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SQUARE ROOT PENALTY: ADAPTATION TO THE MARGIN IN
CLASSIFICATION AND IN EDGE ESTIMATION

BY A. B. TSYBAKOV AND S. A. VAN DE GEER

Université Paris VI and University of Leiden

We consider the problem of adaptation to the margin in binary classi-
fication. We suggest a penalized empirical risk minimization classifier that
adaptively attains, up to a logarithmic factor, fast optimal rates of conver-
gence for the excess risk, that is, rates that can be faster thann−1/2, where
n is the sample size. We show that our method also gives adaptive estimators
for the problem of edge estimation.

1. Introduction. Consider observations(X1, Y1), . . . , (Xn,Yn), whereYi is
a bounded response random variable andXi ∈ X is the corresponding instance.
We regard{(Xi, Yi)}ni=1 as i.i.d. copies of a population version(X,Y ). The goal
is to predict the responseY given the value of the instanceX. We consider
two statistical problems: binary classification and boundary estimation in binary
images (edge estimation). In the classification setupYi ∈ {0,1} is a label (e.g.,
{ill ,healthy}, {white,black}, etc.), while in edge estimationYi can be either a
label or a general bounded random variable. Most of the paper will be concerned
with the model of binary classification. The results for edge estimation are quite
analogous and they will be stated as corollaries in Section 6.

Any subsetG of the instance spaceX may be identified with its indicator
function1G, that is, with aclassification ruleor classifierG which predictsY = 1
iff X ∈ G. The prediction errorR(G) of the classifierG is the probability that it
predicts the wrong label, that is,

R(G) = E
([Y − 1G(X)]2).(1.1)

Let η(X) = P(Y = 1|X) be the regression ofY on X. The Bayes rule is the
classifier

G∗ = {x ∈ X :η(x) > 1/2}.(1.2)

This rule is optimal in the sense that it minimizes the prediction error over
all G ⊂ X [see, e.g., Devroye, Györfi and Lugosi (1996)]. The regressionη is
generally unknown. We consider the construction of an estimatorĜn ⊂ X of the
Bayes ruleG∗ without directly estimatingη.
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The performance of a classifier̂Gn is measured by its excess risk
E(R(Ĝn)) − R(G∗). It is well known that for various classifiers the excess risk
converges to 0 asn → ∞ at the raten−1/2 or slower [see Devroye, Györfi and
Lugosi (1996) and Vapnik (1998), where one can find further references]. More-
over, under conditions on the identifiability of the minimum of the riskR(·) called
margin conditions, some classifiers can attainfast rates, that is, rates that are faster
thann−1/2. The existence of such fast rates in classification problems has been
established by Mammen and Tsybakov (1999). They showed that optimal rates
of convergence of the excess risk to 0 depend on two parameters: complexity of
the class of candidate setsG (parameterρ) and themargin parameterκ which
characterizes the extent of identifiability. Their construction was nonadaptive sup-
posing thatρ andκ were known. Tsybakov (2004) suggested an adaptive clas-
sifier that attains the fast optimal rates, up to a logarithmic factor, without prior
knowledge of the parametersρ andκ , thus solving the so-calledadaptation to the
margin problem. The classification rule suggested by Tsybakov (2004) is based
on multiple pre-testing aggregation of empirical risk minimizers over a collection
of classes of candidate setsG. This procedure differs significantly from penalized
empirical risk classifiers that are widely used in modern practice of classification
[cf. Schölkopf and Smola (2002)]. Subsequently there has been a discussion in
the literature of whether penalized classifiers can adaptively attain fast optimal
rates. In particular, Koltchinskii and Panchenko (2002) and Audibert (2004) pro-
posed convex combinations of classifiers, and Koltchinskii (2001) and Lugosi and
Wegkamp (2004) suggested data-dependent penalties. The resulting adaptive clas-
sifiers converge with rates that can be faster thann−1/2 but that are different from
the optimal rates in a minimax sense considered in Tsybakov (2004).

This paper answers affirmatively to the above question: penalized classifiers can
adaptively attain fast optimal rates. Moreover, the penalty allowing one to achieve
this effect is not data-dependent or randomized. It is very simple and essentially
arises from a sparsity argument similar to the one used in the wavelet thresholding
context. Interestingly, the penalty is not of the�1-type as for soft thresholding and
not of the�0-type as for hard thresholding, but rather of an intermediate, block-
wise�1/2 or “square root” type. Inspection of the proof shows that the effect is very
pointed, that is, the proof heavily relies on our particular choice of the penalty.

The classifierĜn that we study is constructed as follows. Let

Rn(G) = 1

n

n∑
i=1

(
Yi − 1G(Xi)

)2(1.3)

be the empirical risk of a classifierG ⊂ X. Note thatRn(G) is the proportion
of observations misclassified byG and that its expectationR(G) = E(Rn(G)) is
the prediction error. Assume thatX = (S, T ) ∈ X = [0,1]d+1, with S ∈ [0,1]d
(d ≤ logn), andT ∈ [0,1]. A boundary fragment is a subsetG of X of the form

G = {(s, t) ∈ X :f (s) ≥ t}(1.4)
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wheref is a function from[0,1]d to [0,1] called theedge function. We letĜn be
a minimizer of the penalized empirical risk

Rn(G) + Pen(G)(1.5)

over a large set of boundary fragmentsG. Here Pen(G) is a penalty on the
roughness of the boundary. The purpose of the penalty is to avoid overfitting.
We will show that a weightedsquare root penalty[see (2.2) and (2.3)] results
in a classifier with the adaptive properties as discussed above.

A refinement as compared to Tsybakov (2004) is that we do not only consider
adaptation in a minimax sense but also adaptation to the oracle. We obtain
asymptotically exact oracle inequalities and then get minimax adaptation as a
consequence. We work under somewhat different assumptions than in Tsybakov
(2004). They are slightly more restrictive as concerns the model. For example, we
consider only boundary fragments as candidates forG. The class of boundary
fragments is possibly a genuine restriction, although some generalizations to
other classes of sets are clearly feasible. On the other hand, our assumptions
allow us to adapt to more general smoothness (complexity) properties ofG. For
example, Vapnik–Chervonenkis classes of setsG (corresponding approximately
to ρ = 0, see Section 5) or the classes of sets with very nonsmooth boundaries
(corresponding toρ ≥ 1) are covered by our approach.

As a corollary of the results, we obtain an adaptive estimator in the problem
of edge estimation considered by Korostelev and Tsybakov (1993). The statistical
model in that problem is similar to the one described above. However, it treats
the situation characteristic for image analysis where theXi ’s are uniformly
distributed onX, and the error criterion is not the excess risk but rather the risk
E(µd+1(Ĝn�G∗)), where� is the symbol of symmetric difference between sets
andµd+1 denotes the Lebesgue measure on[0,1]d+1.

The paper is organized as follows. In Section 2 we define our adaptive classifier.
In Section 3 we introduce some notation and assumptions. Section 4 presents
the main oracle inequality. In Section 5 we apply this inequality to get minimax
adaptation results. Section 6 discusses the consequences for edge estimation.
Proofs are given in Section 7.

2. Definition of the adaptive classifier. Let {ψk : k = 1, . . . , n} be an ortho-
normal system inL2([0,1]d,µd) whereµd is the Lebesgue measure on[0,1]d .
Forα ∈ Rn define

fα(s) =
n∑

k=1

αkψk(s), s ∈ [0,1]d .(2.1)

Introduce a double indexing for the system{ψk}, namely

{ψk : k = 1, . . . , n} = {ψj,l : j ∈ Il, l = 1, . . . ,L}
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whereIl , l = 1, . . . ,L, are disjoint subsets of{1, . . . , n} such that

L∑
l=1

|Il| = n.

Here |A| denotes the cardinality of the setA. One may think of{ψj,l} as of a
wavelet-type system with the indexl corresponding to a resolution level. A vector
α ∈ Rn can be written with this double indexing asα = (αj,l).

For a linear classification rule defined by the setGα = {(s, t) ∈ X :fα(s) ≥ t},
consider the penalty

Pen(Gα) = λn

√
I (α),(2.2)

whereI (·) is a nonsparsity measure of the form

I (α) =
(

L∑
l=1

w
1/2
l

√∑
j∈Il

|αj,l|
)2

,(2.3)

for certain weights(wl). In what follows we take the weights as

wl = 2dl/2, l = 1, . . . ,L,(2.4)

and we prove our results for wavelet-type bases (cf. Assumption B below).
An extension to other bases{ψk} is possible where the block sizes|Il| should
be chosen in an appropriate way [e.g., as in Cavalier and Tsybakov (2001)]. The
weightswl should moreover be defined as a function of|Il|. We do not pursue this
issue here because it requires different techniques. Thus, in this paper we consider
penalties based on

I (α) =
(

L∑
l=1

2dl/4
√∑

j∈Il

|αj,l|
)2

.

One may think of{αj,l} as the coefficients of the expansion of a function in the
Besov spaceBσ,p,q([0,1]d), with p = 1,q = 1/2 and smoothnessσ = (d +1)d/2
[so that the effective smoothness iss = σ/d = (d + 1)/2]; see, for example,
DeVore and Lorentz (1993).

We propose the estimator̂Gn = Gα̂n
where

α̂n = arg min
α∈Rn

{
Rn(Gα) + λn

√
I (α)

}
.(2.5)

Here λn > 0 is a regularization parameter that will be specified in Theorem 1.
We refer toλn

√
I (α) as a (block-wise)�1/2 or square root penalty.

One may compare (2.5) to a wavelet thresholding estimator for regression.
The difference here is that because our problem is nonlinear, we cannot express
the solutionα̂n in a levelwise form, and we need to treat all the coefficientsαj,l

globally.
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3. Notation and assumptions. Let G�G′ be the symmetric difference
between two setsG andG′, and letQ denote the distribution ofX. For a Borel
functionf : [0,1]d → [0,1], we let

‖f ‖1 =
∫

|f (s)|dµd(s)(3.1)

be itsL1-norm. (Recall thatµd denotes the Lebesgue measure on[0,1]d .) Note
that

µd+1(Gα�Gα′) = ‖fα − fα′‖1 = ‖fα−α′‖1.(3.2)

ASSUMPTIONA. For some (unknown)κ ≥ 1 andσ0 > 0 and for allα ∈ Rn

we have

R(Gα) − R(G∗) ≥ 1

σ0
Qκ(Gα�G∗).(3.3)

Assumption A is a condition on sharpness of identifiability for the minimum
of the risk. We will call it themargin condition. We refer to Tsybakov (2004)
for a discussion of this condition. In particular, it is related to the behavior of the
probabilityQ(|η(X)−1/2| ≤ t) for smallt . The caseκ = 1 corresponds to a jump
of η at the boundary ofG∗, and this is the most favorable case for estimation,
while κ → ∞ corresponds to a “plateau” around the boundary, and this is the least
favorable case. For more discussion of the margin condition in relation to convex
aggregation of classifiers, such as boosting, see Bartlett, Jordan and McAuliffe
(2003) and Blanchard, Lugosi and Vayatis (2003).

We will also require the following condition on the basis.

ASSUMPTION B. The system of functions{ψj,l, j ∈ Il, l = 1, . . . ,L} is
orthonormal inL2([0,1]d,µd) and satisfies, for some constantcψ ≥ 1,

‖ψj,l‖1 ≤ cψ2−dl/2, l = 1, . . . ,L,(3.4)

sup
s∈[0,1]d

∑
j∈Il

|ψj,l(s)| ≤ cψ2dl/2, l = 1, . . . ,L,(3.5)

2dl/cψ ≤ |Il| ≤ cψ2dl(3.6)

and

L ≤ cψ

logn

d
.(3.7)

Assumption B makes it possible to relate‖fα‖1 to I (α) in a suitable way
(cf. Lemmas 1 and 2). Note that Assumption B is quite standard. It is satisfied,
for instance, for usual bases of compactly supported wavelets [cf. Härdle,
Kerkyacharian, Picard and Tsybakov (1998), Chapter 7].
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Note also that (3.7) follows from (3.6) with a different constant. To simplify
the exposition and calculations, we take the same constantcψ in all the conditions
(3.4)–(3.7) and suppose that this constant is not smaller than 1.

REMARK 1. It will be clear from the proofs of Lemmas 1 and 2 that
Assumption B can be relaxed. Namely, the orthonormality of{ψj,l} and (3.4) can
be replaced by the conditions∑

j∈Il

|αj,l|2−dl/2 ≤ cψ‖fα‖1, l = 1, . . . ,L,

‖fα‖1/cψ ≤
L∑

l=1

∑
j∈Il

|αj,l|2−dl/2 ∀α ∈ Rn.

Finally we introduce an assumption which will allow us to interchange
Lebesgue measure andQ.

ASSUMPTIONC. The distributionQ of X admits a densityq(·) with respect
to Lebesgue measure in[0,1]d+1, and for some constant 1≤ q0 < ∞ one has
1/q0 ≤ q(x) ≤ q0 for all x ∈ [0,1]d+1.

4. An oracle inequality. Forα ∈ Rn let

m(α) = min{m :αj,l = 0 for all j ∈ Il with l > m}(4.1)

and

N(α) = Nm(α),(4.2)

with

Nm =
m∑

l=1

|Il|, m = 1,2, . . . ,L.(4.3)

Assume that there existsαoracle∈ Rn such that

R(Gαoracle) − R(G∗) + Vn

(
N(αoracle)

)
(4.4)

= min
α∈Rn

{R(Gα) − R(G∗) + Vn(N(α))},
where

Vn(N) = 4cκ(4cdq0c
2
ψσ

1/κ
0 λ2

nN)κ/(2κ−1)(4.5)

and wherecκ = (2κ − 1)/(2κ)κ−1/(2κ−1) andcd = 2(2d − 1)/(2d/2 − 1)2. Note
thatVn(N(α)) depends on the regularization parameterλn, which we shall take of
order

√
log4 n/n [see (4.6) in Theorem 1 below]. Thenαoracle can be interpreted
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as an oracle attaining nearly ideal performance. In fact, the termR(Gα) − R(G∗)
in (4.4) may be viewed as an approximation error, whileVn(N(α)) is related to
the stochastic error, as will be clear from the proofs. In other words, nearly ideal
performance is attained by the valueαoracle that trades off generalized bias and
variance.

THEOREM 1. Suppose that AssumptionsA–C are met. Then there exists a
universal constantC such that for

λn = C

√
q0c

2
ψ log4 n

nd
(4.6)

and for anyδ ∈ (0,1] andn ≥ 8q0c
2
ψ we have

P

(
R(Ĝn) − R(G∗) > (1+ δ)2 inf

α∈Rn

{
R(Gα) − R(G∗)

+ δ−1/(2κ−1)Vn(N(α))
} + 2λn

√
log4 n

n

)
(4.7)

≤ C exp
[
−cψ log4 n

C2d

]
.

Theorem 1 shows that, up to a constant factor and a small remainder term
2λn

√
log4 n/n, the estimatorĜn mimics the behavior of the oracle. Ifδ is chosen

small enough or converging to 0, for example,δ = 1/ logn, the factor preceding
the infimum in the oracle inequality (4.7) approaches 1.

The regularization parameterλn 
√

n−1 log4 n appearing in Theorem 1 is
larger than the choice

√
n−1 logn used for wavelet thresholding in regression or

density estimation. The value ofλn is imposed by an inequality for the empirical
process that controls the stochastic error. Lemma 4 presents such an inequality,
and the additional logn factors are due to the result given there.

As a consequence of (4.7) and of the fact that 0≤ R(G) ≤ 1 for all G, we get
the following inequality on the excess risk:

E(R(Ĝn)) − R(G∗) ≤ (1+ δ)2 inf
α∈Rn

{
R(Gα) − R(G∗) + δ−1/(2κ−1)Vn(N(α))

}

+ 2λn

√
log4 n

n
+ C exp

[
−cψ log4 n

C2d

]
.

This inequality bounds the excess risk by the oracle risk of a linear classification
rule Gα for any form of Bayes ruleG∗. We emphasize thatG∗ is not necessarily
a boundary fragment, andR(Gα) − R(G∗) is not necessarily small. The results of
this section are thus of the learning theory type [cf. Devroye, Györfi and Lugosi
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(1996) and Vapnik (1998)]. In the next section we will show that ifG∗ is a
boundary fragment satisfying some regularity conditions, the excess risk converges
to zero at a fast rate.

5. Minimax adaptation. Here we will consider a minimax problem and we
will show how the oracle inequality of Section 4 can be used to prove that our
classifier adaptively attains fast optimal rates under smoothness assumptions on
the edge function.

Since in a minimax setup results should hold uniformly in the underlying
distribution, we first introduce some notation to express the dependence of the
margin behavior on the distribution of(X,Y ). Let us keepd and alsoQ fixed. Then
the joint distribution of(X,Y ) is determined by the conditional probabilityη(x)

of the eventY = 1 given thatX = x. Let H be the class of all Borel functionsη
on X satisfying 0≤ η ≤ 1. For a givenη ∈ H , let dPη(x, y) be the probability
measure

dPη(x, y) = (
yη(x) + (1− y)

(
1− η(x)

))
dQ(x), (x, y) ∈ X × {0,1}.

Let G∗
η be Bayes rule when(X,Y ) has distributionPη. Finally, let Eη denote

expectation w.r.t. the distribution of{(Xi, Yi)}ni=1 underPη. Now fix the numbers
σ0 > 0 andκ ≥ 1 and define the collection of functions

Hκ =
{
η ∈ H :G∗

η = {(s, t) ∈ X :f ∗
n (s) ≥ t},

1

σ0
Qκ(Gα�G∗

η) ≤ R(Gα) − R(G∗
η)(5.1)

≤ σ0q
κ
0‖fα − f ∗

η ‖κ∞ for all α ∈ Rn

}
,

where‖ · ‖∞ denotes theL∞-norm on[0,1]d endowed with Lebesgue measure,
andR(·) depends onη but in the notation we omit this dependence for brevity.
Note that we assume a lower as well as an upper bound for the excess risk
in definition (5.1), and in view of Assumption C and (3.2),Qκ(Gα�G∗

η) ≤
qκ

0‖fα − f ∗
η ‖κ∞. This means that our assumption is less restrictive than requiring

that the lower bound be tight.
Let moreoverρ > 0 be a parameter characterizing the complexity of the

underlying set of boundary fragments and letc0 be some constant. Denote byFρ a
class of functionsf : [0,1]d → [0,1] satisfying the following condition: for every
f ∈ Fρ and every integerm ≤ L one has

min
α : m(α)≤m

‖fα − f ‖∞ ≤ c0N
−1/ρ
m .(5.2)

This is true for various smoothness classes (Sobolev, Hölder and certain Besov
classes) with 1/ρ = γ /d, whereγ is the regularity of the boundaryf (e.g., the
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number of bounded derivatives off ), and various bases{ψk} [cf., e.g., Härdle,
Kerkyacharian, Picard and Tsybakov (1998), Corollary 8.2 and Theorem 9.6].

Denote byGρ a class of boundary fragmentsG = {(s, t) ∈ X :f (s) ≥ t} such
thatf ∈ Fρ .

THEOREM 2. Suppose that AssumptionsB andC are met. Then

sup
η∈Hκ : G∗

η∈Gρ

[Eη(R(Ĝn)) − R(G∗
η)] = O

((
log4 n

n

)κ/(2κ+ρ−1))
,(5.3)

asn → ∞.

REMARK 2. For Hölder classesFρ , the result of Theorem 2 is optimal up to
a logarithmic factor [cf. Mammen and Tsybakov (1999) and Tsybakov (2004)].
Note that we cover here all valuesρ > 0, thus extending the adaptive result of
Tsybakov (2004) toρ ≥ 1 (i.e., to very irregular classes of boundaries). The case
ρ = 0 can be also introduced: it corresponds to the assumption that (5.2) holds
with 0 in the right-hand side. The class of functionsf thus defined is a Vapnik–
Chervonenkis class, and it is easy to see that the rate in Theorem 2 in this case
becomes(n−1 log4 n)κ/(2κ−1).

6. Edge estimation. In this section we consider the problem of estimation
of the edge functionf ∗

η such thatG∗
η = {(s, t) ∈ X :f ∗

η (s) ≥ t}, using the

sample{(Xi, Yi)}ni=1. The risk for this problem is defined byE(µd+1(Ĝn�G∗
η)) =

Eη‖f̂n − f ∗
η ‖1 where f̂n = fα̂n

is the estimator off ∗
η obtained by our method.

Using the definition ofHκ we immediately get the following corollary of
Theorem 2.

COROLLARY 1. Suppose that AssumptionsB andC are met. Then

sup
η∈Hκ :G∗

η∈Gρ

Eη‖f̂n − f ∗
η ‖1 = O

((
log4 n

n

)1/(2κ+ρ−1))
,(6.1)

asn → ∞.

Note that the setup of Corollary 1 is somewhat different from the standard
problem of edge estimation as defined by Korostelev and Tsybakov (1993). In fact,
it is in a sense more general because here theXi ’s are not supposed to be uniformly
distributed on[0,1]d and the joint distribution of(X,Y ) is not supposed to follow
a specified regression scheme. Also, the margin behavior is accounted for by
the parameterκ . On the other hand, Corollary 1 deals only with binary images,
Yi ∈ {0,1}, while Korostelev and Tsybakov (1993) allowYi ∈ R, for instance, the
model

Yi = 1G0(Xi) + ξi, i = 1, . . . , n,(6.2)
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whereξi is a zero-mean random variable independent ofXi , and consider the
problem of estimation of the edge functionf 0 assuming thatG0 is a boundary
fragment,G0 = {(s, t) ∈ X :f 0(s) ≥ t}.

An important example covered by Corollary 1 is the model

Yi = (
1+ (

21G0(Xi) − 1
)
ξi

)
/2, i = 1, . . . , n,(6.3)

whereξi is a random variable independent ofXi and taking values−1 and 1
with probabilities 1− p and p, respectively, 1/2 < p < 1. In this model the
observationsYi take values in{0,1} and they differ from the original (nonnoisy)
image valuesY ′

i = 1G0(Xi) because some valuesY ′
i are switched from 0 to 1 and

vice versa with probabilities 1−p andp. This occurs, for example, if the image is
transmitted through a binary channel. The aim is to estimate the edge functionf 0

of the setG0 assuming thatG0 is a boundary fragment.
It is easy to see that the regression functionη for the model (6.3) equals

η(x) = p1G0(x) + (1− p)(1− 1G0(x)), which implies that the setG0 is identical
to G∗

η, and thusf 0 = f ∗
η . Also, it is not hard to check that if the distribution ofXi ’s

is uniform on[0,1]d+1 we have thatη ∈ H1, and Corollary 1 applies withκ = 1.
Inspection of the proofs below shows that an analog of Corollary 1 also holds for

the model (6.2) if one assumes that the random variablesYi are uniformly bounded.
In this case only the constants in Lemma 4 and in the definition ofλn should be
changed and the setG∗ should be indexed by the corresponding edge functionf

rather than by the regressionη, other elements of the construction remaining intact.
This extension is quite obvious, and we do not pursue it here in more detail.

For κ = 1, Corollary 1 gives the raten−1/(ρ+1), up to a logarithmic factor.
As shown by Korostelev and Tsybakov (1993), this rate is optimal in a minimax
sense whenFρ is a Hölder class of functions and the model is (6.2) or (6.3).
Barron, Birgé and Massart (1999) constructed adaptive estimators of the edge
function in the model (6.2) withd = 1, κ = 1, ρ ≥ ρ0 > 0 using a penalization
with a penalty that depends on the lower boundρ0 on ρ. They proved that for
this particular case the optimal raten−1/(ρ+1) is attained by their procedure.
Corollary 1 extends these results, showing that our method allows adaptation to
any complexityρ > 0 in any dimensiond ≥ 1 and also adaptation to the margin
κ ≥ 1 which is necessary when we are not sure that the boundary is sharp, that is,
when the regression functionη does not necessarily have a jump at the boundary.
Assumption A or (5.1) gives a convenient characterization of nonsharpness of the
boundary, and our penalized procedure allows us to adapt to the degree of non-
sharpness.

7. Proofs. Before going into the technical details, let us first briefly explain
our choice of class of sets as boundary fragments, and the choice of the penalty.
When using boundary fragments, it is clear from (3.2) that the approximation
of sets boils down to approximation of functions inL1. We then use linear
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expansions, and need to relate the coefficients in these expansions to the penalty.
This is done in Lemmas 1 and 2. Lemma 1 bounds theL1-norm by I (·).
Lemma 2 boundsI (·) by the L1-norm when the number of levels is limited
by m. The (block-wise)�1/2 penalty ensures some important cancellations in the
proof of Theorem 1. Its specific structure is less important in Lemmas 3 and 4,
with Lemma 4 being a rather standard application of empirical process theory.
Lemma 3 provides an upper bound for theentropy with bracketing(see the
definition preceding Lemma 3) of the class of setsGα�Gα∗ with α varying,
α∗ fixed, andI (α − α∗) ≤ M , M > 0. Lemma 4 is the consequence of the entropy
result of Lemma 3 for the empirical process.

LEMMA 1. Under AssumptionB we have, for all α ∈ Rn,

‖fα‖1 ≤ cψI (α).(7.1)

PROOF. Using (3.4) we obtain

‖fα‖1 =
∥∥∥∥∥
∑
j,l

αj,lψj,l

∥∥∥∥∥
1

≤ ∑
j,l

|αj,l|‖ψj,l‖1 ≤ cψ

∑
j,l

|αj,l|2−dl/2

= cψ

L∑
l=1

2−dl2dl/2
∑
j

|αj,l|.

But clearly, for alll,

2dl/2
∑
j

|αj,l| =
(

2dl/4
√∑

j

|αj,l|
)2

≤ I (α).

Hence,

‖fα‖1 ≤ cψ

L∑
l=1

2−dlI (α) ≤ cψI (α).
�

LEMMA 2. Let α ∈ Rn and let N(α) be defined in(4.2). Then under
AssumptionB

I (α) ≤ cdc2
ψN(α)‖fα‖1.(7.2)

PROOF. The coefficientαj,l is the inner product

αj,l =
∫

fαψj,l dµd,
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so by (3.5), ∑
j∈Il

|αj,l| ≤
∫

|fα| ∑
j∈Il

|ψj,l|dµd

≤ cψ2dl/2‖fα‖1.

This implies that form = m(α), with m(α) given in (4.1),

√
I (α) =

m∑
l=1

2dl/4
√∑

j∈Il

|αj,l|

≤
m∑

l=1

2dl/2
√

cψ‖fα‖1

≤ 2(m+1)d/2

2d/2 − 1

√
cψ‖fα‖1.

Next, by (3.6) and the definition (4.2) ofN(α),

N(α) =
m∑

l=1

|Il| ≥ c−1
ψ

m∑
l=1

2dl ≥ 2(m+1)d

2cψ(2d − 1)
.

Combining these inequalities we get the result.�

DEFINITION 1. Let Z ⊂ Lp(S, ν) be a collection of functions on some
measurable space(S, ν), 1≤ p ≤ ∞. For eachδ > 0, theδ-covering number with
bracketingNB,p(δ,Z, ν) of Z is the smallest value ofN such that there exists
a collection of pairs of functions{[zL

j , zU
j ]Nj=1} that satisfies:

• zL
j ≤ zU

j and ‖zU
j − zL

j ‖p ≤ δ for all j ∈ {1, . . . ,N} [with ‖ · ‖p being the
Lp(S, ν)-norm],

• for eachz ∈ Z there is aj ∈ {1, . . . ,N} such thatzL
j ≤ z ≤ zU

j .

Theδ-entropy with bracketing ofZ is HB,p(δ,Z, ν) = logNB,p(δ,Z, ν).

DEFINITION 2. Let Z be a collection of bounded functions onS. The
δ-covering number for the sup-norm,N∞(δ,Z), is the smallest numberN such
that there are functions{zj }Nj=1 with for eachz ∈ Z,

min
j=1,...,N

sup
s∈S

|z(s) − zj (s)| ≤ δ.

Theδ-entropy for the sup-norm isH∞(δ,Z) = logN∞(δ,Z).

Note that whenν is a probability measure [cf. van de Geer (2000), page 17],

HB,p(δ,Z, ν) ≤ H∞(δ/2,Z), δ > 0.(7.3)

For a class G of subsets of (X,Q), we write HB(δ,G,Q) = HB,1(δ,

{1G :G ∈ G},Q).
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LEMMA 3. Let α∗ ∈ Rn be fixed. For 0 < M ≤ n define GM = {G =
Gα�Gα∗ :α ∈ Rn, I (α − α∗) ≤ M}. Suppose that AssumptionsB and C are met.
Then

HB(δ,GM,Q) ≤ M

δ

(8q0c
2
ψ logn

d

)
log

(8q0c
2
ψn

δd

)
,(7.4)

for all 0 < δ ≤ 1.

PROOF. DefineF M = {fα :α ∈ Rn, I (α) ≤ M}. In view of Assumption C,

HB(q0δ,G
M,Q) ≤ HB,1(δ,F

M,µd), δ > 0.(7.5)

This and (7.3) show that it is sufficient to boundH∞(·,F M).
Fix someδ > 0. Our aim is now to bound the quantityH∞((c2

ψd−1 logn)δ,

F M). To do this, note that one can construct a(c2
ψd−1 logn)δ-net onF M for the

sup-norm in the following way. The elements of the net arefα′ whereα′
j,l takes

discretized values with stepδ2−dl/2. For everyαj,l defineα′
j,l as the element

closest toαj,l , of theδ2−dl/2-net on the interval

[−M2−dl/2,M2−dl/2].
Note that this interval contains all admissible values ofαj,l since|αj,l| ≤ M2−dl/2,
∀ j, l for all α such that I (α) ≤ M . With this definition of α′

j,l we have

|αj,l − α′
j,l| ≤ δ2−dl/2, and thus

sup
s∈[0,1]d

|fα(s) − fα′(s)|

≤
L∑

l=1

sup
s∈[0,1]d

∑
j∈Il

|αj,l − α′
j,l||ψj,l(s)|

≤ δ

L∑
l=1

2−dl/2 sup
s∈[0,1]d

∑
j∈Il

|ψj,l(s)| ≤ Lcψδ ≤ (c2
ψd−1 logn)δ,

where we have used Assumption B for the last two inequalities. Thus we have
proved that the above construction gives in fact a(c2

ψd−1 logn)δ-net onF M for
the sup-norm.

Let us now evaluate the cardinality of this net. This will be based on the
following three observations.

OBSERVATION 1. For everyα such thatI (α) ≤ M there exist at mostM/δ

indicesk = (j, l) such that|αj,l| > δ2−dl/2. To show this, define

Nl(α) = ∣∣{j ∈ Il : |αj,l| > δ2−dl/2}∣∣, l = 1, . . . ,L.
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Then

√
M ≥ √

I (α) ≥
L∑

l=1

2dl/4
√√√√ ∑

|αj,l |>δ2−dl/2

|αj,l| ≥
√

δ

L∑
l=1

√
Nl(α).

Hence
L∑

l=1

√
Nl(α) ≤

√
M

δ
,

and so
L∑

l=1

Nl(α) ≤ M

δ
.

OBSERVATION 2. For eachj and l, we can approximate the interval
{|αj,l| ≤ M2−dl/2} by a set of cardinality at most

2M

δ
+ 1

such that each coefficientαj,l is approximated to within the distanceδ2−dl/2.

OBSERVATION 3. The number of different ways to choose≤ M/δ nonzero
coefficients out ofn is ∑

0≤N≤min{M/δ,n}

(
n

N

)
≤ (n + 1)M/δ

[see, e.g., Devroye, Györfi and Lugosi (1996), page 218].

It follows from Observation 3 that there exist at most(n+ 1)M/δ possibilities to
choose the sets of nonzero coordinates of the vectorsα′ belonging to the net. For
each of these possibilities the discretization is performed on each of the nonzero
coordinates, which gives at most(

2M

δ
+ 1

)M/δ

new possibilities in view of Observations 1 and 2. Thus, the cardinality of the
considered(c2

ψd−1 logn)δ-net onF M is bounded by

(n + 1)M/δ

(
2M

δ
+ 1

)M/δ

,

which implies

H∞
(
(c2

ψd−1 logn)δ,F M) ≤ M

δ

(
log

(
2M

δ
+ 1

)
+ log(n + 1)

)
.(7.6)
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In view of (7.5) this yields

HB(δ,GM,Q) ≤ M

δ

(2q0c
2
ψ logn

d

)[
log

(4q0c
2
ψM logn

δd
+ 1

)
+ log(n + 1)

]

≤ M

δ

(2q0c
2
ψ logn

d

)[
log

(4q0c
2
ψn2

δd
+ 1

)
+ log(n + 1)

]

sinceM logn ≤ n logn ≤ n2. Continuing with this bound, we arrive at

HB(δ,GM,Q) ≤ M

δ

(4q0c
2
ψ logn

d

)
log

(4q0c
2
ψn2

δd
+ 1

)

≤ M

δ

(4q0c
2
ψ logn

d

)
log

(8q0c
2
ψn2

δd

)

≤ M

δ

(8q0c
2
ψ logn

d

)
log

(8q0c
2
ψn

δd

)
. �

Now we turn to the empirical process

νn(α) = √
n
(
Rn(Gα) − R(Gα)

)
, α ∈ Rn.(7.7)

LEMMA 4. Let AssumptionsB and C hold. Then there exists a universal
constantC such that forn ≥ 8q0c

2
ψ we have, for all α∗ ∈ Rn,

P

(
sup
α∈Rn

|νn(α) − νn(α
∗)|√

I (α − α∗) +
√

log4 n/n
> C

√
q0c

2
ψ log4 n

d

)
(7.8)

≤ C exp
[
−cψ log4 n

C2d

]
.

PROOF. We will apply Theorem 5.11 in van de Geer (2000) which, translated
to our situation, says the following. Let

hα(X,Y ) = (
Y − 1Gα(X)

)2 − (
Y − 1Gα∗ (X)

)2

and

HM = {hα : I (α − α∗) ≤ M}.
Also, letR2 ≤ 1 satisfy

sup
h∈HM

∫
h2 dP ≤ R2,
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whereP is the law of(X,Y ). Then Theorem 5.11 in van de Geer (2000) gives that
for some universal constantC0, and for alla satisfying botha ≤ √

nR2 and

a ≥ C0

(∫ 1

a/(C0
√

n )
H

1/2
B,2(u,HM,P )du ∨ R

)

one has

P
(

sup
α∈Rn : I (α−α∗)≤M

|νn(α) − νn(α
∗)| > a

)
≤ C0 exp

[
− a2

C2
0R2

]
.(7.9)

To apply this result, note first that∣∣(Y − 1Gα(X)
)2 − (

Y − 1Gα′ (X)
)2∣∣ = ∣∣1Gα(X) − 1Gα′ (X)

∣∣.(7.10)

We therefore get

sup
h∈HM

∫
h2 dP = sup

G∈GM

Q(G),

whereGM be defined as in Lemma 3. Hence by Lemma 1, Assumption C and (3.2)
we may take

R2 = q0cψM ∧ 1.

Moreover, again by (7.10),

HB,2(δ,H
M,P ) = HB,2(δ, {1G :G ∈ GM},Q) = HB(δ2,GM,Q), δ > 0.

Using Lemma 3, for anya ≤ √
nR2, log4 n/n ≤ M ≤ n andn ≥ 8q0c

2
ψ , we get

the bound

∫ 1

a/
√

n
H

1/2
B,2(u,HM,P )du ≤ c′

√√√√q0c
2
ψM logn

d
log3

(
n5/2

a2

)
,

wherec′ is a universal constant. We therefore can take

a = c

√
q0c

2
ψM log4 n

d
,

with an appropriate universal constantc. Insert this value fora and the value ofR
in (7.9) to find that for log4 n/n ≤ M ≤ n, and trivially also forM > n,

P

(
sup

α∈Rn : I (α−α∗)≤M

|νn(α) − νn(α
∗)| > c

√
q0c

2
ψM log4 n

d

)
(7.11)

≤ C0 exp
[
−c2cψ log4 n

C2
0d

(M ∨ 1)

]
.
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The result now follows from the peeling device as, for example, explained in
Section 5.3 of van de Geer (2000). The argument is then as follows. We have

P

(
sup
α∈Rn

|νn(α) − νn(α
∗)|√

I (α − α∗) +
√

log4 n/n
> C

√
q0c

2
ψ log4 n

d

)

≤ P

(
sup

I (α−α∗)≤1

|νn(α) − νn(α
∗)|√

I (α − α∗) +
√

log4 n/n
> C

√
q0c

2
ψ log4 n

d

)

+ P

(
sup

I (α−α∗)>1

|νn(α) − νn(α
∗)|√

I (α − α∗) +
√

log4 n/n
> C

√
q0c

2
ψ log4 n

d

)

= PI + PII .

Furthermore, forj0 the integer such that 2−j0 ≤ log4 n/n < 2−j0+1, we find

PI ≤
j0∑

j=0

P

(
sup

I (α−α∗)≤2−j

|νn(α) − νn(α
∗)| > C

2

√
q0c

2
ψ2−j log4 n

d

)
=

j0∑
j=0

PI,j .

Similarly,

PII ≤
∞∑

j=1

P

(
sup

I (α−α∗)≤2j

|νn(α) − νn(α
∗)| > C

2

√
q0c

2
ψ2j log4 n

d

)
=

∞∑
j=1

PII ,j .

The theorem then follows by choosingC appropriately and applying (7.11) to each
of thePI,j , j = 0, . . . , j0, andPII ,j , j = 1,2, . . . . �

LEMMA 5. For any positivev, t and anyκ ≥ 1, δ > 0 we have

vt1/(2κ) ≤ (δ/2)t + cκδ−1/(2κ−1)v2κ/(2κ−1)

wherecκ = (2κ − 1)/(2κ)κ−1/(2κ−1).

PROOF. By the concavity of the log-function, we have for positivea, b, x

andy, with 1/x + 1/y = 1,

log(ab) = 1

x
log(ax) + 1

y
log(by) ≤ log

(
1

x
ax + 1

y
by

)
or

ab ≤ 1

x
ax + 1

y
by.

The lemma is obtained when we choose

a = v(κδ)−1/(2κ), b = (κδt)1/(2κ), x = 2κ

2κ − 1
, y = 2κ. �
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We now come to the proof of the main theorem. This proof follows the lines of
Loubes and van de Geer (2002) [see also van de Geer (2003)].

PROOF OFTHEOREM 1. Fix an arbitraryα∗ ∈ Rn. (We stress here thatα∗ is
just a notation and need not be related in any sense to the Bayes ruleG∗.) Let� be
the random event

� =
{
|νn(α̂n) − νn(α

∗)|/√n ≤ λn

√
I (α̂n − α∗) + λn

√
log4 n

n

}
.(7.12)

By Lemma 4, forn sufficiently large,

P(�) ≥ 1− C exp
[
−cψ log4 n

C2d

]
.

So we only need to consider what happens on the set�. The definition ofα̂n

implies

Rn

(
Gα̂n

) + λn

√
I (α̂n) ≤ Rn(Gα∗) + λn

√
I (α∗),

which may be rewritten in the form

R
(
Gα̂n

) ≤ −[νn(α̂n) − νn(α
∗)]/√n − λn

[√
I (α̂n) − √

I (α∗)
] + R(Gα∗).(7.13)

Hence on� we get

R
(
Gα̂n

) ≤ λn

√
I (α̂n − α∗) − λn

[√
I (α̂n) − √

I (α∗)
] + R(Gα∗) + λn

√
log4 n

n
.

Let m∗ = m(α∗), and let, for anyα,

√
I (1)(α) =

m∗∑
l=1

2dl/4
√∑

j∈Il

|αj,l|,

√
I (2)(α) =

L∑
l=m∗+1

2dl/4
√∑

j∈Il

|αj,l|.

SinceI (2)(α − α∗) = I (2)(α), we now find

R
(
Gα̂n

) ≤ λn

√
I (1)(α̂n − α∗) + λn

√
I (2)(α̂n) − λn

[√
I (1)(α̂n) −

√
I (1)(α∗)

]

− λn

√
I (2)(α̂n) + R(Gα∗) + λn

√
log4 n

n

= λn

√
I (1)(α̂n − α∗) − λn

[√
I (1)(α̂n) −

√
I (1)(α∗)

]

+ R(Gα∗) + λn

√
log4 n

n
.
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Since for anya, b ∈ R,
√|a| − √|b| ≤ √|a − b|, we arrive at

R
(
Gα̂n

) ≤ 2λn

√
I (1)(α̂n − α∗) + R(Gα∗) + λn

√
log4 n

n
.(7.14)

Therefore, using a straightforward modification of Lemma 2 (basically replacing
thereI by I (1)), we obtain

R
(
Gα̂n

) ≤ 2λn

√
cdc2

ψN∗∥∥fα̂n−α∗
∥∥

1 + R(Gα∗) + λn

√
log4 n

n
,

whereN∗ = N(α∗) = ∑m∗
l=1 |Il|. By Assumption C and (3.2),∥∥fα̂n−α∗

∥∥
1 ≤ q0Q

(
Gα̂n

�Gα∗
)
.

We therefore get

R
(
Gα̂n

) ≤ 2λn

√
cdq0c

2
ψN∗Q

(
Gα̂n

�Gα∗
) + R(Gα∗) + λn

√
log4 n

n
.

SubtractingR(G∗) from both sides of this inequality, and denotingd(G,G∗) =
R(G) − R(G∗), we obtain

d
(
Gα̂n

,G∗) ≤ 2λn

√
cdq0c

2
ψN∗Q

(
Gα̂n

�Gα∗
)

(7.15)

+ d(Gα∗,G∗) + λn

√
log4 n

n
.

But then, by the triangle inequality and
√

a + b ≤ √
a + √

b, a, b ≥ 0, we get

d
(
Gα̂n

,G∗) ≤ 2λn

√
cdq0c

2
ψN∗[√

Q
(
Gα̂n

�G∗) + √
Q(Gα∗�G∗)

]

+ d(Gα∗,G∗) + λn

√
log4 n

n

≤ 2λn

√
cdq0c

2
ψσ

1/κ
0 N∗[

d1/(2κ)(Gα̂n
,G∗) + d1/(2κ)(Gα∗,G∗)

]

+ d(Gα∗,G∗) + λn

√
log4 n

n
,

where in the last inequality we invoked Assumption A. Now we apply Lemma 5
with, respectively,t = d(Gα̂n

,G∗) andt = d(Gα∗,G∗), to get

d
(
Gα̂n

,G∗) ≤ (δ/2)
[
d
(
Gα̂n

,G∗) + d(Gα∗,G∗)
]

+ 2cκδ−1/(2κ−1)(4cdq0c
2
ψσ

1/κ
0 λ2

nN
∗)κ/(2κ−1)

+ d(Gα∗,G∗) + λn

√
log4 n

n
,
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which, together with the inequalities(1 + δ/2)/(1 − δ/2) ≤ (1 + δ)2 and
1/(1− δ/2) ≤ 2, which are valid forδ ∈ (0,1], implies, that on the event� we
have

R
(
Gα̂n

) − R(G∗)

≤ (1+ δ)2{R(Gα∗) − R(G∗) + δ−1/(2κ−1)Vn(N(α∗))
} + 2λn

√
log4 n

n
.

Hence

P

(
R

(
Gα̂n

) − R(G∗) > (1+ δ)2{R(Gα∗) − R(G∗)

+ δ−1/(2κ−1)Vn(N(α∗))
} + 2λn

√
log4 n

n

)

≤ C exp
[
−cψ log4 n

C2d

]
.

Sinceα∗ was chosen arbitrarily this holds in fact for allα∗. Because a distribution
function is right continuous, we now have shown that also

P

(
R

(
Gα̂n

) − R(G∗) > (1+ δ)2 inf
α∈Rn

{
R(Gα) − R(G∗)

+ δ−1/(2κ−1)Vn(N(α))
} + 2λn

√
log4 n

n

)

≤ C exp
[
−cψ log4 n

C2d

]
. �

PROOF OFTHEOREM 2. Forη ∈ Hκ , G∗
η ∈ Gρ , we have

R(Gα) − R(G∗
η) + Vn(N(α)) ≤ σ0q

κ
0‖fα − f ∗

η ‖κ∞ + Vn(N(α)),

so that

inf
α : m(α)≤m

{R(Gα) − R(G∗
η) + Vn(N(α))} ≤ σ0q

κ
0cκ

0N−κ/ρ
m + Vn(Nm)

(7.16)
= z(Nm),

where

z(t) = σ0q
κ
0cκ

0t−κ/ρ + Vn(t), t > 0.

Now minimizingz(t) over all t > 0 gives

t 
(

n

log4 n

)ρ/(2κ+ρ−1)

:= t̃ ,
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sinceVn(N)  (Nn−1 log4 n)κ/(2κ−1). Let m̃ be the smallest integer such that

Nm̃−1 ≤ t̃ ≤ Nm̃.

It is not difficult to see, using (3.6) and (3.7), that

Nm̃ − t̃ ≤ c2
ψ22d(t̃ + 1).

InsertingNm̃ in the right-hand side of (7.16) therefore gives

inf
α:m(α)≤m̃

{R(Gα) − R(G∗
η) + Vn(N(α))} ≤ z(Nm̃) 

(
log4 n

n

)κ/(2κ+ρ−1)

.

Note finally that the constants in Theorem 1 depend only ond, κ , σ0, q0 andcψ ,
so that the result of Theorem 2 follows easily.�

REMARK. When this paper was finished we learned from Vladimir
Koltchinskii that he found another penalized classifier that adaptively attains fast
optimal rates [Koltchinskii (2003)]. His method is different from ours and uses
randomization and local Rademacher complexities.

REFERENCES

AUDIBERT, J.-Y. (2004). Aggregated estimators and empirical complexity for least squares
regression.Ann. Inst. H. Poincaré Probab. Statist.40 685–736.

BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via penalization.
Probab. Theory Related Fields113 301–413.

BARTLETT, P. L., JORDAN, M. I. and MCAULIFFE, J. D. (2003). Convexity, classification and risk
bounds. Technical Report 638, Dept. Statistics, Univ. California, Berkeley.

BLANCHARD, G., LUGOSI, G. and VAYATIS , N. (2003). On the rate of convergence of regularized
boosting classifiers.J. Mach. Learn. Res.4 861–894.

CAVALIER , L. and TSYBAKOV, A. B. (2001). Penalized blockwise Stein’s method, monotone oracles
and sharp adaptive estimation.Math. Methods Statist.10 247–282.

DEVORE, R. A. and LORENTZ, G. G. (1993).Constructive Approximation.Springer, Berlin.
DEVROYE, L., GYÖRFI, L. and LUGOSI, G. (1996).A Probabilistic Theory of Pattern Recognition.

Springer, New York.
HÄRDLE, W., KERKYACHARIAN , G., PICARD, D. and TSYBAKOV, A. (1998).Wavelets, Approxi-

mation and Statistical Applications. Lecture Notes in Statist.129. Springer, New York.
KOLTCHINSKII, V. (2001). Rademacher penalties and structural risk minimization.IEEE Trans.

Inform. Theory47 1902–1914.
KOLTCHINSKII, V. (2003). Local Rademacher complexities and oracle inequalities in risk minimiza-

tion. Preprint.
KOLTCHINSKII, V. and PANCHENKO, D. (2002). Empirical margin distributions and bounding the

generalization error of combined classifiers.Ann. Statist.30 1–50.
KOROSTELEV, A. P. and TSYBAKOV, A. B. (1993).Minimax Theory of Image Reconstruction.

Lecture Notes in Statist.82. Springer, New York.
LOUBES, J.-M. andVAN DE GEER, S. (2002). Adaptive estimation with soft thresholding penalties.

Statist. Neerlandica56 453–478.



1224 A. B. TSYBAKOV AND S. A. VAN DE GEER

LUGOSI, G. and WEGKAMP, M. (2004). Complexity regularization via localized random penalties.
Ann. Statist.32 1679–1697.

MAMMEN, E. and TSYBAKOV, A. B. (1999). Smooth discrimination analysis.Ann. Statist.27
1808–1829.

SCHÖLKOPF, B. and SMOLA, A. (2002).Learning with Kernels. MIT Press, Cambridge, MA.
TSYBAKOV, A. B. (2004). Optimal aggregation of classifiers in statistical learning.Ann. Statist.32

135–166.
VAN DE GEER, S. (2000).Empirical Processes in M-Estimation. Cambridge Univ. Press.
VAN DE GEER, S. (2003). Adaptive quantile regression. InRecent Advances and Trends in

Nonparametric Statistics(M. G. Akritas and D. N. Politis, eds.) 235–250. North-Holland,
Amsterdam.

VAPNIK, V. N. (1998).Statistical Learning Theory. Wiley, New York.

LABORATOIRE DE PROBABILITÉS

ET MODÈLESALÉATOIRES

UNIVERSITÉ PARIS VI
4 PLACE JUSSIEU

CASE 188
F-75252 PARIS CÉDEX 05
FRANCE

E-MAIL : tsybakov@ccr.jussieu.fr

MATHEMATICAL INSTITUTE

UNIVERSITY OF LEIDEN

P.O. BOX 9512
2300 RA LEIDEN

THE NETHERLANDS

E-MAIL : geer@math.leidenuniv.nl


