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Introduction. If H is a complex Hubert space and if A is an

operator on H (i.e., a bounded linear transformation of H into it-

self), under what conditions does there exist an operator B on H

such that B2=A? In other words, when does an operator have a

square root? The spectral theorem implies that the normality of A

is a sufficient condition for the existence of B ; the special case of posi-

tive definite operators can be treated by more elementary means and

is, in fact, often used as a step in the proof of the spectral theorem.

As far as we are aware, no useful necessary and sufficient conditions

for the existence of a square root are known, even in the classical

case of finite-dimensional Hubert spaces. The problem of finding some

easily applicable conditions is of interest, in part because the use of

square roots is frequently a helpful technique in the study of alge-

braic properties of operators, and in part because of the information

that such conditions might yield about the hitherto rather mysterious

behavior of non-normal operators.

If a non-zero, 2-rowed square matrix is nilpotent, then its index of

nilpotence is equal to 2; this comment shows that no such matrix

can have a square root. On the other hand, an elementary computa-

tion, based on the Jordan canonical form, shows that every invertible

matrix does have a square root. Since the number 0 is known to have

a special significance in the formation of square roots, it is not un-

reasonable to conjecture that its absence from the spectrum of an

operator A is sufficient to ensure the existence of a square root of A,

or, in other words, that even on not necessarily finite-dimensional

Hubert spaces, every invertible operator has a square root. (This

conjecture was first called to our attention by Irving Kaplansky.)

The main purpose of this paper is to prove that this conjecture is

false. More precisely, we shall describe a small but interesting class

of operators, derive a necessary and sufficient condition that an

operator in this class have a square root, and achieve our announced

purpose by exhibiting a relatively large subclass of invertible oper-

ators that do not satisfy the condition. We note in passing that our

methods solve the analogous problem for nth roots, n ^ 2, and that,
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curiously, the condition for the existence of an »th root, within the

class of operators we treat, is the same as that for the special case

« = 2.

Analytic position operators. Let D be a bounded domain (i.e., a

bounded, open, and connected subset of the complex plane), let p be

planar Lebesgue measure in D, and let H be the set of all complex-

valued functions that are analytic throughout D and square-inte-

grable with respect to p. In other words, an element of H is an an-

alytic function x of the complex variable t in D and is such that

\\x\\2=    f  \x(t)\2dp(t)<   co.
J D

With respect to the pointwise linear operations, and the inner product

defined by

(*, y)= f x(t)y(t)dp(t),
J D

the set H is a complex inner product space. If XeD and xtH, we

write

v\(x) = x(\);

it is obvious that, for each fixed X, the functional v\ is linear.

Lemma 1. For each X in D, the functional v\ on H is bounded; if, in

fact, a2(\) is the area of the largest open circle C with center at X that is

contained in D, then

|*<*)|*-¿r|l4
a(\)

Proof. Since

\\x\\2=  f \x(t)\2dp(t)>  f\x(t)\'dp(t)
J D J C

/i   I    » 12

E»»((-X)"   dp(t),
Cl n-0 I

and since the powers of (t—X) constitute an orthogonal set in Li(C), it

follows that

\\x\\2^  f \ao\2dp(t) = a2(\).\x(\)\2.
J c
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Lemma 2. The inner product space H is a Hubert space.

Proof. If {xn} is a Cauchy sequence in H, then, by Lemma 1,

\xn(\)   -Xm(\)\   £-—\\xn-Xm\\
a(\)

for every X in D. It follows that if Do is a compact subset of D, so

that a(X) is bounded away from 0 when XeZ>o, then the sequence

{xn} of functions is uniformly convergent on Do. This implies that

there exists an analytic function x on D such that xn(X)—>x(\) for all

X in D. At the same time, the completeness of Li(D) implies the

existence of a complex-valued, square-integrable, but not necessarily

analytic, function y on D such that xn—yy in the mean of order 2. It

follows that a subsequence of {xn} converges to y almost everywhere

and hence that x=y almost everywhere. This implies that x is square-

integrable, i.e., that xtH, and hence that H is complete.2

The equation (Ax)(t) =tx(t) defines a linear transformation A of H

into itself; the boundedness of D implies that A is an operator. We

shall call A the analytic position operator associated with the domain

D. The class of analytic position operators is the class we mentioned

in the introduction.*

Spectra. For our purposes we shall have need of an almost com-

plete analysis of the spectrum of an analytic position operator; we

devote this brief section to recalling the pertinent facts about spectra.

If A is an operator on a Hubert space H, the spectrum of A, in sym-

bols A(^4), is the set of all those complex numbers X for which A — X

is not invertible. A well known and easy geometric argument shows

that there are two (exhaustive but not exclusive) ways in which

2 The results of Lemmas 1 and 2 are not new; they can be found, for instance, in

Stefan Bergman, Sur les fondions orthogonales de plusieurs variables complexes avec

les applications d la théorie des fonctions analytiques, Paris, 1947, p. 24. Since, how-

ever, we have occasion below to make use of the notation and of the cornerstone

(Lemma 1) of the reasoning above, we thought it appropriate to give the proof. It

might also be remarked that since our proof makes explicit use of the Riesz-Fischer

theorem, instead of proving it in the particular case at hand, it is somewhat simpler,

from the point of view of the standard theory of Hubert spaces, than the more

analytic argument given by Bergman.

* If m is a compact measure in the complex plane (i.e., a measure with compact

support, in the terminology of Bourbaki), and if (Ax)(t)=tx(t) for every complex-

valued function * that is square-integrable with respect to it, then we call A the posi-

tion operator associated with it. The adjective analytic serves as a reminder that the

spectrum (support) of it is the closure of a bounded open set and that the domain of

A consists only of functions analytic in the given open set. The terminology is moti-

vated by an analogy with certain operators considered in quantum mechanics.
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A — X can fail to be invertible. One way is that the range of A — X, in

symbols R(A —X), fails to be dense in H; if this is the case, we say

that X belongs to the compression spectrum of A and we write XeS(^4).

Another way is that, for suitable vectors x, the expression || (A — \)x\\

becomes arbitrarily small in comparison with ||x|| ; if this is the case,

we say that X belongs to the approximate point spectrum of A and

we write XeLT(vI). A more special way for A— X to fail to be in-

vertible is for X to belong to the point spectrum Ho(A); this means, of

course, that (A— \)x = 0 for a suitable non-zero vector x. We shall

need to make use of the facts that (1) A(A) is a closed (and in fact

compact) subset of the complex plane, (2) A(^4) =~Z,(A) u 11(A), and

(3) n0(^4*) =2*(.4). (In (3), A* denotes, of course, the adjoint of

the operator A, and 2*(.4) denotes the set of all complex numbers of

the form X with XeS(^).)4

We shall also need a slightly more deep-lying fact about spectra, a

special case of the so-called spectral mapping theorem.5 The part of

the theorem that is relevant to our work asserts that if p is any poly-

nomial (and, in particular, if pÇK)=\2), then 2(p(A))=p(2(A)),

Tl(p(A))=p(Il(A)), and U0(p(A)) = p(U0(A)). (A symbol such as
pÇE(A)) denotes the set of all complex numbers of the form p(X) with

\tS(A).) It is pertinent to remark that the first two of these three

equations, together with (2) above, imply that A(p(A)) =p(A(A)).

The spectrum of an analytic position operator. Suppose now

that A is the analytic position operator associated with a domain D ;

we propose to establish the connection between D and the spectrum

of A. We begin with an auxiliary result.

Lemma 3. If \tD and if y is a function in H such that y(\) =0,

then there exists a unique function x in H such that y(t) = (t—\)x(t)

for all t in D. If, moreover, 8 is a positive number such that the open

circle C with center X and radius 8 is contained in D, then

INI2 = y Ml2-

Proof. It is obvious that there exists a unique analytic function

x on D such that y(t) = (t—\)x(t) for all / in D. Since the square-

integrability of x, i.e., the relation xtH, is a weaker condition than

the asserted inequality between [|x|| and ||y||, it remains only to

prove that inequality.

* For a treatment of the elementary properties of spectra see, for instance, Paul R.

Halmos, Introduction to Hubert space and the theory of spectral multiplicity, New York,

1951, p. 50.
6 See Einar Hille, Functional analysis and semi-groups, New York, 1948, p. 123.
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We observe   first   of   all   (cf.   the   proof   of   Lemma   1)   that

fc(t-\)n(t-'k)mdp(t) =0 unless m=n (n, m = 0, 1,2, ■ • ■), and that

/' , , it52b+2|(,-x)B|2a>(/) = —-
c n + 1

these facts are the results of an easily verified computation. If * is

expanded in powers of (/—X), i.e.,

00

x(t) = Z«nO-X)B,/eC,
n— 0

then it follows that

/'   I I A I **
\x(t)\2dp(t) = Z\an\2—

C n-0 » '

TÔ2n+2

n-o n+ 1

and

| (t - \)x(t) \2dp(t) = ZU« I2 —
C n-0 » '

ir52B+«
~+2'

Consequently

82(n + 1)   . irÔ2n+2
/' . , "    ô\n + 1)   .I « - \)x(t) \2dp(t) = z -^r-1a"

c n-o      n + L

à -£ f | *(0 |»¿m0.
2 Jc

M + 1

I.

The desired result now follows from the relations

IMI2= f I (t - x)*(0 |W)

^ — f I *(/) |2¿mW + 52 f    I *(/) |2¿m(0
2 J c J D—C

= yMI2-

Theorem 1. If A is the analytic position operator associated with a

domain D, and ifkzD, then X is not an approximate proper value of A,

but X is a simple proper value of A*, and therefore, in particular,

Dc2(A)-11(A).

Proof. Lemma 1 implies that
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\\(A-\)x\\2^j\\x\\2

for all x in H and hence that X is not an approximate proper value

of A. Lemma 1 implies also that a necessary and sufficient condition

that a function y belong to R(A —X) is that v\(y) =0. Since the range

of an operator is dense in the orthogonal complement of the null

space of its adjoint, it follows that A *z = %z if and only if z is orthog-

onal to the null space of v\. Since, by the standard Riesz representa-

tion of bounded linear functionals in terms of inner products, the

dimension of the orthogonal complement of the null space of v\ is

equal to 1, the proof of the theorem is complete.

On the basis of this theorem it is easy to determine the various parts

of the spectrum completely. For our purposes, however, it is suffi-

cient to know Theorem 1 and the additional, global fact that A(A)

= D. Indeed, since D cA(A) by Theorem 1, and since A(^4) is closed,

it follows that DcA(A). If, on the other hand, X does not belong

to D, and if

then f\ is a bounded analytic function on D and consequently the

equation (A\x)(t) =f\(t)x(t) defines an operator A\ on H that is

easily seen to be a two-sided inverse of A —X. In other words A(A)

does not contain any point in the complement of D, so that A(A) = D.

Square roots of analytic position operators. In order to state the

main theorem of this paper, it is convenient to introduce a new nota-

tion; if D is a domain, we shall write y/D for the (open) set of all

complex numbers X such that \2tD.

Theorem 2. If A is the analytic position operator associated with a

domain D, then a necessary and sufficient condition that A have a square

root is that y/D be disconnected.

Proof. Let U be a component of y/D and write V=Uu (-U),

where — U denotes the set of all complex numbers of the form —X

with \tU. Since D is open, so also are V and W=D— V. Since V is

the complete square root of V2, and since V and W are disjoint, it

follows that V2 and W2 are disjoint, where V2, for instance, denotes

the set of all complex numbers of the form X2 with Xe V. Since an

analytic function (and in particular the function/defined by/(X) =X2)

is an open mapping, V2 and W2 are open, and, clearly, V2vW2 = D.

The connectedness of D implies that W2 is empty and hence that W
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is empty. This proves that if y/D is not connected, then it consists of

exactly two open components: U and its reflection — U. The corre-

spondence / (where /(X) =X2) is one-to-one between U and D, and

therefore the inverse correspondence g between D and U is a (single-

valued) bounded analytic function on D. The equation (Bx)(t)

=g(t)x(t) defines, therefore, an operator B on H; evidently B2=A.

Suppose now that y/D is connected; the same is then true of the

set y/D— {0} obtained by deleting the origin from y/D, in case it

happened to belong to y/D. We shall derive a contradiction from

the assumption that there exists an operator B on H such that B2=A.

Since Dc'Z(A) —11(^4), it follows from the spectral mapping theorem

that no point of y/D can belong to II(P). Since A2(B) =A(A), it fol-

lows that if XtD, then at least one of the two square roots of X be-

longs to A(B) and hence, in view of the preceding sentence, to S(P).

If both the square roots of a non-zero number X in D belonged to 2(5),

then their conjugates would belong to n0(P*) and this would con-

tradict the fact that X is a simple proper value of A *. What we have

proved so far may be formulated as follows: if \t\/D— {o}, then

exactly one of the two numbers X and —X belongs to A(B). The set

(y/D-{o})(\A(B) is a closed subset of y/D-{0} in the relative

topology; the homeomorphism X—►—X carries it onto its relative com-

plement in y/D — {0}, which is therefore also closed. Since y/D — {0}

is connected, we have reached the desired contradiction, and the

proof of the theorem is complete.*

Conclusion, (a) The condition of Theorem 2 is of a mixed algebraic

and topological nature. It is not difficult, however, to replace it by

a purely topological condition. Elementary reasoning, based on the

information that the proof of Theorem 2 yields about the structure

of y/D, implies that y/D is connected if and only if D contains a

Jordan curve surrounding the origin. Less elementary, topological,

considerations can be used to show also that the latter condition is

satisfied if and only if the origin does not belong to the infinite com-

ponent of the complement of D.1 Both these conditions may be ex-

pressed, in intuitive terms, by saying that D surrounds the origin.

• A sufficient condition for the existence of square roots of more general operators

is given by Hille (op. cit., p. 276); in the special case of analytic position operators,

however, the condition of Theorem 2 is considerably less restrictive than Hille's.

7 The sufficiency of this condition follows also from Aurel Wintner, On the loga-

rithms of bounded matrices, Amer. J. Math. vol. 74 (1952) pp. 360-364. Wintners'
work appeared after this paper had been submitted for publication. Wintner, inci-

dentally, also raises the question (answered in (c) below) of the existence of an in-

vertible operator without a square root.
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(b) For reasons of notational convenience we treated the case of

square roots only; exactly the same method, however, solves the

problem of wth roots for any « = 2, 3, 4, • • • . The principal theorem

in this case is obtained from Theorem 2 by replacing y/D by y/D.

Since the purely topological reformulation of this condition, along

the lines of (a) above, is independent of n, it follows that a necessary

and sufficient condition that an analytic position operator have an

wth root (n = 2, 3, 4, • • • ) is that it have a square root.

(c) What we now know about the spectra and the square roots

of analytic position operators makes it very easy to construct an

example of the type mentioned in the introduction, i.e., an example

of an invertible operator without a square root. Indeed, the analytic

position operator associated with a domain D is invertible if and

only if 0 does not belong to D and it has a square root if and only if

y/D is disconnected. The problem becomes then the construction of a

domain D far from and surrounding the origin. This problem has

many obvious solutions; one, for example, is an annulus with center

at the origin.
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