noise PSD(s) [10], [12],

[13], [18]. In [16], joint estimation of all mixture component

PSDs and the RETFs is proposed by jointly minimizing a

number of approximation errors defined over several frames,

during which the RETFs are assumed to be stationary. Note

that the PSD estimates based on these optimization problems

are not inherently guaranteed to be non-negative, requiring

either non-negative thresholding, or, alternatively, non-negative

inequality constraints. In [15] instead, the estimation of the

late reverberant PSD is based on a subspace decomposition,

outperforming the late reverberant PSD estimators in [8], [9],

[11].

In this contribution, we are mainly concerned with early

PSD estimation and recursive RETF updates for multiple

sources in reverberant environments, given initial estimates

of the associated RETFs. Instead of minimizing the approx-

imation error defined with respect to the early correlation

matrix as in the manner of [7], [10], [12], [13], however, we

propose to factorize the early correlation matrix and minimize

the approximation error defined with respect to the early-

correlation-matrix square root. Instead of directly estimating

the early PSDs, the proposed minimization problem seeks a

unitary matrix and the square roots of the early PSDs up to an

arbitrary complex argument, making non-negative thresholding

or non-negative inequality constraints redundant. The proposed

minimization problem constitutes a generalization [23] of the

so-called orthogonal Procrustes problem [24], [25] and may be

solved iteratively, requiring one singular value decomposition

(SVD) per iteration. The estimated unitary matrix and early

PSD square roots further allow us to recursively update the

RETF estimate, which is not inherently possible in the con-

ventional approach. An estimate of the said early-correlation-

matrix square root itself is obtained from an estimate of the

microphone signal correlation matrix and the diffuse coherence

matrix by means of the generalized eigenvalue decomposition

(GEVD). Hereat, in order to compensate for the inevitable re-

cursive averaging in the microphone-signal-correlation-matrix

estimation, we further propose to restore non-stationarities by

desmoothing the generalized eigenvalues. Simulation results

indicate fast convergence of the proposed multi-source early

PSD estimation approach in only one iteration if initialized ap-

propriately, and better performance as compared to the conven-

tional approach in terms of the relative squared PSD estimation

error and the signal-to-interference ratio [26] measuring the

source-component separation. A MATLAB implementation is

available at [27]. An application of the proposed algorithm in

a Kalman filter-based speech enhancement approach can be

found in [28].

The remainder of this paper is organized as follows. In

Sec. II, we introduce the signal model. Given an estimate

of the early correlation matrix component, some state-of-

the-art approaches to early PSD estimation are reviewed in

Sec. III, while the proposed approach, given an estimate of

the early-correlation-matrix square root, is presented in Sec.

IV. In Sec. V, we discuss the estimation of the required

early correlation matrix component and its factorization. The

proposed approach is evaluated in Sec. VI, followed by a

conclusion in Sec. VII.

II. SIGNAL MODEL

Throughout the paper, we use the following notation: vec-

tors are denoted by lower-case boldface letters, matrices by

upper-case boldface letters, I and 0 denote identity and zero

matrices, i and 1 denote the first column of I and a vector of

ones, respectively, AT , AH , E[A], and Â denote the transpose,

the complex conjugate transpose or Hermitian, the expected

value and an estimate of a matrix A. The operation diag[A]
creates a column vector from the diagonal elements of a square

matrix A, Diag[a] and Diag[aT ] create a diagonal matrix with

the elements of a on its diagonal, Diagg[A] = Diag
[

diag[A]
]

zeros the off-diagonal elements of A, and tr[A] denotes

the trace of A. For non-negative a ∈ R
N , a

1/2 ∈ C
N

and a
H/2 = (a1/2)H denote a complex vector with arbitrary

complex argument that satisfy Diag[aH/2]a1/2 = a, and hence
∣

∣a
1/2

∣

∣ =
√
a, with absolute value and non-negative square-

root applied element-wise. The operation max[a1,a2] returns

a vector of the element-wise maxima of a1 and a2. ‖A‖F

denotes the Frobenius norm of A, whereas ‖a‖2 denotes the

Euclidian norm of a. Row i and column j of A are denoted as

[A]i,: and [A]:,j , respectively, the element at their intersection

as [A]i,j , and submatrices spanning rows i1 to i2 or columns

j1 to j2 as [A]i1:i2,: and [A]:,j1:j2 , respectively. ℜ[a] and ℑ[a]
denote the real and imaginary part of a ∈ C.

In the STFT domain, with l and k indexing the frame and the

frequency bin, respectively, let xm(l, k) with m = 1, . . . ,M
denote the mth microphone signal, with M the number of

microphones. In the following, we treat all frequency bins

independently and hence omit the frequency index. We define

the stacked microphone signal vector x(l) ∈ C
M ,

x(l) =
(

x1(l) · · · xM (l)
)T

(1)

composed of the reverberant signal components xn(l) with

n = 1, . . . , N originating from N point sources, defined

equivalently to (1), i.e.

x(l) =
N
∑

n=1

xn(l). (2)

Each reverberant signal component xn(l) may be decomposed

into the early component xn|e(l) containing the direct compo-

nent and early reflections and the late reverberant component

xn|ℓ(l) containing late reflections, i.e.

xn(l) = xn|e(l) + xn|ℓ(l), (3)

which are assumed to have distinct spatial properties as

outlined below. Early reflections are assumed to arrive within

the same frame, with the early components in xn|e(l) related

by the RETF in hn(l) ∈ C
M , i.e.

xn|e(l) = hn(l)sn(l). (4)

Here, without loss of generality, the RETF hn(l) is assumed to

be relative to the first microphone, i.e. iThn(l) = [hn(l)]1 = 1,

and sn(l) = [xn|e(l)]1 denotes the early component in the first
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microphone originating from the nth source, in the following

referred to as early source image. We define the stacked RETF

matrix H(l) ∈ C
M×N , yielding

H(l) =
(

h1(l) · · · hN (l)
)

, (5)

i
T
H(l) = [H(l)]1,: = 1

T . (6)

Similarly, we stack sn(l) into s(l) ∈ C
N , i.e.

s(l) =
(

s1(l) · · · sN (l)
)T

, (7)

such that the sum of the early components xn|e(l) is expressed

more compactly as

N
∑

n=1

xn|e(l) = H(l)s(l). (8)

Further, we assume that xn|e(l) and xn|ℓ(l) are mutually

uncorrelated within frame l. Let Ψx(l) = E[x(l)xH(l)] ∈
C

M×M denote the microphone signal correlation matrix, and

let the early and late reverberant correlation matrix Ψxe
(l) and

Ψxℓ
(l) be similarly defined. With (3)–(8), we then find

Ψx(l) = Ψxe
(l) +Ψxℓ

(l), (9)

wherein Ψxe
(l) generally has rank N and is expressed by

Ψxe
(l) = H(l)Φs(l)H

H(l), (10)

Φs(l) = Diag[ϕs(l)], (11)

ϕs(l) =
(

ϕs1(l) · · · ϕsN (l)
)T

, (12)

with ϕsn(l) denoting the PSD of the early source image sn(l).
Note that applying (6) to (10)–(11) while using 1

T
Φs(l)1 =

1
T
ϕs(l), we find that

i
T
Ψxe

(l)i = [Ψxe
(l)]1,1 = 1

T
ϕs(l), (13)

i.e. the sum of the early PSDs ϕsn(l) equals [Ψxe
(l)]1,1.

Assuming that xn|ℓ(l) may be modeled as diffuse [7]–[9],

[11]–[16], [19] with coherence matrix Γ ∈ C
M×M , which

can be computed from the microphone array geometry [19]

and is therefore considered to be known in the remainder, we

write Ψxℓ
(l) as

Ψxℓ
(l) = ϕxℓ

(l)Γ, (14)

with ϕxℓ
(l) =

N
∑

n=1

ϕxn|ℓ
(l), (15)

and ϕxn|ℓ
(l) denoting the PSD of the late reverberant compo-

nent xn|ℓ(l). The PSDs ϕs(l) and ϕxℓ
(l) may be highly non-

stationary, especially if the point sources are speech sources,

while the associated coherence matrices hn(l)h
H
n (l) and Γ are

commonly assumed to be comparably slowly time-varying or

even time-invariant.

Note that with (14)–(15), one could easily include further

diffuse components, e.g., diffuse babble noise, without for-

mally changing the signal model. However, since in this paper,

we are mainly concerned with the estimation of the early PSDs

ϕs(l) and the recursive updating of the estimate of the RETFs

H(l), we restrict the discussion and simulations, cf. Sec. VI, to

the example of late reverberation for the sake of conciseness.

Further, note that while the above signal model is commonly

and effectively used [7]–[9], [11]–[16] due to its simplicity,

it may be said to be deficient in a number of aspects. The

assumption that xn|e(l) and xn|ℓ(l) are mutually uncorrelated

within frame l may be violated due to overlapping windows

in the STFT-processing or source signals remaining correlated

over several frames. The assumption that Ψxe
(l) in (10) has

rank N implicitly relies on the assumption that the frequency

bins can be treated independently, ignoring cross-bin depen-

dencies [29]. Finally, related to that, there may be components

that can be modeled neither by the rank-N component Ψxe
(l)

in (10) nor by the diffuse component Ψxℓ
(l) in (14), depending

on the geometry and physical properties of the acoustic

environment.

In the remainder, as we mostly consider the single frame l
only, we also drop the frame index for conciseness and refer

back to it only where necessary, namely when we differentiate

the frames l and l − 1 in recursive equations.

III. EARLY PSD ESTIMATION BASED ON THE EARLY

CORRELATION MATRIX

In this section, we discuss some state-of-the-art approaches

[7], [10], [12], [13], [16] to the estimation of the early PSDs

ϕs based on the signal model in (10)–(13). In the following,

we refer to (10)–(13) as the conventional signal model. We

develop our discussion from the premise that estimates Ψ̂xe

and Ĥ of the early correlation matrix Ψxe
and the RETFs H

in (10) are readily available. Throughout the paper, despite

being irrelevant to the approaches discussed in this section,

we consider Ψ̂xe
to generally have rank N , similar to Ψxe

. A

rank-N estimator of Ψxe
is described in Sec. V. Further, we

assume that Ĥ satisfies i
T
Ĥ = 1

T , cf. H in (6).

Given the estimates of an early correlation matrix Ψ̂xe

and the therein superimposed coherence matrices ĥnĥ
H
n , one

can estimate the associated PSDs ϕsn , cf. (5), (10)–(11), as

described in [7], [10], [12], [13]2. Adopting this approach, we

define the approximation error as a function of ϕs as

Ec(ϕs) = Ψ̂xe
− ĤDiag[ϕs]Ĥ

H , (16)

where the subscript c stands for conventional. The early PSDs

ϕs can then be estimated by Frobenius-norm minimization of

the approximation error followed by non-negative threshold-

ing, i.e.

ϕ̂
′
s = argmin

ϕs

∥

∥Ec(ϕs)
∥

∥

2

F
, (17)

ϕ̂s = max[ϕ̂
′
s, 0]. (18)

The non-negative thresholding in (18) is necessary as the

elements of ϕ̂
′
s in (17) may in fact be negative, conflicting

with the notion of ϕs being a vector of PSDs. If Ĥ
H
Ĥ has

full rank, which (without sufficiency) requires N ≤ M , the

problem in (17) has a unique solution given by

ϕ̂
′
s = A

−1

c0
bc0 , (19)

2In [7], as in our case, point-source coherence matrices of rank one are
considered, while in [10], [12], [13], without rendering a difference in the
principle approach, general coherence matrices are considered.



2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2020.2966891, IEEE/ACM

Transactions on Audio, Speech, and Language Processing

4

where Ac0 ∈ R
N×N and bc0 ∈ R

N are defined by

[Ac0 ]n,n′ = |ĥH

n ĥn′ |2, (20)

bc0 = diag[ĤH
Ψ̂xe

Ĥ]. (21)

Alternatively, instead of simple thresholding after solving (17),

one can solve the minimization problem subject to the non-

negative inequality constraint ϕs ≥ 0, as proposed in [16].

In addition to this, one can further impose a soft constraint

on 1
T
ϕs corresponding to (13), i.e. one can define the soft-

constraint error as a function of ϕs,

ec(ϕs) = [Ψ̂xe
]1,1 − 1

T
ϕs

= [Ec(ϕs)]1,1. (22)

Note that ec(ϕs) in (22) is independent of Ĥ, and so its

penalization may be useful in case of RETF estimation errors.

The resulting minimization problem can then be written as

ϕ̂s = argmin
ϕs

∥

∥Ec(ϕs)
∥

∥

2

F
+ α

∣

∣ec(ϕs)
∣

∣

2

s. t. ϕs ≥ 0, (23)

where α is the penalty factor. For α → ∞, a hard constraint

1
T
ϕs = [Ψ̂xe

]1,1 is introduced, which is however not desirable

due to potential estimation errors in [Ψ̂xe
]1,1. Note that in [16],

instead of a soft constraint, a box constraint on 1
T
ϕs has been

used. For the sake of comparison to the algorithm proposed

in Sec. IV, however, we restrict our discussion to the soft

constraint. The problem in (23) is convex, but does not have a

closed-form solution due to the inequality constraint ϕs ≥ 0.

A well-suited but computationally simple solver for problems

of this kind is the proximal gradient method [30], [31], which

obtains a solution by iterating the below set of equations until

convergence is reached,

ϕ̂
′(i)
s = ϕ̂

(i−1)
s + µ

(

bc −Acϕ̂
(i−1)
s

)

, (24)

ϕ̂
(i)
s = max[ϕ̂′(i)

s ,0], (25)

where i is the iteration index, µ the step-size, and bc −
Acϕ̂

(i−1)
s the gradient with Ac ∈ R

N×N and bc ∈ R
N

defined by

Ac = Ac0 + α11T , (26)

bc = bc0 + α[Ψ̂xe
]1,11, (27)

and Ac0 and bc0 defined in (20)–(21). As initial value, it

is straight-forward to choose ϕ̂
(0)
s = A

−1

c bc, which yields

the global minimum if ϕ̂
(0)
s ≥ 0. In this case therefore,

convergence is reached after one iteration of (24)–(25). In any

case, for ϕ̂
(0)
s = A

−1

c bc and α = 0, the estimate obtained

after one iteration of (24)–(25) corresponds to the estimate

defined by (17)–(19). We therefore use (23) as a reference for

comparison in the remainder. In the following, we refer to (23)

as the conventional minimization problem (conventional MP).

IV. EARLY PSD ESTIMATION AND RECURSIVE RETF

UPDATE BASED ON THE EARLY-CORRELATION- MATRIX

SQUARE ROOT

In this section, in order to estimate the early PSDs ϕs,

instead of defining the approximation error to be minimized

with respect to Ψ̂xe
as in (16), we propose to define the

approximation error with respect to the square root Ψ̂
1/2
xe ∈

C
M×N of Ψ̂xe

, satisfying Ψ̂xe
= Ψ̂

1/2
xe Ψ̂

H/2
xe . As to be shown,

instead of directly estimating the diagonal of Φs = Diag[ϕs],
the resulting minimization problem now consists in estimating

a unitary matrix Ω ∈ C
N×N and the diagonal of Φ

1/2
s =

Diag[ϕ
1/2
s ], which constitutes a generalization [23] of the so-

called orthogonal Procrustes problem [24], [25]. Since the

early PSDs herein are represented by ϕs = Diag[ϕ
H/2
s ]ϕ

1/2
s ,

the corresponding estimate ϕ̂s is guaranteed to be non-

negative, such that a non-negative inequality constraint as

in (23) is not required. Further, we show that the obtained

estimates Ω̂ and ϕ̂
1/2
s can be used to recursively update the

RETF estimate Ĥ, which is not inherently possible from the

estimate ϕ̂s given by (23).

In Sec. IV-A, as a pre-requisite to our derivation, we

discuss the factorization of the conventional signal model

in (10)–(13), yielding the square-root signal model. In Sec.

IV-B, based upon the square-root signal model and given the

estimates Ψ̂
1/2
xe and Ĥ, we then define and solve the square-

root minimization problem (square-root MP). In Sec. IV-C, we

discuss the recursive updating of the RETF estimate Ĥ.

A. Early-Correlation-Matrix Factorization

We consider the factorization of the rank-N matrices on

both sides of (10). On the left-hand side of (10), we define

the square root Ψ
1/2
xe ∈ C

M×N such that Ψ
1/2
xe Ψ

H/2
xe = Ψxe

.

Note that the product is invariant to right-multiplication of a

particular square root with any unitary matrix, and so Ψ
1/2
xe

is not unique. On the right-hand side of (10), with ϕ
1/2
s ∈

C
N and Diag[ϕ

H/2
s ]ϕ

1/2
s = ϕs, we define the square roots

Φ
1/2
s = Diag[ϕ

1/2
s ] and HΦ

1/2
s such that HΦ

1/2
s Φ

H/2
s H

H =
HΦsH

H . Note that while the magnitude of the elements in

ϕ
1/2
s ∈ C

N is well-defined, namely by
∣

∣ϕ
1/2
s

∣

∣ =
√
ϕs, their

complex argument can be chosen arbitrarily, and so Φ
1/2
s is not

unique. The non-uniqueness of both square roots implies that

while their respective products on both sides of (10) coincide,

the said square roots themselves generally do not, i.e. we have

Ψ
1/2
xe 6= HΦ

1/2
s . Hence, for a particular Ψ

1/2
xe and Φ

H/2
s , we

introduce the unitary matrix Ω ∈ C
N×N , which is such that

Ψ
1/2
xe Ω and HΦ

1/2
s do coincide, i.e. we summarize

Ψ
1/2
xe

Ω = HΦ
1/2
s , (28)

Φ
1/2
s = Diag[ϕ

1/2
s ], (29)

ΩΩ
H = I, (30)

where right-multiplying each side of (28) with its Hermitian

yields (10). At this point, in order to stress the meaning

of (28)–(30), we add that the column vectors [Ψ
1/2
xe ]:,n and

[HΦ
1/2
s ]:,n = hnϕ

1/2
s form generally different bases3 of the

same vector space, and hence Ω implements a change of basis.

3A particular case is obtained for N = 1, where Ω and Φ
1/2
s are

scalar, while H = h and Ψ
1/2
xe = ψ

1/2
xe are proportional column vectors.

In this case, given an estimate ψ̂
1/2
xe , we may even estimate h by ĥ =

ψ̂
1/2
xe /[ψ̂

1/2
xe ]1, satisfying [ĥ]1 = 1, cf. (6). In essence, despite somewhat

different derivation and terminology, this is equivalent to the approach taken
in subspace-based single-source RETF estimation [20].
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Applying (6) to (28)–(29) and noting that 1T Diag[ϕ
1/2
s ] =

ϕ
T/2
s , we find that ϕ

1/2
s and Ω satisfy

i
T
Ψ

1/2
xe

Ω = [Ψ
1/2
xe

Ω]1,: = ϕ
T/2
s , (31)

where right-multiplying each side of (31) with its Hermitian

yields (13). We further note that if Ω was known for a given

square root Ψ
1/2
xe , then ϕ

1/2
s could be obtained from (31)

immediately. In the following, we refer to (28)–(31) as the

square-root signal model.

B. Orthogonal Procrustes-based Early PSD Estimate

In this section, based on the square-root signal model in

(28)–(31), we seek unitary and diagonal estimates Ω̂ and

Diag[ϕ̂
1/2
s ] of Ω and Diag[ϕ

1/2
s ]. Similarly to Sec. III, we

develop our discussion from the premise that estimates Ψ̂
1/2
xe

and Ĥ of the early-correlation-matrix square root Ψ
1/2
xe and the

RETF H in (28) are readily available, with Ψ̂
1/2
xe generally of

rank N and i
T
Ĥ = 1

T . An estimator of Ψ
1/2
xe is described in

Sec. V-B, while Sec. IV-C describes a recursive update scheme

for Ĥ.

Similarly to Sec. III, now based on the square-root signal

model in (28)–(30) instead of the conventional signal model

in (10), we define the approximation error as a function of Ω

and ϕ
1/2
s , i.e.

Esq(Ω,ϕ
1/2
s ) = Ψ̂

1/2
xe

Ω− ĤDiag[ϕ
1/2
s ], (32)

which is akin to Ec(ϕs) in (16), and where the subscript sq

stands for square root. Further, now based on the square-root

signal model in (31) instead of the conventional signal model

in (13), we define a soft-constraint error as a function of Ω

and ϕ
1/2
s ,

e
T

sq(Ω,ϕ
1/2
s ) = [Ψ̂

1/2
xe

Ω]1,: −ϕ
T/2
s

= [Esq(Ω,ϕ
1/2
s )]1,:, (33)

which is akin to ec(ϕs) in (22). Similarly to ec(ϕs), also

esq(Ω,ϕ
1/2
s ) in (33) is independent of Ĥ, and so its penaliza-

tion may be useful in case of RETF estimation errors. While

ec(ϕs) defines an error on the sum of the early PSDs, however,

esq

(

Ω,ϕ
1/2
s

)

instead defines an error on each of the early

PSD square roots and is therefore more informative. Based

on (32), (33), and the unitary constraint in (30), we define the

minimization problem,

{Ω̂, ϕ̂
1/2
s } =

argmin
Ω,ϕ

1/2
s

∥

∥Esq(Ω,ϕ
1/2
s )

∥

∥

2

F
+ α

∥

∥esq(Ω,ϕ
1/2
s )

∥

∥

2

2

s. t. ΩΩ
H = I, (34)

which is akin to the conventional MP in (23) and referred to

as the square-root minimization problem (square-root MP) in

the following. While the unitary constraint in (34) does not

have an equivalent in (23), the inequality constraint ϕs ≥ 0

used in (23) is not required in (34), as in the square-root signal

model, we find that ϕs = Diag[ϕ
H/2
s ]ϕ

1/2
s , and therefore the

corresponding estimate ϕ̂s is guaranteed to be non-negative.

Problems of the kind as in (34), i.e. Frobenius-norm mini-

mization problems seeking a unitary and a diagonal matrix,

here Ω and Diag[ϕ
1/2
s ], constitute a generalization [23] of

the so-called orthogonal Procrustes problem [23]–[25], which

seeks a unitary matrix only. As outlined in the following,

under a specific rank condition, the orthogonal Procrustes

problem has a unique closed-form solution, which is found

by means of the SVD [24], [25]. The generalized orthogonal

Procrustes problem, on the contrary, does not have a unique

closed-form solution, but can be solved iteratively [23]. In

particular, along the lines of [23], we propose to solve (34) by

alternatingly (re-)estimating Ω and ϕ
1/2
s until convergence is

reached, namely by solving the orthogonal Procrustes problem

and the soft-constrained convex problem, respectively,

Ω̂
(i) = argmin

Ω

∥

∥Esq(Ω, ϕ̂
1/2|(i−1)
s )

∥

∥

2

F

s. t. ΩΩ
H = I, (35)

ϕ̂
1/2|(i)
s = argmin

ϕ
1/2
s

∥

∥Esq(Ω̂
(i),ϕ

1/2
s )

∥

∥

2

F

+ α
∥

∥esq(Ω̂
(i),ϕ

1/2
s )

∥

∥

2

2
, (36)

where the soft constraint is applied in (36) only, i.e. once per

iteration. Using (32), by expansion of the Frobenius norm in

(35), it is easily shown [24], [25] that (35) is equivalent to

Ω̂
(i) = argmax

Ω

ℜ
[

tr[ΩC
(i−1)
sq ]

]

s. t. ΩΩ
H = I, (37)

with C
(i−1) = Diag[ϕ̂

H/2|(i−1)
s ]ĤH

Ψ̂
1/2
xe

. (38)

If C
(i−1) has full rank, which (without sufficiency) requires

N ≤ M , the problem in (35) has a unique closed-form

solution, which is based on the SVD of C
H|(i−1). Precisely,

if we decompose C
H|(i−1) as

C
H|(i−1) = ULΣU

H

R
, (39)

where Σ ∈ R
N×N is a diagonal matrix of singular values and

both UL ∈ C
N×N and UR ∈ C

N×N are unitary, then Ω̂
(i) is

given by

Ω̂
(i) = ULU

H

R
. (40)

With (32) and (33), the solution to (36) is easily found as

ϕ̂
1/2|(i)
s = A

−1

sq b
(i)
sq , (41)

with Asq ∈ R
N×N and b

(i)
sq ∈ C

N defined by

Asq = Diagg[ĤH
Ĥ] + αI, (42)

b
(i)
sq = diag[ĤH(I+ αiiT )Ψ̂

1/2
xe

Ω̂
(i)]

= diag[ĤH
Ψ̂

1/2
xe

Ω̂
(i)] + α[Ψ̂

1/2
xe

Ω̂
(i)] T1,:. (43)

The set of equations (42)–(43) is akin to (26)–(27) for the

conventional MP. Note that for α → ∞, the soft constraint in

the square-root MP in (36) becomes a hard constraint and,

moreover, solely determines ϕ̂
1/2|(i)
s , namely as ϕ̂

1/2|(i)
s =

[Ψ̂
1/2
xe Ω̂

(i)] T1,: according to (41)–(43). This is not the case for

the soft constraint in the conventional MP in (23).

Note that since the problem in (34) is non-convex, the

iteration in (35)–(36) is not guaranteed to converge to a
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global minimum [23]. The initial value ϕ̂
1/2|(0)
s of the iteration

can, e.g., be chosen based on the sum constraint in (13) as

ϕ̂
1/2|(0)
s =

√

[Ψ̂xe
]1,1/N 1, or based on the comparably lowly

complex estimator in (17)–(18), here denoted by ϕ̂s|c0 , as

ϕ̂
1/2|(0)
s =

√

ϕ̂s|c0 . Here, the latter provides faster conver-

gence, cf. Sec. VI-A4.

C. Recursive RETF Update

Based upon the square-root model in (28), the estimates Ω̂

and ϕ̂
1/2
s obtained as discussed in Sec. IV-B can also be used

to recursively update the RETF estimate Ĥ. Note that in doing

so, the quality of the estimates Ω̂ and ϕ̂
1/2
s on the one hand

and Ĥ on the other hand depend upon each other, such that

particular means (as outlined below) have to be taken in order

to limit error amplification from frame to frame and thereby

avoid divergence.

In the following, we differentiate the prior and posterior

estimates Ĥ and Ĥ
+, and propose to simply propagate the

posterior in the previous frame to the prior in the current frame,

i.e.

Ĥ(l) = Ĥ
+(l−1). (44)

In each frame, we use Ĥ to obtain Ω̂ and ϕ̂
1/2
s with (35)–(36),

and then use Ω̂ and ϕ̂
1/2
s to obtain Ĥ

+, where we again resort

to the square-root signal model in (28). To this end, we define

the approximation error as a function of H,

Esq(H) = Ψ̂
1/2
xe

Ω̂−HDiag[ϕ̂
1/2
s ] (45)

which is similar to (32). Based upon (45) and the constraint

in (6), we define the minimization problem,

Ĥ
+ =

argmin
H

∥

∥Esq(H)
∥

∥

2

F
+
∥

∥(Ĥ−H)Diag
[
√

β
]
∥

∥

2

F

s. t. i
T
H = 1

T , (46)

where the penalty term
∥

∥(Ĥ − H)Diag
[
√

β
]∥

∥

2

F
relates to

Levenberg-Marquardt regularization [32], [33] in that it penal-

izes deviation from the previous (i.e., the prior) estimate Ĥ

and thus limits error amplification from frame to frame. Here,

we leave β subject to tuning as described in the following.

In this respect, recall that according to (28), both Ψ
1/2
xe and

H span the same column space. However, due to modeling

and estimation errors, this is not necessarily true for the

corresponding estimates Ψ̂
1/2
xe and Ĥ. In particular, if the nth

source image has a comparably low early PSD ϕsn or is

inactive, then the associated subspace dimension will not be

well or not at all be represented in Ψ̂
1/2
xe , and both [Ω̂s]:,n and

ϕ̂
1/2
sn may exhibit comparably large estimation errors. Further,

the estimate ϕ̂
1/2
sn may contain residual late reverberation due

to erroneous separation of Ψ̂x into Ψ̂xe
and Ψxℓ

, cf. (9), Sec.

V and Sec. VI. In such a case, one would preferably rely on

the prior estimate ĥn instead of updating based on [Ω̂s]:,n and

ϕ̂
1/2
sn . Considering the solution to (46), which is given by

[Ĥ+]1,: = 1
T , (47)

[Ĥ+]2:M,: =
[

(Ψ̂
1/2
xe

Ω̂Diag[ϕ̂
H/2
s ] + ĤDiag[β]

)

·Diag−1[ϕ̂s + β]
]

2:M,:
, (48)

we indeed find that the smaller ϕ̂sn as compared to βn =
[β]n, the more ĥ

+

n relies on ĥn, as desired. In order to further

increase robustness against modeling and estimation errors,

source inactivity and residual late reverberation in ϕ̂sn , we

propose to make βn time-varying with binary values. More

precisely, we base βn on the power ratio

ξ = ϕ̂s/(1
T
ϕ̂s + ϕreg), (49)

where ξn = [ξ]n ∈ [0, 1]. Here, ϕreg can be used for

regularization, e.g., we may choose ϕreg = ϕxℓ
in order to

limit ξn in frames where pre-dominantly late reverberation is

estimated. Given ξn, we set βn as

βn

{

= β if ξn ≥ ξth,

→ ∞ else,
(50)

and thereby resort to ĥ
+

n = ĥn if ξn is smaller than the

pre-defined threshold ξth. The value β, used if ξn ≥ ξth,

should scale in relation to the dynamic range of ϕsn and can

be chosen depending on the (estimated) probability density

function of the complex STFT coefficients sn, cf. Sec VI.

Note that in order to start the recursion defined by (44),

(35)–(36), and (46), an initial estimate Ĥ(0) is required, which

may be based on, e.g., initial single-source RETF estimates ac-

quired from segments with mutual-exclusively active sources

[20], or some initial knowledge or estimates of the associated

DoAs [7], [21], [22].

V. SUBSPACE-BASED EARLY CORRELATION MATRIX

ESTIMATION

In Sec. III and Sec. IV, we respectively assumed that

the early-correlation-matrix estimate Ψ̂xe
and its square root

Ψ̂
1/2
xe of rank N are available. In this section, we discuss

how to obtain these estimates from the microphone signals

x. We estimate Ψx = E[xxH ] by recursively averaging

xx
H , yielding the smooth estimate Ψ̂x|sm and its equally

smooth subspace representation based on the GEVD. From

the latter, we first define a desmoothed estimate Ψ̂x based on

desmoothed generalized eigenvalues, and second extract the

early component Ψ̂xe
and its square root Ψ̂

1/2
xe .

In Sec. V-A, we introduce the subspace model of Ψx. In

Sec. V-B, we obtain the smooth and desmoothed estimates

Ψ̂x|sm and Ψ̂x, respectively. In Sec. V-C, given Ψ̂x, we then

retrieve subspace-based rank-N estimates Ψ̂xe
and Ψ̂

1/2
xe .

A. Correlation Matrix Subspace Decomposition

In each frame l, we define the GEVD [34] of Ψx and the

diffuse coherence matrix Γ, cf. (14), i.e.

ΨxP = ΓPΛx, (51)

with Λx = Diag[λx], (52)

where λx ∈ R
M comprises the generalized eigenvalues,

and the columns of P ∈ C
M×M comprise the associated
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generalized eigenvectors. In the GEVD, the generalized eigen-

vectors in P are uniquely defined up to a scaling factor, and

for any factorization Γ = Γ
1/2

Γ
H/2, we find that Γ

H/2
P is

column-wise orthogonal due to Ψx= E[xxH ] being Hermitian.

In the following, without loss of generality, we assume the

eigenvectors to be scaled such that Γ
H/2

P is unitary, i.e.

P
H
ΓP = I, (53)

and therefore, combining (51) and (53),

P
H
ΨxP = Λx. (54)

An alternative, but mathematically equivalent formulation to

the GEVD in (51) is given by the EVD of the pre-whitened

matrix Ψ
′
x = Γ

−1/2
ΨxΓ

−H/2 [15], [20], [35], which is

defined by Ψ
′
xP

′ = P
′
Λ

′
x. By comparison with (51), we

find Λ
′
x = Λx and P

′ = Γ
H/2

P, provided that the respective

(generalized) eigenvalues are sorted in the same order, and the

(generalized) eigenvectors are scaled accordingly.

For convenience of presentation, assume that the generalized

eigenvalues in λx are sorted in a descending order, and the

generalized eigenvectors in P are sorted accordingly. Then,

inserting Ψx = Ψxe
+ Ψxℓ

with Ψxℓ
= ϕxℓ

Γ, cf. (9) and

(14), into (54) while making use of (53) yields

Λx = P
H
Ψxe

P+ ϕxℓ
I, (55)

wherein Ψxe
and in consequence P

H
Ψxe

P generally have

rank N , and the latter in addition is diagonal, i.e. if N < M
we have

P
H
Ψxe

P =

(

Λxe
0

0 0

)

, (56)

with Λxe
= Diag[λxe

], (57)

and λxe
∈ R

N .

B. Recursive Correlation Matrix Estimation and Desmoothing

We compute a smooth estimate Ψ̂x|sm of Ψx by recursively

averaging xx
H using some pre-defined forgetting factor ζ ∈

(0, 1), i.e.

Ψ̂x|sm(l) = ζΨ̂x|sm(l−1) + (1−ζ)x(l)xH(l), (58)

and perform the GEVD Ψ̂x|smP̂ = ΓP̂Λ̂x|sm similar to

(51)–(54), with P̂ an estimate of P and Λ̂x|sm = Diag[λ̂x|sm]
a smooth estimate of Λx. Note that in order to excite all

subspace dimensions and the associated generalized eigenval-

ues and hence to achieve a meaningful decomposition, Ψ̂x|sm

needs to be well-conditioned, and so ζ must be sufficiently

close to one. As discussed in Sec. II, the PSDs ϕsn and

ϕxℓ
may be highly non-stationary, while the associated co-

herence matrices hnh
H
n and Γ are commonly assumed to

be comparably slowly time-varying or even time-invariant.

In theory, a linear combination of the PSDs ϕsn and ϕxℓ

is rendered by the unknown generalized eigenvalues λx of

Ψx and Γ, i.e. also λx may be highly non-stationary. In

contrast, due to the (inevitable) recursive averaging in (58),

the computed generalized eigenvalues λ̂x|sm of Ψ̂x|sm and Γ

are slowly time-varying if ζ is sufficiently large, i.e. non-

stationarities are to some extent smoothed, and so would be

PSD estimates based on λ̂x|sm or Ψ̂x|sm. While smooth PSD

estimates are commonly used in some applications (e.g., in

the computation of spectral gains in speech enhancement [2]),

others exploit non-stationarities (such as, e.g., the Kalman

filter [36], where PSD estimates of the observation noise act

as a regularization term in the recursive update of the state

estimate [28]). Depending on the application, we therefore

propose to restore non-stationarities by desmoothing λ̂x|sm,

yielding an estimate λ̂x of λx.

To this end, we note that the recursive averaging in (58)

can be considered an element-wise filtering operation with

x(l)xH(l) as the input, Ψ̂x|sm(l) as the output, and the (all-

pole) z-domain transfer function given by (1− ζ)/(1− ζz−1).
Therefore, in order to desmooth λ̂x|sm(l), we propose to apply

the corresponding (all-zero) inverse transfer function given by

(1−ζz−1)/(1−ζ) followed by non-negative thresholding, i.e.

λ̂′
x(l) =

λ̂x|sm(l)− ζλ̂x|sm(l−1)

1− ζ
, (59)

λ̂x(l) = max[λ̂′
x(l), 0], (60)

where the thresholding in (60) avoids negative eigenvalue

estimates, which otherwise may appear in a limited number

of frames due to modeling and estimation errors. Note that

the desmoothing operation requires the associated generalized

eigenvalues in λ̂x|sm(l) and λ̂x|sm(l−1) to be sorted corre-

spondingly. This can be ensured by sorting P̂(l) such that

P̂
H(l−1)ΓP̂(l) ≈ I, cf. (53), and λ̂x|sm(l) accordingly, which

can be done easily for large ζ and the therewith slowly time-

varying GEVD [27]. Alternatively, recursive sorting can be

avoided if the GEVD is estimated recursively, e.g., by means

of the power method [37], [38]. One may then define the

corresponding desmoothed estimate Ψ̂x via its decomposition

Ψ̂xP̂ = ΓP̂Λ̂x, (61)

with Λ̂x = Diag[λ̂x], (62)

where P̂ remains unchanged.

C. Early Correlation Matrix Estimation and Factorization

Given P̂ and Λ̂x in (61)–(62), we now retrieve the subspace-

based rank-N estimates Ψ̂xe
and Ψ̂

1/2
xe . To this end, based on

(55)–(57), we note that λxe
can be estimated as

λ̂xe
= [λ̂x]1:N − ϕ̂xℓ

1, (63)

where ϕ̂xℓ
in turn is obtained by averaging the last M −

N generalized eigenvalues in [λ̂x]N+1:M [15]. Considering

(56)–(57), given Λ̂xe
= Diag[λ̂xe

] from (63) and P̂
−1 = P̂

H
Γ

from (53), we can define a rank-N estimate of Ψxe
as

Ψ̂xe
= ΓP̂

(

Λ̂xe
0

0 0

)

P̂
H
Γ

= Γ[P̂]:,1:N Λ̂xe
[P̂]H:,1:NΓ. (64)

From (64), we can further easily derive a square root Ψ̂
1/2
xe as

Ψ̂
1/2
xe

= Γ[P̂]:,1:N Λ̂
1/2
xe

(65)

with Λ̂
1/2
xe

= Diag[λ̂
1/2
xe

], (66)
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with arbitrary complex arguments of the elements in λ̂
1/2
xe .

Note that as opposed to the order presented in Sec. V-B

and this section, we may also apply desmoothing only after

obtaining a smooth estimate of the early correlation matrix

and its square root, which showed to yield comparable results

in our simulations.

VI. SIMULATIONS

In this section, we compare the algorithms based on the

conventional and the square-root MP as presented in Sec. III

and Sec. IV, respectively. We assume that an (initial) RETF

estimate Ĥ is available, and that Ψ̂xe
and Ψ̂

1/2
xe are obtained

as described in Sec. V.

Apart from estimation errors in Ψ̂xe
, Ψ̂

1/2
xe , and Ĥ, the

performance of both algorithms is subject to modeling errors,

cf. Sec. II. Unfortunately, due to the model deficiencies in

(9)–(15), exact and observable ground truth early PSDs ϕs

and ground truth RETFs H do not exist in a practical setup

based on realistic acoustic data. Therefore, in order to yield a

broader understanding of the algorithms’ behavior, we perform

two kinds of simulations. In the first kind, instead of generating

time-domain data and estimating Ψx in the STFT domain, we

generate Ψ̂x = Ψx directly based on (9)–(14) and assumed

geometric and physical properties, i.e. Ψ̂x is free of modeling

and estimation errors. This way, we are able to define exact

ground truth early PSDs ϕs and ground truth RETFs H that

can be used to define exact performance measures. Further,

the estimates Ψ̂xe
and Ψ̂

1/2
xe obtained as described in Sec. V

will be free of estimation errors, such that the performance

of both algorithms depends on the RETF estimation error in

Ĥ and the algorithmic settings in Sec. III and Sec. IV only.

We refer to these simulations as the model-based-data case. In

the second kind of simulations, we generate acoustic data in

the time domain from recorded speech signals and measured

room impulse responses (RIRs), and estimate Ψx in the STFT

domain. This way, the setup becomes more practical, however,

evaluation becomes less trivial in terms of the definition of

performance measures, such that we need to define and rely

on an approximate ground truth early PSD ϕ̃s as a reference.

We refer to these simulations as the acoustic-data case. The

model-based-data case and the acoustic-data case are discussed

in Sec. VI-A and Sec. VI-B, respectively.

A. Model-based Data

We define our performance measures in Sec. VI-A1, discuss

the data-generation in Sec. VI-A2, the algorithmic settings in

Sec. VI-A3, and the evaluation results in Sec. VI-A4.

1) Performance Measures: We define the RETF estimation

error,

EH = Ĥ−H, (67)

where i
T
EH = [EH ]1,: = 0

T since both H and Ĥ satisfy (6),

and based on that the relative squared RETF estimation error,

εH = 10 log10
tr[EH

HEH ]

tr[HHH]−N
dB, (68)

−30 −20 −10 0 10 20−
60

−
40

−
2
0

0

εH/dB

ε ϕ
s
/
d
B

Fig. 1: εϕs
versus εH for conventional MP [ ] and square-

root MP [ ] with α = 103 at f = 2kHz.

10−3 10−1 101 103 105

−
30

−
10

α
ε ϕ

s
/
d
B

Fig. 2: εϕs versus α for conventional MP [ ] and square-

root MP [ ] at εH = −10 dB and f = 2kHz.

where we subtract N in the denominator in order to com-

pensate for the fact that the first row of H is known. Since

the early PSDs ϕs are already a second-order property of the

underlying signal s, we define the PSD estimation error with

respect to the non-negative square root of ϕ̂s and ϕs, i.e.

eϕs =
√

ϕ̂s −
√

ϕs, (69)

and based on that the relative squared PSD estimation error,

εϕs = 10 log10
e

T
ϕs
eϕs

1Tϕs
dB. (70)

2) Data Generation: Let Ψ̂x be available and free of mod-

eling and estimation errors, i.e. we have Ψ̂x = Ψx with Ψx

adhering to (9)–(14). We generate Ψx based on assumed geo-

metric and physical properties. We assume a linear microphone

array of M = 5 microphones with inter-microphone distance

of 8 cm and the speed of sound to be 340m/s. Further, we

assume N = 3 sources, positioned at (−30, 0, 60)◦ relative to

the broadside direction of the microphone array. The RETFs

H are generated assuming omnidirectional microphones of

equal gain as well as free- and far-field propagation for the

early components, i.e. H depends on the DoAs only and

is fully defined by the corresponding phase shifts between

microphones. The estimate Ĥ is generated by adding an

error component EH according to (67), where the elements

[EH ]:,2:M are drawn from independent complex Gaussian

distributions, yielding a particular εH according to (68). The

diffuse coherence matrix Γ is computed assuming a spherical-

isotropic sound field. The early PSDs ϕs are generated in the

following manner. We draw the real and imaginary parts of the

elements of s from independent Laplace distributions, which
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is a commonly assumed distribution for STFT coefficients of

speech [39], [40], i.e. we have ℜ[sn] ∼ (1/b)e−2|ℜ[sn]|/b and

ℑ[sn] ∼ (1/b)e−2|ℑ[sn]|/b, where the scaling parameter b is

referred to as diversity. Then, we define ϕs = Diag[sH ]s, i.e.

ϕs is the squared magnitude of s. Given the above, we set

Ψxe
= HϕsH

H according to (10). Note that since Ψ̂x = Ψx

is free of modeling errors, where Ψx = Ψxe
+ Ψxℓ

with

Ψxℓ
= ϕxℓ

Γ, cf. (9) and (14), the component Ψxe
can

be perfectly estimated from Ψ̂x by means of the GEVD as

described in Sec. V-C, yielding Ψ̂xe
= Ψxe

independently of

ϕxℓ
. Further, note that next to H and ϕs, via the GEVD, also

Γ influences the shape of the square root Ψ̂
1/2

xe
= Ψ

1/2
xe

in the

sense of defining the basis for a given vector space, cf. Sec.

V-C. For each data-point in the evaluation, cf. Sec. VI-A4, we

simulate 214 realizations of Ψ̂xe
, Ψ̂

1/2

xe
and Ĥ.

3) Algorithmic Settings: In the model-based-data case, as

opposed to the acoustic-data case, cf. Sec. VI-B3, the sampling

frequency and STFT-processing parameters are irrelevant since

we generate Ψ̂x directly in the STFT-domain, cf. Sec. VI-A2.

Regardless, we simulate frequencies up to f = 8kHz, cor-

responding to a virtual sampling frequency of fs = 16 kHz.

The soft-constraint penalty factor α in the conventional MP in

(23) and the square-root MP in (34) is simulated in the range

α ∈ [10−3, 105]. We perform at most imax = 20 iterations of

the associated iterative algorithms in (24)–(25) and (35)–(36).

All but one of our simulations consider a single frame l only.

In the one simulation considering recursive behavior, we do

not update Ĥ for the conventional MP, but we do update

Ĥ recursively for the square-root MP as described in Sec.

IV-C. In the latter case, in (49), since Ψ̂
1/2
xe = Ψ

1/2
xe is free of

modeling and estimation errors and therefore free of residual

late reverberation, cf. Sec. VI-A2, we set ϕreg = 0. In (50),

the threshold ξth is set as 10 log10 ξth = −2 dB and β is set

as β = 20b2, with b the diversity of the Laplace distributions

used in the generation of ϕs, cf. Sec. VI-A2.

4) Results: Fig. 1 shows the PSD estimation performance

in terms of the relative squared PSD estimation error εϕs
for

different values of the relative squared RETF estimation error

εH for the algorithms based on the conventional MP [ ]

and the square-root MP [ ] with α = 103 at f = 2kHz
within a single frame l. In this figure and similar ones in the

following, the graphs denote medians over all 214 realizations,

cf. Sec. VI-A2, and the shaded areas denote the range from

the first to the third quartile. As can be seen, for both the

conventional MP and the square-root MP, εϕs increases at a

rate of about 10 dB per 10 dB increase in εH until roughly

εH = 0dB and εH = 5dB is reached, respectively, after

which εϕs
begins to saturate. This saturation is due to the fact

that both algorithms yield non-negative estimates ϕ̂s ≥ 0,

which limits the estimation error at high values of εH . The

square-root MP outperforms the conventional MP by at least

5.7 dB for εH ≤ 0 dB, and by somewhat less for εH ≥ 5 dB.

Fig. 2 illustrates εϕs
for different values of the soft con-

straint penalty factor α for the conventional MP [ ] and

the square-root MP [ ] at εH = −10 dB and f = 2kHz
within a single frame l. We note that while α hardly impacts

the performance of the conventional MP, we generally reach

−
1
0

ε ϕ
s
/
d
B

(a)

−
30

−
10

ε ϕ
s
/
d
B

(b)

0 2 4 6 8

−
30

−
10

f/kHz

ε ϕ
s
/
d
B

(c)

Fig. 3: εϕs
versus f for conventional MP [ ] and square-

root MP [ ] with α = 103 at (a) εH = 0dB, (b) εH =
−10 dB, and (c) εH = −20 dB. The graphs denoted by [ ]

correspond to 10 log10 |hH
nhn′ |/M dB for n′ 6= n.
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Fig. 4: ε
(i)
ϕs versus εH and i for square-root MP with α = 103

and ϕ̂
1/2|(0)
s based upon (a) the sum constraint in (13) and (b)

the estimator in (17)–(18) at f = 2kHz.

larger improvements for higher values of α in the square-

root MP. Recall that the soft constraint in the conventional

MP is scalar-based, cf. (22), while the soft constraint in the

square-root MP is vector-based, cf. (33), and is therefore more

informative. The square-root MP outperforms the conventional

MP by 2.5 dB at low values of α, and by 5.7 dB at high values

of α. Interestingly, for both algorithms, despite Ψ̂xe
and Ψ̂

1/2
xe

being free of estimation errors, the minimum of εϕs does not

occur at the highest values of α, but at around α = 101. As

compared to higher values, the improvement is however mild.
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Fig. 3 illustrates εϕs
for different frequencies f for the

conventional MP [ ] and the square-root MP [ ] with

α = 103 at (a) εH = 0dB, (b) εH = −10 dB, and

(c) εH = −20 dB within a single frame l. Note that at

some frequencies, due to spatial aliasing, which occurs for

two different DoAs if their phase difference in each mi-

crophone is a multiple of 2π, the two corresponding DoA-

based RETFs in H, cf. Sec. VI-A2, will be identical, and

therefore H itself and consequently also Ψxe
and Ψ

1/2
xe

will

be rank-deficient. In our setup, this situation occurs for

f ∈ {3.11, 4.91, 6.22} kHz, cf. also the dotted lines [ ]

corresponding to 10 log10 |hH
nhn′ |/M dB for n′ 6= n, which

reach 0 dB if hn′ = hn. As expected, by comparing Fig. 3

(a) to Fig. 3 (c), neither of the two algorithms performs well

in the proximity of these frequencies, independent of εH . At

other frequencies, however, the square-root MP outperforms

the conventional MP by roughly 5 to 7 dB.

Fig. 4 demonstrates the effect in the median of the initial

estimate ϕ̂
1/2|(0)
s on the convergence behavior in terms of the

relative squared PSD estimation error ε
(i)
ϕs at iteration i for

different values of εH of the iterative algorithm in (35)–(36)

solving the square-root MP with α = 103 at f = 2kHz.

The initial value is based on (a) the sum constraint in (13) as

ϕ̂
1/2|(0)
s =

√

[Ψ̂xe
]1,1/N 1, and (b) the estimator in (17)–(18),

here denoted by ϕ̂s|c0 , as ϕ̂
1/2|(0)
s =

√

ϕ̂s|c0 . In both cases,

the algorithm converges to almost the same final value of εϕs .

However, we find that in (a), convergence is reached at around

i = 3 to i = 4, while in (b), due to the improved initial

estimate, convergence is reached at i = 1 already. Hence,

while the computation of the initial estimate in (b) is somewhat

more expensive, we save 2 to 3 iterations as compared to (a).

Fig. 5 demonstrates the recursive behavior in terms of (a)

εH(l+r) and (b) εϕs(l+r) with r the recursion index for the

conventional MP [ ] and the square-root MP [ ] with

α = 103 at f = 2kHz and εH(l) = 0 dB. Here, the source

positioned at −30◦ transitions to −40◦ at r = 32, resulting in a

transient change in the otherwise constant RETF H. While no

update of the estimate Ĥ is performed for the conventional MP,

we do update Ĥ recursively for square-root MP as described

in Sec. IV-C. For the conventional MP, we expectably find that

εH(l+r) and εϕs
(l+r) remain constant except for a transient

increase of 6.8 dB and 3.2 dB at r = 33, respectively. For the

square-root MP, due to the recursive update of Ĥ, we find that

εH(l+r) and εϕs(l+r) decrease by 5.2 dB and 4.7dB over

the course of the first 32 recursions, followed by an increase of

11.2 dB and 6.1 dB at r = 33, respectively, and a subsequent

decrease at roughly the same rate.

B. Acoustic Data

We define the performance measures in Sec. VI-B1, discuss

the acoustic scenario in Sec. VI-B2, the algorithmic settings

in Sec. VI-B3, and the evaluation results in Sec. VI-B4.

1) Performance Measures: In the acoustic-data case, due

to the model deficiencies in (9)–(15), cf. Sec. II, exact and

observable ground truth early PSDs ϕs and ground truth

RETFs H do unfortunately not exist, and so the performance

measures in (67)–(70) cannot be used. However, one may
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Fig. 5: (a) εH(l+r) and (b) εϕs
(l+r) versus r for conven-

tional MP [ ] and square-root MP [ ] with α = 103 at

f = 2kHz and εH(l) = 0 dB if H changes at r = 32 and

remains constant otherwise.

define approximate ground truth early PSDs ϕ̃s as a reference

for evaluation. To this end, given the source signals and RIRs

of a particular acoustic scenario, cf. Sec. VI-B2, we convolve

the source signals with only the early part of the RIR to the

first microphone and transform to the STFT-domain, yielding

s̃, and set ϕ̃s = Diag[s̃H ]s̃, i.e. ϕ̃s is the squared magnitude4

of s̃. Note that the definition of the early part of the RIR

is somewhat arbitrary due to the weighted and overlapping

windows in the STFT-processing. For STFT windows of NSTFT

samples with 50% overlap, one may, e.g., choose the first

NSTFT or the first NSTFT/2 taps of the RIR. Here, we have

chosen the first NSTFT samples corresponding to 32ms, cf. Sec.

VI-B3. In our setup, we have found that different choices result

in quantitatively different performance, but not qualitatively

different conclusions.

Given a segment of L frames of ϕ̃s and ϕ̂s, we decompose√
ϕ̂s according to [26] as

√

ϕ̂s =
√

ϕ̄s + e
int
ϕs

+ e
art
ϕs
, (71)

where
√

ϕ̄sn is the component of
√

ϕ̂sn associated to
√

ϕ̃sn ,

i.e. the correctly estimated component, eint
ϕsn

= [eint
ϕs
]n contains

components associated to
√

ϕ̃sn′ with n′ 6= n, i.e. erroneously

estimated leakage or interference components across sources,

and eart
ϕsn

= [eart
ϕs
]n contains components not associated to

any
√

ϕ̃sn , i.e. erroneously estimated artifact components.

Exemplary spectrograms illustrating the decomposition in (71)

are shown in Fig. 6, cf. also the discussion in Sec. VI-B4.

Given L frames of
√
ϕ̄s , e

int
ϕs

and e
art
ϕs

, we define the

signal-to-interference ratio SIR(κ), the signal-to-artifacts ratio

SAR(κ), and the signal-to-distortion ratio SDR(κ) per third-

octave band κ along the lines of [26] as

SIR(κ) = 10 log10

∑

k,l

∥

∥

√
ϕ̄s(k, l)

∥

∥

2

2
∑

k,l

∥

∥eint
ϕs
(k, l)

∥

∥

2

2

dB, (72)

SAR(κ) = 10 log10

∑

k,l

∥

∥

√
ϕ̄s(k, l) + e

int
ϕs
(k, l)

∥

∥

2

2
∑

k,l

∥

∥eart
ϕs
(k, l)

∥

∥

2

2

dB,

(73)

4If subspace-based desmoothing, cf. Sec. V-B, is not applied in the
computation of ϕ̂s, one can instead choose a recursively averaged version
of the squared magnitude as a reference.
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Fig. 6: Exemplary spectrograms depicting ϕ̂sn in (a.n), ϕ̄sn in (b.n), e
2|int
ϕsn

in (c.n), and e
2|art
ϕsn

in (d.n), with ϕ̄sn , e
2|int
ϕsn

, and

e
2|art
ϕsn

obtained from the decomposition of
√

ϕ̂sn , cf. Sec. VI-B1. The reference PSDs ϕ̃s1 and ϕ̃s2 originate from a female

and a male speaker at −30◦ and 60◦, respectively, and the estimate ϕ̂sn is obtained by means of the square-root MP.

SDR(κ) = 10 log10

∑

k,l

∥

∥

√
ϕ̄s(k, l)

∥

∥

2

2
∑

k,l

∥

∥eint
ϕs
(k, l) + eart

ϕs
(k, l)

∥

∥

2

2

dB, (74)

with k = k−
κ , . . . , k

+

κ and k−
κ and k+

κ the frequency-bin indices

of the lower and upper band limits of third-octave-band κ, and

l = 0, . . . , L− 1.

The decomposition in (71) relies on a segment of L frames

of ϕ̃s and ϕ̂s and is done in the following manner. Let ϕ̂sn be

a vector stacking the early PSD estimates ϕsn of source n over

L observed frames, i.e. ϕ̂sn =
(

ϕ̂sn(0) · · · ϕ̂sn(L−1)
)T

,

and let ϕ̃sn , ϕ̄sn , eint
ϕsn

and e
art
ϕsn

be defined equivalently, such

that
√

ϕ̃sn =
√

ϕ̄sn + e
int
ϕsn

+ e
art
ϕsn

, similarly to (71). Then,

we perform the orthonormal projection of each individual

vector
√

ϕ̂sn onto the one-dimensional subspace spanned

by the corresponding vector
√

ϕ̃sn , yielding
√

ϕ̄sn with
√

ϕ̄sn ∝
√

ϕ̃sn , as well as onto the N -dimensional subspace

spanned by all N vectors
√

ϕ̃sn , yielding
√

ϕ̄sn + e
int
ϕsn

,

which then allows us to explicitly compute e
int
ϕsn

and e
art
ϕsn

.

For further details, we refer the interested reader to [26].

2) Acoustic Scenario: We use RIRs of 0.61 s reverberation

time to a physical linear microphone array of M = 5 micro-

phones with an inter-microphone distance of 8 cm [41], similar

to the assumed microphone array in Sec. VI-A2. We simulate

N = 2 sources, using female and male speech [42] as source

signals. The sources are assigned to two out of three possible

source positions in 2m distance of the microphone array at

{−30, 0, 60}◦ relative to the broad-side direction, yielding six

different speaker-source-position combinations. From the two

source signal files, we randomly select 32 segments of 5 s
each. Per segment-pair, we generate microphone signals for

each speaker-source-position combination.

3) Algorithmic Settings: In the acoustic-data case, the

sampling frequency is fs = 16 kHz, and the STFT-analysis

and synthesis is based on square-root Hann windows of

NSTFT = 512 samples (corresponding to 32ms) with 50%
overlap, resulting in L = 312 frames per segment. The

desmoothed correlation matrix estimate Ψ̂x (cf. Sec. V-A

and Sec. V-B) is computed using ζ = e−NSTFT/2fsτ with

τ = 160ms. As in Sec. VI-A2, Γ is computed assuming a

spherical-isotropic sound field. Given Ψ̂x and Γ, we compute

the estimates ϕ̂xℓ
, Ψ̂xe

and Ψ̂
1/2
xe as described in Sec. V-C.

We assume that the DoAs are known [7], [21], [22], and

compute the (initial) estimate Ĥ based on that. Note that in a

reverberant environment, where the free-field assumption does

not hold, the RETFs are generally not only defined by the

DoA, but also by early reflections, and therefore we generally

have Ĥ 6= H in our setup. Similarly to the model-based data

case, cf. Sec. VI-A3, the penalty factor α in the conventional

MP in (23) and the square-root MP in (34) is simulated in

the range α ∈ [10−3, 105]. We perform at most imax = 20
iterations of the associated iterative algorithms in (24)–(25)

and (35)–(36). While we do not update Ĥ for the conventional

MP in Sec. III, we consider two cases for the square-root MP

in Sec. IV, namely first where we do not update Ĥ, and second

where we update Ĥ recursively as described in Sec. IV-C.

In the latter case, in (49), since Ψ̂
1/2
xe is subject to modeling

and estimation errors and contains residual late reverberation,

we set ϕreg = ϕ̂xℓ
. In (50), the threshold ξth is again set as

10 log10 ξth = −2 dB and β is set per third-octave band κ
as β(κ) = 20b̂2(κ), with b̂(κ) pre-defined as the diversity

of the Laplace distributions fitted to the real and imaginary

parts of the STFT coefficients of a training signal within
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third-octave band κ. Here, the training signal is generated

from the entire female and male speech source signals, cf.

Sec. VI-B2, by convolving the early part of the RIR of the

first microphone corresponding to a source at 2m distance

at 0◦ relative to the broadside direction, cf. also the similar

segment-wise definition of the reference signal s̃n in Sec.

VI-B1. Note that while b̂(κ) is pre-computed using all STFT

coefficients of both male and female speech within third-

octave band κ, the actual distributions vary across speakers,

across source positions, across individual frequency bins, and

across individual segments, cf. also Sec. VI-B2.

4) Results: Before discussing the performance of the con-

ventional MP and the square-root MP in terms of the mea-

sures SIR, SAR, and SDR, we first consider the examplary

spectrograms in Fig. 6 visualizing the decomposition of
√
ϕ̂s

upon which these measures are based. In this example, the

microphone signals x and the reference PSDs ϕ̃s1 and ϕ̃s2

originate from a female and a male speaker at −30◦ and 60◦,

respectively, and the estimates ϕ̂s1 and ϕ̂s2 in Fig. 6 (a.1) and

Fig. 6 (a.2) are obtained by means of the square-root MP. The

correctly estimated components ϕ̄s1 and ϕ̄s2 in Fig. 6 (b.1)

and Fig. 6 (b.2) are frequency-bin-wise scaled versions of the

reference PSDs ϕ̃s1 and ϕ̃s2 , respectively, cf. Sec. VI-B1. As

can be seen, the leakage or interference components in e
2|int
ϕs1

and e
2|int
ϕs2

in Fig. 6 (c.1) and Fig. 6 (c.2) relate to the opposing

reference PSDs, cf. Fig. 6 (b.2) and Fig. 6 (b.1), respectively.

Finally, the artifact components e
2|art
ϕs1

and e
2|art
ϕs2

in Fig. 6 (d.1)

and Fig. 6 (d.2) do not relate to any of the reference PSDs, but

rather to residual late reverberation in the estimate Ψ̂
1/2
xe , cf.

also Sec. V-C, which is due to modeling errors in (9)–(14) and

a potential deviation of the late reverberant sound field from

the spatial coherence matrix Γ. Note that in e
2|art
ϕs1

and e
2|art
ϕs2

, the

energy is concentrated in the same spectro-temporal regions,

indicating a similar spatial sound field of these components.

Fig. 7 shows the median over all segments and speaker-

source-combinations, cf. Sec. VI-B2, of (a) SIR, (b) SAR,

and (c) SDR in third-octave bands for the conventional MP

[ ], the square-root MP without recursive RETF update

[ ], and the square-root MP with recursive RETF update

[ ]. Here, in each third-octave band κ, we have selected

α(κ) such that SIR(κ) is maximized for each algorithm, i.e.

the figure indicates their upper performance limit in terms

of SIR(κ) with respect to the tuning of α(κ). Note that in

our setup, selecting α(κ) to maximize SAR(κ) or SDR(κ)
does not lead to qualitatively substantial differences. For the

conventional MP, we have found values of α(κ) ≪ 1 to be

preferable in all third-octave bands κ, indicating that the soft-

constraint penalty in (23) is not very useful in practice. For

the square-root MP, with and without recursive RETF update,

we have found α(κ) ≫ 1 to be preferable in third-octave

bands below 0.5kHz, and α(κ) ≤ 1 to be preferable above

0.5kHz. From Fig. 7 (a), we find that the square-root MP

clearly outperforms the conventional MP in terms of SIR

in third-octave bands above 0.25 kHz, with improvements of

1 dB to 6 dB, indicating better source-component separation

performance. Further, for the square-root MP, we find that the

recursive RETF update mildly improves the performance by
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Fig. 7: (a) SIR, (b) SAR, and (c) SDR in third-octave bands

for conventional MP [ ], square-root MP without recursive

RETF update [ ], and square-root MP with recursive RETF

update [ ].

up to 1 dB. Recall that the initial RETF estimate Ĥ is based on

the correct DoAs, but does not consider early reflections, cf.

Sec. VI-B3. From Fig. 7 (b), we note that for all algorithms, we

have SAR(κ) < SIR(κ) in third-octave bands above 0.5 kHz,

indicating comparably strong residual late reverberation. The

square-root MP performs slightly worse than the conventional

MP in terms of SAR in third-octave bands above 0.25 kHz,

with degradations of less than 1 dB. In the square-root MP,

recursive RETF updating results in minor differences only. As

can be seen from Fig. 7 (c), we find that the square-root MP

outperforms the conventional MP in terms of SDR, however,

due to the comparably strong residual late reverberation, by

much less than in terms of SIR. Again, in the square-root MP,

recursive RETF updating results in minor differences only.

VII. CONCLUSION

We have discussed early PSD estimation and recursive

RETF updates in the STFT domain for multiple sources in

reverberant environments, based on a commonly used multi-

microphone correlation matrix model, given (initial) RETF

estimates. State-of-the-art approaches to early PSD estimation

minimize the approximation error with respect to an estimate

of the early correlation matrix, referred to as conventional MP.

Instead, we here have factorized the early correlation matrix

model and minimized the approximation error with respect to

an estimate of the early-correlation-matrix square root, which

we referred to as the square-root MP. The square-root MP

seeks a unitary matrix and the square roots of the early PSDs

up to an arbitrary complex argument, and therewith constitutes

a generalization of the orthogonal Procrustes problem. As
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opposed to the conventional MP, non-negative inequality con-

straints are not required in the square-root MP. The square-root

MP may be solved iteratively, requiring one SVD per iteration.

Based on the estimated unitary matrix and early PSD square

roots, we are further able to recursively update the RETF

estimate, which is not inherently possible in the conventional

approach. The respectively required estimates of the early

correlation matrix and the early-correlation-matrix square root

may be obtained from an estimate of the microphone signal

correlation matrix and the diffuse coherence matrix by means

of the GEVD. Hereat, in order to compensate for inevitable

recursive averaging, we have restored non-stationarities by

desmoothing the generalized eigenvlaues.

In order to evaluate the proposed approach, we have

performed two kinds of simulations. In the first kind, the

data is generated based on the microphone signal correlation

matrix model and assumed geometric and physical properties,

excluding modeling errors from the evaluation. This is referred

to as model-based-data case. In the second kind, the data is

generated from recorded speech and measured RIRs, creating

a more practical setup. This is referred to as acoustic-data case.

In the model-based-data case, the simulation results indicate

better performance of the square-root MP as compared to

the conventional MP in terms of the relative squared PSD

estimation error. If initialized accordingly, the square-root

MP can be solved in only one iteration. In the acoustic-data

case, the simulation results indicate better performance of the

square-root MP as compared to the conventional MP in terms

of the source-component separation measured by the signal-

to-interference ratio. Both the square-root MP and the conven-

tional MP suffer somewhat from residual late reverberation in

the early-correlation-matrix estimate.
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[33] L. Ljung and T. Söderström, Theory and practice of recursive identifi-

cation, MIT press, 1986.
[34] R. Serizel, M. Moonen, B. Van Dijk, and J. Wouters, “Low-rank

approximation based multichannel Wiener filter algorithms for noise
reduction with application in cochlear implants,” IEEE/ACM Trans.

Audio, Speech, Lang. Process., vol. 22, no. 4, pp. 785–799, Apr. 2014.
[35] S. Markovich-Golan and S. Gannot, “Performance analysis of the co-

variance subtraction method for relative transfer function estimation and
comparison to the covariance whitening method,” in Proc. 2015 IEEE

Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2015), Brisbane,
QLD, Australia, Apr. 2015, pp. 544–548.

[36] S. Haykin, Adaptive Filter Theory, Prentice-Hall, 4th edition, 2002.
[37] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3, Johns

Hopkins University Press, Baltimore, MD, USA, 2012.
[38] M. Tammen, I. Kodrasi, and S. Doclo, “Complexity reduction of eigen-

value decomposition-based diffuse power spectral density estimators
using the power method,” in Proc. 2018 IEEE Int. Conf. Acoust., Speech,

Signal Process. (ICASSP 2018), Calgary, AB, Canada, Apr. 2018, pp.
451–455.

[39] M. Martin, “Speech enhancement based on minimum mean-square
error estimation and supergaussian priors,” IEEE Trans. Speech Audio

Process., vol. 13, no. 5-2, pp. 845–856, Sep. 2005.
[40] T. Lotter and P. Vary, “Speech enhancement by MAP spectral amplitude

estimation using a super-Gaussian speech model,” EURASIP J. Adv.

Signal Process., vol. 2005, no. 7, pp. 1110–1126, May 2005.
[41] E. Hadad, F. Heese, P. Vary, and S. Gannot, “Multichannel audio

database in various acoustic environments,” in Proc. 2014 Int. Workshop

Acoustic Signal Enhancement (IWAENC 2014), Antibes – Juan les Pins,
France, Sept. 2014, pp. 313–317.

[42] Bang and Olufsen, “Music for Archimedes,” Compact Disc B&O, 1992.



2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2020.2966891, IEEE/ACM

Transactions on Audio, Speech, and Language Processing

15

Thomas Dietzen received his Dipl.-Ing. degree from
Kaiserslautern University, Germany, in 2011 and his
PhD degree from KU Leuven, Belgium, in 2019,
where he currently holds postdoctoral research po-
sition. Between 2012 and 2014, he was a research
assistant at University of Heidelberg, Germany, and
at Fraunhofer Institute for Integrated Circuits IIS,
Germany. From 2014 to 2017, he has been a doctoral
researcher at NXP Semiconductors Belgium NV,
Belgium.

His research is focused on room acoustic mod-
eling and signal enhancement in adverse acoustic conditions, specifically
on spatio-temporal adaptive filtering and power-spectral-density estimation.
He has served as a reviewer for the IEEE/ACM Transactions on Audio,
Speech, and Language Processing, the IEEE Signal Processing Letters, and
the EURASIP Journal on Audio, Speech, and Music Processing.

Simon Doclo (S’95-M’03-SM’13) received the
M.Sc. degree in electrical engineering and the Ph.D.
degree in applied sciences from the Katholieke Uni-
versiteit Leuven, Belgium, in 1997 and 2003. From
2003 to 2007 he was a Postdoctoral Fellow with
the Research Foundation Flanders at the Electri-
cal Engineering Department (Katholieke Universiteit
Leuven) and the Cognitive Systems Laboratory (Mc-
Master University, Canada). From 2007 to 2009 he
was a Principal Scientist with NXP Semiconductors
in Leuven, Belgium. Since 2009 he is a full professor

at the University of Oldenburg, Germany, and scientific advisor for the
Division Hearing, Speech and Audio Technology of the Fraunhofer Institute
for Digital Media Technology. His research activities center around signal
processing for acoustical and biomedical applications, more specifically mi-
crophone array processing, speech enhancement, active noise control, acoustic
sensor networks and hearing aid processing.

Prof. Doclo received several best paper awards (International Workshop
on Acoustic Echo and Noise Control 2001, EURASIP Signal Processing
2003, IEEE Signal Processing Society 2008, VDE Information Technology
Society 2019). He is member of the IEEE Signal Processing Society Technical
Committee on Audio and Acoustic Signal Processing, the EURASIP Technical
Area Committee on Acoustic, Speech and Music Signal Processing and the
EAA Technical Committee on Audio Signal Processing. Prof. Doclo was and
is involved in several large-scale national and European research projects (ITN
DREAMS, Cluster of Excellence Hearing4all, CRC Hearing Acoustics). He
was Technical Program Chair of the IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics in 2013 and Chair of the ITG Conference
on Speech Communication in 2018. In addition, he served as guest editor
for several special issues (IEEE Signal Processing Magazine, Elsevier Signal
Processing) and was associate editor for IEEE/ACM Transactions on Audio,
Speech and Language Processing and EURASIP Journal on Advances in
Signal Processing.

Marc Moonen (M’94-S’06-F’07) is currently a
Full Professor with the Electrical Engineering De-
partment, KU Leuven, where he is also heading
a research team working in the area of numerical
algorithms and signal processing for digital commu-
nications, wireless communications, DSL, and audio
signal processing.

He is a Fellow of EURASIP. He received the 1994
KU Leuven Research Council Award, the 1997 Al-
catel Bell (Belgium) Award (with Piet Vandaele), the
2004 Alcatel Bell (Belgium) Award (with Raphael

Cendrillon), and was a 1997 Laureate of the Belgium Royal Academy of
Science. He received journal best paper awards from the IEEE TRANS-
ACTIONS ON SIGNAL PROCESSING (with Geert Leus and with Daniele
Giacobello) and from Elsevier Signal Processing (with Simon Doclo). He
was Chairman of the IEEE Benelux Signal Processing Chapter, from 1998 to
2002, a member of the IEEE Signal Processing Society Technical Committee
on Signal Processing for Communications, and the President of EURASIP
(European Association for Signal Processing, from 2007 to 2008 and from
2011 to 2012). He has served as an Editor-in-Chief for the EURASIP
Journal on Applied Signal Processing, from 2003 to 2005, an Area Editor
for Feature Articles in the IEEE Signal Processing Magazine, from 2012 to
2014, and has been a member of the Editorial Board of Signal Processing,
the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II, the IEEE
Signal Processing Magazine, Integrationthe VLSI Journal, EURASIP Journal
on Wireless Communications and Networking, and EURASIP Journal on
Advances in Signal Processing.

Toon van Waterschoot (S’04, M’12) received MSc
(2001) and PhD (2009) degrees in Electrical En-
gineering, both from KU Leuven, Belgium, where
he is currently an Associate Professor and Consol-
idator Grantee of the European Research Council
(ERC). He has previously also held teaching and
research positions at Delft University of Technology
in The Netherlands and the University of Lugano
in Switzerland. His research interests are in signal
processing, machine learning, and numerical opti-
mization, applied to acoustic signal enhancement,

acoustic modeling, audio analysis, and audio reproduction.
He has been serving as an Associate Editor for the Journal of the Audio

Engineering Society and for the EURASIP Journal on Audio, Music, and
Speech Processing, and as a Guest Editor for Elsevier Signal Processing. He
is a Director of the European Association for Signal Processing (EURASIP),
a Member of the IEEE Audio and Acoustic Signal Processing Technical
Committee, a Member of the EURASIP Special Area Team on Acoustic,
Speech and Music Signal Processing, and a Founding Member of the EAA
Technical Committee in Audio Signal Processing. He was the General Chair
of the 60th AES International Conference in Leuven, Belgium (2016), and
has been serving on the Organizing Committee of the European Conference
on Computational Optimization (EUCCO 2016), the IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA 2017),
and the 28th European Signal Processing Conference (EUSIPCO 2020). He
is a member of EURASIP, IEEE, ASA, and AES..




