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SQUARED QUADRATIC WASSERSTEIN DISTANCE: OPTIMAL

COUPLINGS AND LIONS DIFFERENTIABILITY∗

Aurélien Alfonsi1,2,∗∗ and Benjamin Jourdain1,2

Abstract. In this paper, we remark that any optimal coupling for the quadratic Wasserstein distance
W 2

2 (µ, ν) between two probability measures µ and ν with finite second order moments on Rd is the
composition of a martingale coupling with an optimal transport map T . We check the existence of an
optimal coupling in which this map gives the unique optimal coupling between µ and T #µ. Next, we
give a direct proof that σ 7→ W 2

2 (σ, ν) is differentiable at µ in the Lions (Cours au Collège de France.
2008) sense iff there is a unique optimal coupling between µ and ν and this coupling is given by a
map. It was known combining results by Ambrosio, Gigli and Savaré (Lectures in Mathematics ETH
Zürich. Birkhäuser Verlag, Basel, 2005) and Ambrosio and Gangbo (Comm. Pure Appl. Math., 61:18–
53, 2008) that, under the latter condition, geometric differentiability holds. Moreover, the two notions
of differentiability are equivalent according to the recent paper of Gangbo and Tudorascu (J. Math.
Pures Appl. 125:119–174, 2019). Besides, we give a self-contained probabilistic proof that mere Fréchet
differentiability of a law invariant function F on L2(Ω,P;Rd) is enough for the Fréchet differential at
X to be a measurable function of X.
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1. Introduction

In this paper, we are interested in the structure of optimal couplings for the squared quadratic Wasserstein
distance W 2

2 (µ, ν) between µ and ν in the set P2(Rd) of probability measures with finite second order moments
on Rd, and in the differentiability of W 2

2 (µ, ν) with respect to µ. By definition, W 2
2 (µ, ν) = infπ∈Π(µ,ν)

∫
|y −

x|2π(dx, dy) where Π(µ, ν) denotes the set of coupling measures on Rd × Rd with first and second marginals
respectively equal to µ and ν and |.| denotes the Euclidean norm on Rd. There always exists an optimal
coupling and we denote by Πopt(µ, ν) the set of optimal couplings. According to [11], there exists only one W2-
optimal coupling π between µ and each ν ∈ P2(Rd) and this coupling is given by a map T (i.e. π = (Id, T )#µ
where Id denotes the identity function on Rd) iff µ gives 0 mass to the c − c hypersurfaces of dimension
d − 1. Even when µ does not satisfy this condition which is implied by absolute continuity with respect to
the Lebesgue measure, according to Proposition 5.13 [8], if ϕ : Rd → R is a C2 strictly convex function such
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that
∫
Rd |∇ϕ(x)|2µ(dx) <∞, then there is a unique W2-optimal coupling between µ and ν = ∇ϕ#µ and this

coupling is given by the map ∇ϕ. But there also exist measures ν ∈ P2(Rd) such that either the unique optimal
coupling (uniqueness holds in dimension d = 1 for instance) is not given by a map or there exist distinct optimal
couplings. In the latter case, any strictly convex combination of these couplings is an optimal coupling which is
not given by a map.

In Section 2, we study optimal couplings π which are not given by a map. By disintegration, π(dx,dy) =
µ(dx)k(x, dy) for some Markov kernel k on Rd (which is µ(dx) a.e. unique). Setting T (x) =

∫
Rd yk(x, dy) and

using the bias-variance decomposition under the kernel k, we obtain that π is the composition of a martingale
coupling between T #µ and ν with the map T which gives a W2-optimal coupling between µ and T #µ. Note that
couplings of this form have recently been studied by Gozlan and Juillet [12] when considering the barycentric
optimal cost problem. For φ : Rd → R a strictly convex function such that

∫
Rd φ(y)ν(dy) <∞, by minimizing∫

Rd φ(T (x))µ(dx) over the W2-optimal couplings between µ and ν, we obtain optimal couplings such that the
associated map Tφ gives the only optimal coupling between µ and Tφ#µ. There is a unique such coupling when
φ(x) = |x|2.

In Section 3, we are interested in the differentiability of W 2
2 (µ, ν) in the Lions sense with respect to µ.

Gangbo and Tudorascu have recently proved in Corollary 3.22 [10] that the Lions differentiability [15] of a
function f : P2(Rd)→ R is equivalent to the geometric differentiability and that the Fréchet derivative of the
lift at X ∼ µ is then given by ∇µf(X) where ∇µf ∈ L2(Rd, µ;Rd) is the geometric (or Wasserstein) gradient
of f at µ. While the lifted space that they consider is the ball centered at the origin of unit volume in Rd
endowed with the Lebesgue measure, the result can be transferred to any atomless lifted space by considering
an almost isomorphism between those spaces1. Theorem 10.2.6 [4] states that σ 7→W 2

2 (σ, ν) is subdifferentiable
in the geometric sense at µ when Πopt(µ, ν) = {(Id, T )#µ} for some measurable transport map T : Rd → Rd.
On the other hand, Proposition 4.3 [3] states that σ 7→ W 2

2 (σ, ν) is always superdifferentiable in the geometric
sense at µ with x 7→ 2

(
x−

∫
Rd yk(x, dy)

)
belonging to the superdifferential for each Markov kernel k on Rd such

that µ(dx)k(x, dy) ∈ Πopt(µ, ν). Since geometric differentiability amounts to simultaneous geometric sub- and
superdifferentiability, as soon as Πopt(µ, ν) = {(Id, T )#µ}, then σ 7→W 2

2 (σ, ν) is differentiable in the geometric
sense at µ. On the other hand, geometric differentiability implies that the geometric sub- and superdifferential
considered as subsets of L2(Rd, µ;Rd) coincide and contain one element only (see for instance [8], Prop. 5.63).
The fact that the quotient of {x 7→

∫
Rd yk(x, dy) : µ(dx)k(x, dy) ∈ Πopt(µ, ν)} for the µ(dx) a.e. equality is a

singleton is therefore necessary for the geometric differentiability of σ 7→W 2
2 (σ, ν) to hold at µ.

We prove that σ 7→ W 2
2 (σ, ν) is differentiable at µ in the Lions sense iff Πopt(µ, ν) = {(Id, T )#µ}. We give

a direct probabilistic proof of the sufficient condition which also follows from the just mentionned results. To
prove the necessary condition, we use that the Fréchet differentiability at X ∼ µ of the lift on an atomless
probability space is enough for the Fréchet derivative at X to be a.s. equal to a measurable function of X,
a consequence of [10] that we show again using simple probabilistic arguments. Let us emphasize that the
quotient of {x 7→

∫
Rd yk(x, dy) : µ(dx)k(x,dy) ∈ Πopt(µ, ν)} for the µ(dx) a.e. equality may be a singleton

while Πopt(µ, ν) is not equal to {(Id, T )#µ} for some measurable map T : Rd → Rd (see, in dimension d = 1,
Rem. 2.4 below).

2. Structure of quadratic Wasserstein optimal couplings

In this section, we are interested in characterizing the set

Πopt(µ, ν) = {π(dx, dy) ∈ P2(Rd × Rd) :µ(dx) =

∫
y∈Rd

π(dx,dy), ν(dy) =

∫
x∈Rd

π(dx,dy)

and W 2
2 (µ, ν) =

∫
Rd×Rd

|y − x|2π(dx, dy)}.

1We thank one of the referees for pointing out this argument to us.
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of optimal couplings between two probability measures µ, ν ∈ P2(Rd) for the quadratic cost. This set is not
empty : see e.g. [4], page 133.

The refined version of the Brenier theorem in [11] ensures that Πopt(µ, ν) contains a single element (Id, T )#µ
which is given by a measurable transport map T : Rd → Rd for each ν ∈ P2(Rd) iff µ does not give mass to the
c − c hypersurfaces parametrized by an index i ∈ {0, . . . , d − 1} and two convex functions f and g from Rd−1

to R:

{(x1, . . . , xi, f(x)− g(x), xi+1, . . . , xd−1) : x = (x1, . . . , xd−1) ∈ Rd−1}.

The next lemma deals with the case where Πopt(µ, ν) 6= {(Id, T )#µ} for some measurable transport map.

Lemma 2.1. Let µ, ν ∈ P2(Rd). One of the two conditions holds:

– Πopt(µ, ν) = {(Id, T )#µ} for some measurable transport map T : Rd → Rd,
– ∃µ(dx)k(x,dy) ∈ Πopt(µ, ν) such that

∫
Rd×Rd |y −

∫
Rd zk(x, dz)|2k(x,dy)µ(dx) > 0.

Moreover, if any coupling in Πopt(µ, ν) is given by a map i.e. writes (Id, T )#µ for some measurable function
T : Rd → Rd, then Πopt(µ, ν) is a singleton.

Proof. If the set Πopt(µ, ν) has a single element µ(dx)k(x,dy), defining T (x) =
∫
Rd yk(x, dy) we either have∫

Rd×Rd |y − T (x)|2k(x,dy)µ(dx) > 0 or µ(dx)k(x,dy) = µ(dx)δT (x)(dy). Otherwise, we can pick two distinct

elements k1, k2 ∈ Πopt(µ, ν) and k(x, dy) = 1
2 (k1(x,dy) + k2(x, dy)) is such that µ(dx)k(x, dy) ∈ Πopt(µ, ν) and∫

Rd×Rd |y −
∫
Rd zk(x, dz)|2k(x, dy)µ(dx) > 0. The second statement easily follows.

Remarking that if ν is the Dirac mass at x ∈ Rd and νε the uniform distribution on the ball centered at
x with radius ε, then W2(ν, νε) ≤ ε, we deduce from the next proposition that for any µ, ν ∈ P2(Rd), we can
always find µε, νε ∈ P2(Rd) such that W2(µ, µε) ≤ ε, W2(ν, νε) ≤ ε and ∃µε(dx)kε(x, dy) ∈ Πopt(µε, νε) such
that

∫
Rd×Rd |y −

∫
Rd zkε(x, dz)|

2kε(x, dy)µε(dx) > 0.

Proposition 2.2. Assume that ν ∈ P2(Rd) is not a Dirac mass. Then for all µ ∈ P2(Rd), there exists a sequence
(µn)n of elements of P2(Rd) such that limn→∞W2(µn, µ) = 0 and for each n, there does not exist Tn : Rd → Rd
measurable such that Πopt(µn, ν) = {(Id, Tn)#µn}.

Proof. Let (Xi)i≥1 be an i.i.d. sequence of random variables with law µ, and (Yi)i≥1 an independent i.i.d.
sequence of uniform random variables on the unit ball {x ∈ Rd, |x| ≤ 1}. We set µ̃n = 1

n

∑n
i=1 δXi the empirical

measure and µn = 1
n

∑n
i=1 δXi+Yi/n. By construction, we have W 2

2 (µn, µ̃n) ≤ 1
n

∑n
i=1 |Yi/n|2 ≤ 1/n2 and P(∃i 6=

j,Xi + Yi/n = Xj + Yj/n) = 0, which means that a.s. for each n ∈ N∗, µn weights a.s. exactly n points. The law
of large numbers gives the almost sure weak convergence of µ̃n towards µ and the almost sure convergence of
1
n

∑n
i=1 |Xi|2 to E[|X1|2]. Proposition 7.1.5 in [4] ensures that W2(µ̃n, µ) →

n→+∞
0 almost surely. By the triangle

inequality, we get W2(µn, µ) →
n→+∞

0 almost surely.

Now, we consider (pn)n≥1 the increasing sequence of prime numbers. Suppose that ∃n0 ∈ N∗, such that
T#µpn0

= ν. Then, ν weights at most pn0 points and the masses are equal to k/pn0 with 1 ≤ k ≤ pn0 − 1
since ν is not a Dirac mass. Then, if we had T#µpn = ν for some n > n0, we would have k/pn0

= k′/pn with
1 ≤ k′ ≤ pn − 1. This would imply that pn0

divides kpn and thus k, which is impossible since 1 ≤ k ≤ pn0
− 1.

Thus, there is at most one n0 ∈ N∗ such that there is a transport map Tn0
satisfying Tn0

#µpn0
= ν.

Let us now give a necessary and sufficient condition for the existence of an optimal transport map in
dimension d = 1. We denote Fη(x) = η((−∞, x]) and F−1

η (u) = inf{x ∈ R : η((−∞, x]) ≥ u} the cumula-
tive distribution function and the quantile function of a probability measure η on R. For µ, ν ∈ P2(R), by
Theorem 2.9 in [16], the only element of Πopt(µ, ν) is the image of the Lebesgue measure on [0, 1] by (F−1

µ , F−1
ν ).

The next lemma characterizes the case when this coupling is given by a map.
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Lemma 2.3. Let µ, ν ∈ P2(R). There exists T ∈ L2(R, µ;R) such that Πopt(µ, ν) = {(I1, T )#µ} iff for all
x ∈ R such that µ({x}) > 0, F−1

ν is constant on (Fµ(x−), Fµ(x)]. Then, the unique optimal transport map is
T (x) = F−1

ν (Fµ(x)).

Remark 2.4. When F−1
ν is not constant on (Fµ(x−), Fµ(x)] for some x ∈ R such that µ({x}) > 0, then

Πopt(µ, ν) is not equal to {(I1, T )#µ} for some measurable map T : R→ R while, since Πopt(µ, ν) is a singleton,
the quotient of {x 7→

∫
Rd yk(x, dy) : µ(dx)k(x, dy) ∈ Πopt(µ, ν)} for the µ(dx) a.e. equality is a singleton.

Proof. Let X ∼ µ and U be an independent random variable uniform on [0, 1]. The random variable V =
Fµ(X−) + U(Fµ(X) − Fµ(X−)) is such that P({Fµ(X−) < V ≤ Fµ(X)} ∪ {Fµ(X−) = V = Fµ(X)}) = 1.
This is an uniform random variable on [0, 1]: for u ∈ (0, 1), u ∈ [Fµ(x−), Fµ(x)] for some x ∈ R and P(V ≤
u) = P(X < x) + P

(
X = x, U ≤ u−Fµ(x−)

Fµ(x)−Fµ(x−)

)
= u since X is independent of U . Since F−1

µ (V ) = X for V ∈
(Fµ(X−), Fµ(X)] and F−1

µ (V ) ≤ X for V = Fµ(X−) = Fµ(X), we have F−1
µ (V ) ≤ X a.s.. Since F−1

µ (V ) and
X have the same law, we necessarily have F−1

µ (V ) = X a.s.. By the inverse transform sampling, F−1
ν (V ) is

distributed according to ν. Let us assume that F−1
ν is constant on (Fµ(x−), Fµ(x)] for all x ∈ R such that

µ({x}) > 0. Then F−1
ν (V ) = F−1

ν (Fµ(X)) a.s., F−1
ν ◦ Fµ#µ = ν and

∫ 1

0

(F−1
µ (v)− F−1

ν (v))2dv = E[(X − F−1
ν (Fµ(X)))2] =

∫
R

(x− F−1
ν (Fµ(x)))2µ(dx).

Hence T (x) = F−1
ν (Fµ(x)) is an optimal transport map. Conversely, if T is an optimal transport map such

that T#µ = ν, we have T (F−1
µ (v)) = F−1

ν (v), dv-a.e. For x ∈ R such that µ({x}) > 0, F−1
µ is constant on

(Fµ(x−), Fµ(x)], and therefore F−1
ν is necessarily constant on (Fµ(x−), Fµ(x)].

Remark 2.5. Lemma 2.3 still holds true for µ, ν probability measures on R with finite moments of order ρ ≥ 1,
and a transport cost c(x, y) = h(|y− x|), with h : R+ → R strictly convex such that ∃C <∞, ∀x ∈ R, h(|x|) ≤
C(1 + |x|ρ). The same proof applies since, by Theorem 2.9 in [16], the only optimal coupling for such a cost is
the image of the Lebesgue measure on [0, 1] by (F−1

µ , F−1
ν ).

The next proposition, which is one of the main results of this section, shows that any W2-optimal coupling
can be written as the composition of a transport map and a martingale kernel i.e. a Markov kernel k such that
for all x ∈ Rd,

∫
Rd |y|k(x, dy) <∞ and

∫
Rd yk(x,dy) = x. Let us now give the definition of the convex order on

probability measures before recalling its link with the existence of martingale couplings.

Definition 2.6. Let η, ν be two probability measures on Rd. We say that η is smaller than ν in the convex
order and write η ≤cx ν if for each convex function φ : Rd → R such that the integrals make sense,

∫
Rd
φ(x)η(dx) ≤

∫
Rd
φ(y)ν(dy).

Notice that since a convex function φ on Rd is bounded from below by an affine function, for a probability
measure η on Rd with finite first order moment (and in particular for η ∈ P2(Rd)),

∫
Rd φ(x)η(dx) always makes

sense possibly equal to +∞.
Theorem 8 in Strassen [17] ensures that, when

∫
Rd |y|ν(dy) <∞, η ≤cx ν iff there exists a martingale Markov

kernel k such that η(dx)k(x,dy) ∈ Π(η, ν).
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Proposition 2.7. Let µ, ν ∈ P2(Rd), µ(dx)k(x, dy) ∈ Πopt(µ, ν), T (x) =
∫
Rd yk(x,dy) and η = T #µ. Then

η ≤cx ν,

W 2
2 (µ, ν) = W 2

2 (µ, η) +

∫
Rd
|y|2ν(dy)−

∫
Rd
|z|2η(dz) (2.1)

and (Id, T )#µ ∈ Πopt(µ, η).
On the other hand, if η ≤cx ν is such that (2.1) holds, then combining µ(dx)q(x,dz) ∈ Πopt(µ, η) with any

martingale coupling η(dz)m(z,dy) between η and ν, we obtain a W2-optimal coupling µ(dx)qm(x, dy) (where,
as usual, qm(x, dy) =

∫
z∈Rd q(x, dz)m(z,dy)) between µ and ν.

The first part of this proposition is also a consequence of Theorem 12.4.4 in [4]: the barycentric pro-
jection of µ(x)k(x,dy) is precisely (Id, T )#µ. Here, we present this result with a probabilistic fashion. For
µ(dx)k(x, dy) as in the first statement and (X,Y ) ∼ µ(dx)k(x, dy), by definition of T , E[Y |X] = T (X) a.s.
so that E[Y |T (X)] = T (X) a.s. and this optimal coupling is the composition of the martingale coupling
given by the law of (T (X), Y ) and the transport map T . Notice that since it relies on the bias-variance
decomposition, this structure of optimal couplings does not seem to generalize to other Wasserstein distances

Wρ(µ, ν) =
(
infπ∈Π(µ,ν)

∫
|y − x|ρπ(dx, dy)

)1/ρ
, ρ ∈ [1,∞) \ {2}. Nevertheless, Gozlan and Juillet [12] have

recently obtained optimal couplings that are the composition of a martingale coupling and a deterministic
transport map by considering the barycentric optimal cost problem, which consists in minimizing for a given
cost function θ : Rd → R+ the quantity

∫
Rd θ(x−

∫
Rd yk(x, dy))µ(dx) among all couplings µ(dx)k(x, dy) between

µ and ν.

Proof. Let us first prove the second statement. Let η ≤cx ν, q be a Markov kernel such that µ(dx)q(x,dz) ∈
Πopt(µ, η) and m be any martingale kernel such that ηm = ν. Then µ(dx)qm(x,dy) is a coupling between µ
and ν such that

W 2
2 (µ, ν) ≤

∫
Rd×Rd

|y − x|2µ(dx)qm(x, dy) =

∫
Rd×Rd×Rd

|y − z + z − x|2µ(dx)q(x, dz)m(z,dy)

=

∫
Rd×Rd

|y − z|2η(dz)m(z,dy) +

∫
Rd×Rd

|z − x|2µ(dx)q(x, dz)

=

∫
Rd
|y|2ν(dy)−

∫
Rd
|z|2η(dz) +W 2

2 (µ, η) (2.2)

where we used the variance-bias decomposition under the martingale kernel m for the third equality. Hence, if
(2.1) holds, then µ(dx)qm(x, dy) ∈ Πopt(µ, ν).

Let now µ(dx)k(x, dy) ∈ Πopt(µ, ν), T (x) =
∫
Rd yk(x,dy) and η = T #µ. Jensen’s inequality immediately

gives η ≤cx ν and thus η ∈ P2(Rd). We have

W 2
2 (µ, ν) =

∫
Rd

∫
Rd
|y − T (x) + T (x)− x|2µ(dx)k(x,dy)

=

∫
Rd

∫
Rd
|y − T (x)|2µ(dx)k(x, dy) +

∫
Rd
|T (x)− x|2µ(dx)

=

∫
Rd

∫
Rd

(|y|2 − |T (x)|2)µ(dx)k(x,dy) +

∫
Rd
|T (x)− x|2µ(dx)

=

∫
Rd
|y|2ν(dy)−

∫
Rd
|z|2η(dz) +

∫
Rd
|T (x)− x|2µ(dx),

where we used the variance-bias decomposition with respect to k(x, .) for the second equality. With (2.2), we
deduce that

∫
Rd |T (x)− x|2µ(dx) ≤W 2

2 (µ, η) and T is a W2-optimal transport map between µ and η.
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For µ, ν ∈ P2(Rd), let us define the sets

Iνµ = {η ∈ P2(Rd) : η ≤cx ν and W 2
2 (µ, ν) = W 2

2 (µ, η) +

∫
Rd
|y|2ν(dy)−

∫
Rd
|z|2η(dz)},

Ĩνµ =

{
T #µ : ∃µ(dx)k(x,dy) ∈ Πopt(µ, ν), T (x) =

∫
Rd
yk(x,dy)

}
.

By Proposition 2.7, we have Ĩνµ ⊂ Iνµ and Ĩνµ 6= ∅ since Πopt(µ, ν) 6= ∅. Moreover, there exists an optimal

transport map between µ and any element of Ĩνµ . The measure T #µ associated with an optimal coupling in
Πopt(µ, ν) is possibly equal to ν, which always belongs to Iνµ .

Lemma 2.8. Let µ, ν ∈ P2(Rd). If η ∈ Iνµ, then for any η̃ such that η ≤cx η̃ ≤cx ν, η̃ ∈ Iνµ and η ∈ I η̃µ.

Moreover, Iνµ = {η ∈ P2(Rd) : ∃η̃ ∈ Ĩνµ , η̃ ≤cx η ≤cx ν}. Last, the set Iνµ is convex.

Proof. Let η ∈ Iνµ and η̃ be such that η ≤cx η̃ ≤cx ν. We have

W 2
2 (µ, ν) = W 2

2 (µ, η) +

∫
Rd
|y|2ν(dy)−

∫
Rd
|z̃|2η̃(dz̃) +

∫
Rd
|z̃|2η̃(dz̃)−

∫
Rd
|z|2η(dz). (2.3)

Now, we consider µ(dx)k(x, dz) ∈ Πopt(µ, η) and η(dz)m(z,dz̃) a martingale coupling between η and η̃. Then,
W 2

2 (µ, η̃) ≤
∫

(Rd)3
|z̃− z+ z−x|2µ(dx)k(x, dz)m(z,dz̃) = W 2

2 (µ, η) +
∫
Rd |z̃|

2η̃(dz̃)−
∫
Rd |z|

2η(dz). This inequal-

ity cannot be strict: otherwise, by combining an optimal coupling between µ and η̃ and a martingale coupling
between η̃ and ν, we would contradict (2.3). The equality gives η ∈ I η̃µ and η̃ ∈ Iνµ by using (2.3).

If η̃ ∈ Ĩνµ , since Ĩνµ ⊂ Iνµ , by the first statement, each probability measure η such that η̃ ≤cx η ≤cx ν

belongs to Iνµ . Hence {η ∈ P2(Rd) : ∃η̃ ∈ Ĩνµ , η̃ ≤cx η ≤cx ν} ⊂ Iνµ . On the other hand, for η ∈ Iνµ ,
µ(dx)q(x,dz) ∈ Πopt(µ, η) and a martingale coupling η(dz)m(z,dy) between η and ν, we have µ(dx)qm(x,dy) ∈
Πopt(µ, ν), by the second assertion in Proposition 2.7. Since, by the martingale property,

∫
Rd yqm(x, dy) =∫

Rd
∫
Rd ym(z,dy)q(x, dz) =

∫
Rd zq(x,dz) setting T (x) =

∫
Rd zq(x, dz), we have T #µ ∈ Ĩνµ , by the first assertion

in Proposition 2.7. Since T #µ ≤cx η, we conclude that Iνµ ⊂ {η ∈ P2(Rd) : ∃η̃ ∈ Ĩνµ , η̃ ≤cx η ≤cx ν}.
Last, let us consider η1, η2 ∈ Iνµ and λ ∈ (0, 1). Using a convex combination of couplings in Πopt(µ, η1) and

Πopt(µ, η2), we obtain that W 2
2 (µ, λη1 + (1 − λ)η2) ≤ λW 2

2 (µ, η1) + (1 − λ)W 2
2 (µ, η2). Since η1, η2 ∈ Iνµ , we

deduce that

W 2
2 (µ, ν) ≥W 2

2 (µ, λη1 + (1− λ)η2) +

∫
Rd
|y|2ν(dy)−

∫
Rd
|z|2(λη1 + (1− λ)η2)(dz).

Since λη1 + (1− λ)η2 ≤cx ν, there exists a martingale coupling between λη1 + (1− λ)η2 and ν. Composing it
with an element of Πopt(µ, λη1 + (1− λ)η2), we obtain a coupling between µ and ν which ensures that

W 2
2 (µ, ν) ≤W 2

2 (µ, λη1 + (1− λ)η2) +

∫
Rd
|y|2ν(dy)−

∫
Rd
|z|2(λη1 + (1− λ)η2)(dz).

Hence λη1 + (1− λ)η2 ∈ Iνµ .

In dimension d = 1, since Πopt(µ, ν) is a singleton, we can specify the sets Iνµ and Ĩνµ .

Proposition 2.9. Let µ, ν ∈ P2(R) and

T (x) =

∫ 1

0

F−1
ν (Fµ(x−) + u[Fµ(x)− Fµ(x−)])du. (2.4)
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We have Ĩνµ = {T #µ} and Iνµ = {η ∈ P2(R) : T #µ ≤cx η ≤cx ν}. Moreover, Πopt(µ, T #µ) = {(I1, T )#µ} and
there is a unique martingale coupling between T #µ and ν and it is W2-optimal.

Proof. By the second assertion in Lemma 2.8, the characterization of Iνµ easily follows from the one of Ĩνµ , which,

with the definition of Ĩνµ , the first statement in Proposition 2.7 and the uniqueness of the optimal coupling in
dimension d = 1, also implies that Πopt(µ, T #µ) = {(I1, T )#µ}. Let U,U ′ be two independent uniform random
variables on [0, 1]. We define

V = Fµ(F−1
µ (U)−) + U ′[Fµ(F−1

µ (U))− Fµ(F−1
µ (U)−)], (2.5)

and have by construction

F−1
µ (V ) = F−1

µ (U) a.s.. (2.6)

For u ∈ (0, 1), u ∈ [Fµ(x−), Fµ(x)] for some x ∈ R and

P(V ≤ u) = P(F−1
µ (U) < x) + P

(
F−1
µ (U) = x, U ′ ≤ u− Fµ(x−)

Fµ(x)− Fµ(x−)

)
= u

since U ′ is independent of U . Hence V is uniformly distributed on [0, 1]. According to Theorem 2.9 [16], the law
of (F−1

µ (V ), F−1
ν (V )) is the unique element of Πopt(µ, ν). From (2.5), we get E[F−1

ν (V )|U ] = T (F−1
µ (U)) and

by (2.6),

E[F−1
ν (V )|F−1

µ (V )] = E[E[F−1
ν (V )|U ]|F−1

µ (V )] = E[T (F−1
µ (V ))|F−1

µ (V )] = T (F−1
µ (V )).

Hence the single element of Ĩνµ is the law T #µ of T (F−1
µ (V )). Since T is nondecreasing, T (F−1

µ (V )) = F−1
T#µ(V )

a.s. and E[F−1
ν (V )|F−1

T#µ(V )] = F−1
T#µ(V ) a.s.. Hence the law of (F−1

T#µ(V ), F−1
ν (V )), which is the single ele-

ment of Πopt(T #µ, ν), is a martingale coupling. Since all the martingale couplings share the quadratic cost∫
R y

2ν(dy)−
∫
R(T (x))2µ(dx), each martingale coupling belongs to Πopt(T #µ, ν) and is therefore equal to the

previous one.

In dimension d = 1, there is a single element η ∈ Ĩνµ , a unique element in Πopt(µ, η) and the unique martingale
coupling between η and ν is W2-optimal. We now provide an example in dimension d = 2 where these properties
fail.

Example 2.10. Let µ = 1
2

(
δ(−1,0) + δ(1,0)

)
and ν = 1

2

(
δ(0,−1) + δ(0,1)

)
. Since |(0,−1) − (−1, 0)| =

|(0, 1) − (−1, 0)| = |(0,−1) − (1, 0)| = |(0, 1) − (1, 0)|, any coupling between µ and ν is W2-optimal.
The couplings write µ(dx)kp(x,dy) with kp((−1, 0),dy) =

(
pδ(0,−1) + (1− p)δ(0,1)

)
(dy) and kp((1, 0),dy) =(

(1− p)δ(0,−1) + pδ(0,1)

)
(dy) for p ∈ (0, 1). One has Tp((−1, 0)) = (0, 1 − 2p), Tp((1, 0)) = (0, 2p − 1), and

ηp = 1
2

(
δ(0,1−2p) + δ(0,2p−1)

)
. Any coupling between µ and ηp is W2-optimal and as soon as p 6= 1/2, there

is an optimal coupling different from (I2, Tp)#µ. Moreover, unless p ∈ {0, 1/2, 1}, the martingale coupling
between ηp and ν is not W2-optimal.

According to the next theorem, we can find elements η in Ĩνµ such that Πopt(µ, η) = {(Id, T )#µ} for some
measurable transport map T by minimizing over Iνµ the integral of a strictly convex function.

Theorem 2.11. Let µ, ν ∈ P2(Rd), φ : Rd → R be strictly convex such that
∫
Rd φ(y)ν(dy) < ∞ and Iνµ,φ :=

{η ∈ Iνµ :
∫
Rd φ(z)η(dz) = infη∈Iνµ

∫
Rd φ(z)η(dz)}. We have ∅ 6= Iνµ,φ ⊂ Ĩνµ and for each η ∈ Iνµ,φ, Πopt(µ, η) =

{(Id, T )#µ} for some measurable transport map T : Rd → Rd. Moreover, there is a single ηφ ∈ Iνµ,φ such that∫
Rd |z|

2ηφ(dz) = infη∈Iνµ,φ
∫
Rd |z|

2η(dz). Last, there is a single element η in Iνµ,|x|2 .
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This theorem permits to select extreme elements of Iνµ and provides the following characterization of the
existence of a minimal element for the convex order in this set.

Corollary 2.12. For µ, ν ∈ P2(Rd), there exists η0 ∈ P2(Rd) such that Iνµ = {η0 ≤cx η ≤cx ν} if and only if{
ηφ : φ : Rd → Rd strictly convex and such that

∫
Rd φ(y)ν(dy) <∞

}
= {η} and then η0 = η.

Let us show the corollary before proving the theorem.

Proof of Corollary 2.12. The necessary condition is obvious. Let us show that it is sufficient. It is enough
to check that for any φ : Rd → R convex such that ∃C < ∞, ∀x ∈ Rd, |φ(x)| ≤ C(1 + |x|), we have ∀η ∈
Iνµ ,
∫
Rd φ(x)η(dx) ≤

∫
Rd φ(x)η(dx) (see e.g. [1], Lem. A.1). For such a function φ and for ε > 0, φε(x) :=

φ(x) + ε|x|2 is strictly convex and, since ηφε = η, we have

∀η ∈ Iνµ ,
∫
Rd
φε(x)η(dx) ≤

∫
Rd
φε(x)η(dx).

We conclude by letting ε→ 0 using the dominated convergence theorem.

To prove Theorem 2.11, we will need the following Lemma

Lemma 2.13. Let ν be a probability measure on Rd such that
∫
Rd |y|ν(dy) < ∞ and φ : Rd → R a convex

function such that
∫
Rd φ(y)ν(dy) < ∞. Then the family of probability measures {φ#η : η ≤cx ν} is uniformly

integrable.

Proof of Lemma 2.13. Let us first suppose that φ is nonnegative. Let M ∈ (0,+∞), η ≤cx ν and m be a
martingale kernel such that

∫
x∈Rd η(dx)m(x,dy) = ν(dy). Using Jensen’s inequality for the first inequality and

the Markov inequality combined with η ≤cx ν for the third one, we obtain that∫
Rd
φ(x)1{φ(x)≥M}η(dx) ≤

∫
Rd

∫
Rd
φ(y)m(x, dy)1{φ(x)≥M}η(dx)

≤
∫
Rd×Rd

(
φ(y)1{φ(y)≥

√
M} +

√
M1{φ(x)≥M}

)
m(x,dy)η(dx)

=

∫
Rd
φ(y)1{φ(y)≥

√
M}ν(dy) +

√
M

∫
Rd

1{φ(x)≥M}η(dx)

≤
∫
Rd
φ(y)1{φ(y)≥

√
M}ν(dy) +

1√
M

∫
Rd
φ(y)ν(dy).

Hence limM→∞ supη≤cxν

∫
Rd φ(x)1{φ(x)≥M}η(dx) = 0. In particular, the family {|x|#η : η ≤cx ν} is uni-

formly integrable. When the sign of φ is not constant, we obtain a nonnegative convex function φ̃ such that∫
Rd φ̃(y)ν(dy) < ∞ by addition to φ of a suitable affine function ψ. The conclusion follows from the uniform

integrability of both the families {ψ#η : η ≤cx ν} and {φ̃#η : η ≤cx ν}.

Proof of Theorem 2.11. Let (ηn)n∈N be a sequence in Iνµ minimizing
∫
Rd φ(z)η(dz). For n ∈ N, let

µ(dx)qn(x, dz) ∈ Πopt(µ, ηn) and ηn(dz)mn(z,dy) be a martingale coupling between ηn and ν. By the sec-
ond part in Proposition 2.7, µ(dx)qnmn(x, dy) ∈ Πopt(µ, ν). Up to extracting a subsequence, we may suppose
that (µ(dx)qn(x, dz)mn(z,dy))n converges weakly to µ(dx)r∞(x,dz,dy) where µ(dx)

∫
z∈Rd r∞(x, dz,dy) ∈

Πopt(µ, ν). Let T∞(x) =
∫
Rd×Rd yr∞(x, dz,dy) and η∞ = T∞#µ. By the first part of Proposition 2.7, η∞ ∈ Ĩνµ .

Moreover, by the above weak convergence and the uniform integrability deduced from Lemma 2.13,∫
Rd×Rd×Rd

φ(z)µ(dx)r∞(x, dz,dy) = lim
n→∞

∫
Rd
φ(z)ηn(dz).
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Taking the limit n → ∞ in the equality
∫
Rd×Rd×Rd ϕ(x, z)(y − z)µ(dx)qn(x, dz)mn(z,dy) = 0, we obtain that∫

Rd×Rd×Rd ϕ(x, z)(y − z)µ(dx)r∞(x, dz,dy) = 0 for any continuous and bounded function ϕ : Rd × Rd → R.
Hence, for (X,Z, Y ) distributed according to µ(dx)r∞(x,dz,dy), Z = E[Y |(X,Z)] and T∞(X) = E[Y |X] =
E[E[Y |(X,Z)]|X] = E[Z|X]. By using Jensen inequality for the conditional expectation, we get

∫
Rd
φ(z)η∞(dz) ≤

∫
Rd×Rd×Rd

φ(z)µ(dx)r∞(x, dz,dy) = lim
n→∞

∫
Rd
φ(z)ηn(dz).

Thus, η∞ satisfies
∫
Rd φ(z)η∞(dz) = infη∈Iνµ

∫
Rd φ(z)η(dz). Hence Iνµ,φ 6= ∅.

Let η ∈ Iνµ,φ. We now check that η ∈ Ĩνµ and Πopt(µ, η) is a singleton. Let µ(dx)q(x, dz) ∈ Πopt(µ, η)
and η(dz)m(z,dy) be a martingale coupling between η and ν. By the second assertion in Proposition 2.7,
µ(dx)qm(x, dy) ∈ Πopt(µ, ν) and, by the first assertion, for T (x) =

∫
Rd yqm(x, dy), T #µ ∈ Ĩνµ . By the mar-

tingale property of m, T (x) =
∫
Rd zq(x,dz) so that T #µ ≤cx η. Since T #µ ∈ Iνµ and η ∈ Iνµ,φ implies that∫

Rd φ(z)T #µ(dz) ≥
∫
Rd φ(z)η(dz), we deduce with the strict convexity of φ that η = T #µ and µ(dx)q(x, dz) =

µ(dx)δT (x)(dz). Hence any coupling in Πopt(µ, η) is given by a map. By the second statement in Lemma 2.1,
we conclude that this set is a singleton.

By repeating the first argument with (φ, Iνµ) replaced by (|x|2, Iνµ,φ) , we obtain the existence of ηφ ∈ Iνµ such

that
∫
Rd |z|

2ηφ(dz) ≤ infη∈Iνµ,φ
∫
Rd |z|

2η(dz). Since the construction also reduces the integral of φ, ηφ ∈ Iνµ,φ.

Let us now check that if η̃ ∈ Iνµ,φ is such that
∫
Rd |z|

2η̃(dz) = infη∈Iνµ,φ
∫
Rd |z|

2η(dz), then η̃ = ηφ.

By the first statement, Πopt(µ, ηφ) = {(Id, Tφ)#µ} and Πopt(µ, η̃) = {(Id, T̃ )#µ} for measurable trans-

port maps Tφ and T̃ : Rd → Rd. One has
∫
Rd |z|

2η∞(dz) =
∫
Rd |z|

2η̃(dz) and therefore, since ηφ, η̃ ∈ Iνµ ,

W 2
2 (µ, ηφ) = W 2

2 (µ, η̃). Let now η̄ =
ηφ+η̃

2 . One has
∫
Rd |z|

2η̄(dz) =
∫
Rd |z|

2ηφ(dz) =
∫
Rd |z|

2η̃(dz). The cou-

pling µ(dx) 1
2

(
δTφ(x)(dz) + δT̃ (x)(dz)

)
between µ and η̄ implies that W 2

2 (µ, η̄) ≤ W 2
2 (µ, ηφ) = W 2

2 (µ, η̃). Since

ηφ ∈ Iνµ , we deduce that

W 2
2 (µ, ν) ≥W 2

2 (µ, η̄) +

∫
Rd
|y|2ν(dy)−

∫
Rd
|z|2η̄(dz).

Moreover, η̄ ≤cx ν and combining a coupling in Πopt(µ, η̄) with a martingale coupling between η̄ and ν, we deduce

that the previous inequality is an equality so that η̄ ∈ Iνµ and µ(dx) 1
2

(
δTφ(x)(dz) + δT̃ (x)(dz)

)
∈ Πopt(µ, η̄). As

ηφ, η̃ ∈ Iνµ,φ,
∫
Rd φ(z)η̄(dz) = infη∈Iνµ

∫
Rd φ(z)η(dz) and η̄ ∈ Iνµ,φ. By the first assertion, Πopt(µ, η̄) = {(Id, T̄ )#µ}

for some measurable transport map T : Rd → R. Therefore µ(dx) a.e., Tφ(x) = T̃ (x) and ηφ = η̃. For the choice
φ(x) = |x|2, we deduce that Iνµ,|x|2 is a singleton.

From the equalityW 2
2 (µ, ν) = W 2

2 (µ, η)+
∫
Rd |y|

2ν(dy)−
∫
Rd |z|

2η(dz) valid for η ∈ Iνµ , we see that minimizing∫
Rd |z|

2η(dz) over Iνµ is equivalent to minimizing W 2
2 (µ, η). Therefore the probability measure η can be seen as

the W2-projection of µ on the set Iνµ . It is in general different from the W2-projection µP(ν) of µ on the set
P(ν) := {η : η ≤cx ν}, which has been studied recently in dimension d = 1 by Gozlan et al. [13] and in general
dimension d by Alfonsi et al. [1] (who also give an explicit formula for the antiderivative of the quantile function
of this projection when d = 1), Alibert et al. [2], Gozlan and Juillet [12] and Backhoff-Veraguas et al. [5]. Notice
that since Iνµ ⊂ P(ν), one always has W2(µ, µP(ν)) ≤W2(µ, η).

Example 2.14. For µ and ν the respective uniform distributions on [0, 1] and [0, 2], we have Iνµ = {ν} and
thus η = ν. By using the characterization in Theorem 2.6 [1], we obtain that the W2-projection µP(ν) of µ on
the set P(ν) is the uniform distribution on [1/2, 3/2].
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The next example shows that the set{
ηφ : φ : Rd → Rd strictly convex and such that

∫
Rd
φ(y)ν(dy) <∞

}
may contain distinct elements.

Example 2.15. Let µ = 1
2 (δ(−1,0) + δ(1,0)) and ν = 1

4 (δ(−1,−1) + δ(0,−1) + δ(0,1) + δ(1,1)). Any optimal coupling

between µ and ν can be written as µ(dx)kp(x, dy) with kp((−1, 0),dy) = 1
2 (δ(−1,−1) +pδ(0,−1) +(1−p)δ(0,1))(dy)

and kp((1, 0),dy) = 1
2 (δ(1,1) + (1− p)δ(0,−1) + pδ(0,1))(dy) for p ∈ [0, 1]. One has Tp((−1, 0)) = (−1/2,−p) and

Tp((1, 0)) = (1/2, p). The measures ηp = 1
2 (δ(−1/2,−p) + δ(1/2,p)) are not comparable for the convex order since

for p 6= p′ there is no martingale coupling between ηp and ηp′ . Moreover, for each p ∈ [0, 1] the unique optimal
transport plan δ((−1,0),(−1/2,−p)) + δ((1,0),(1/2,p)) between µ and ηp is given by a map. For this example, η =

η0 = 1
2

(
δ(−1/2,0) + δ(1/2,0)

)
and ηp = ηφp , with φp(x) = x2

1 + (x2 − 2px1)2. The W2-optimal couplings between
η and ν can be written as η0(dz)kp(2z,dy) for p ∈ [0, 1] and in particular the unique martingale coupling
η0(dz)k0(2z,dy) is optimal.

The last example shows that, unlike in the previous one, the martingale couplings between η and ν are not
necessarily W2-optimal (even when Πopt(µ, ν) is a singleton).

Example 2.16. Let µ = 1
2

(
δ(−1,0) + δ(1,0)

)
, νa = 1

4

(
δ(−1,−1) + δ(−1,2a+1) + δ(1,−2a−1) + δ(1,1)

)
with a ∈ R.

The unique W2-optimal coupling between µ and νa is µ(dx)ka(x,dy) with ka((−1, 0),dy) = 1
2 (δ(−1,−1) +

δ(−1,2a+1))(dy) and ka((1, 0),dy) = 1
2 (δ(1,−2a−1) +δ(1,1))(dy) so that ηa = 1

2

(
δ(−1,a) + δ(1,−a)

)
. Since |(−1,−1)−

(−1, a)|2 − |(1, 1)− (−1, a)|2 = (a+ 1)2 − 4− (a− 1)2 = 4(a− 1), for a > 1,

W 2
2 (ηa, νa) =

1

2

(
(a+ 1)2 + 4 + (a− 1)2

)
< (a+ 1)2 =

1

2

(
3 + (2a+ 1)2

)
− (1 + a2)

=

∫
|y|2νa(dy)−

∫
|z|2ηa(dz),

so that the martingale coupling between ηa and νa is not W2-optimal.

3. Differentiability of the squared quadratic
Wasserstein distance

We now present the notion of differentiability introduced by Lions [15]. Let f : P2(Rd)→ R. We consider an
atomless probability space (Ω,A,P) and denote by L2(Ω,P;Rd) the set of Rd-valued square integrable random
variables on this space. The lift of the function f on L2(Ω,P;Rd) is the function F : L2(Ω,P;Rd)→ R such that

∀X ∈ L2(Ω,P;Rd), F (X) = f(L(X)),

where L(X) ∈ P2(Rd) is the probability distribution of X. The atomless property is equivalent to the existence
of a random variable U : Ω→ R uniformly distributed on [0, 1] (see e.g. [9], Prop. A.27). By the fundamental
Theorem of simulation (see e.g. Bouleau and Lépingle [6], Thm. A.3.1, p. 38), it ensures the existence on
(Ω,A,P) of a random variable distributed according to each probability measure on each Polish space, and in
particular of X : Ω→ Rd distributed according to µ, for each µ ∈ P2(Rd).

Definition 3.1. A function f : P2(Rd)→ R is L-differentiable at µ ∈ P2(Rd) if there exists X ∈ L2(Ω,P;Rd)
such that X ∼ µ and F is Fréchet differentiable at X.

Let f : P2(Rd) → R and F (X) = f(L(X)) for X ∈ L2(Ω,P;Rd). The Fréchet differentiability of F at X
amounts to the existence of a bounded linear operator DF

X : L2(Ω,P;Rd)→ R such that F (X + Y ) = F (X) +
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DF
X(Y ) + ‖Y ‖2εX(Y ), where εX(Y )→ 0 as ‖Y ‖2 → 0. By the Riesz representation theorem, there is a unique

DF (X) ∈ L2(Ω,P;Rd) such that ∀Y ∈ L2(Ω,P;Rd), DF
X(Y ) = E[DF (X).Y ], and we will call later on DF (X)

the Fréchet derivative of F at X. From Theorem 6.2 in [7], if f is L-differentiable at µ ∈ P2(Rd), then F is
Fréchet differentiable at X for all X ∈ L2(Ω,P;Rd) such that µ = L(X). Besides, the law of (X,DF (X)) does
not depend on X by Proposition 5.24 in [8]. According to Theorem 6.5 [7], under the additional continuous
differentiability assumption, the Fréchet derivative DF (X) is equal to g(X) for some measurable function g.
According to Corollary 3.22 [10], the continuous differentiability assumption is not needed. We will provide a
simple and direct proof of this result, see Lemma 3.4.

We now state the main result of this section that characterizes the differentiability of the square quadratic
Wasserstein distance. To do so, we first exhibit the lift of the Wasserstein distance. Let µ, ν ∈ P2(Rd). From the
atomless property, there exist random variables X ∼ µ and Y ∼ ν on (Ω,A,P). The dual formulation (see for
instance [18], Thm. 5.10)

W 2
2 (µ, ν) = sup

ψ∈L1(µ),ψ̃∈L1(ν):ψ(x)+ψ̃(y)≤|x−y|2
E
[
ψ(X) + ψ̃(Y )

]
=: W2

2(X,Y ) (3.1)

permits to lift W 2
2 to L2(Ω,P;Rd).

Theorem 3.2. For µ, ν ∈ P2(Rd), the mapping P2(Rd) 3 σ 7→W 2
2 (σ, ν) is L-differentiable at µ iff there exists

a measurable function T : Rd → Rd such that Πopt(µ, ν) = {(Id, T )#µ} and then the Fréchet derivative of the
function Z 7→W2

2(Z, Y ) at X ∼ µ is given by 2(X − T (X)).

Remark 3.3.

– In particular, since the only coupling π ∈ Πopt(ν, ν) is (Id, Id)#ν, P2(Rd) 3 σ 7→W 2
2 (σ, ν) is differentiable

at ν with a vanishing Fréchet derivative.
– According to Proposition 2.2, if ν is not a Dirac mass, then there is no µ ∈ P2(Rd) such that P2(Rd) 3
σ 7→W 2

2 (σ, ν) is differentiable in a neighbourhood of µ.

The L-differentiability is equivalent to the geometric differentiability ([10], Cor. 3.22). As explained in the
introduction, the sufficient condition in Theorem 3.2 can be deduced from this equivalence, Theorem 10.2.6 [4]
and Proposition 4.3 [3].

We are going to give a probabilistic proof of Theorem 3.2 by working with the L-differentiability. The two
following lemmas are needed: the first one is used to get the necessary condition while the second is used for
the sufficient condition. Their proofs are postponed after the proof of the theorem.

Lemma 3.4. Let F : L2(Ω,P;Rd) → R be law invariant. If F is Fréchet differentiable at X ∼ µ, then its
Fréchet derivative is equal to g(X) for some measurable function g ∈ L2(Rd, µ;Rd) and it is differentiable with
Fréchet derivative g(X̃) at each X̃ ∼ µ in L2(Ω,P;Rd).

Let us note that this result is also a consequence of the work by Gangbo and Tudorascu [10]. Here, we
provide an alternative simple probabilistic proof of this fact. Wu and Zhang ([19], Prop. 1) already gave a
different probabilistic proof when X is discrete.

Lemma 3.5. Let µ, ν ∈ P2(Rd) be such that there exists T : Rd → Rd measurable such that Πopt(µ, ν) =
{(Id, T )#µ}. Let also (µn)n be a sequence of elements of P2(Rd) converging weakly to µ and such
limn→∞W2(µn, ν) = W2(µ, ν). If (on a single probability space), X ∼ µ and for n ∈ N, (Xn, Yn) is such that

Xn ∼ µn, Yn ∼ ν, W 2
2 (µn, ν) = E

[
|Xn − Yn|2

]
and Xn

Pr−→ X as n→∞, then

lim
n→∞

E
[
|Xn −X|2 + |Yn − T (X)|2

]
= 0.

Remark 3.6. The fact that limn→∞ E
[
|Xn −X|2

]
= 0 implies that limn→∞W2(µn, µ) = 0.
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Proof of Theorem 3.2. Let us first assume Πopt(µ, ν) 6= {(Id, T )#µ}. The existence on the lifted probability
space of a random variable uniformly distributed on [0, 1] combined with [6] Theorem A.3.1 and Lemma 2.1
ensures the existence on this space of (X,Y ) with X ∼ µ, Y ∼ ν,W 2

2 (µ, ν) = E[|Y −X|2] and E[|Y −E[Y |X]|2] >
0. Let ξ = Y − E[Y |X]. One has E[ξ|X] = 0 a.s. so that for h : Rd → Rd measurable and such that h(X) is
square integrable,

E[h(X).ξ] = E[h(X).E[ξ|X]] = 0. (3.2)

On the other hand, denoting by µn the distribution of X + ξn where ξn = ξ
n , we have

W2
2(X + ξn, Y ) = W 2

2 (µn, ν) ≤ E[|X + ξn − Y |2] = E[|X − Y |2] +
2

n
E[(X − Y ).ξ] +

E[|ξ|2]

n2

= W 2
2 (µ, ν)− 2

n
E[Y.ξ] +

E[|ξ|2]

n2

= W2
2(X,Y )−

(
2

n
− 1

n2

)
E[|Y − E[Y |X]|2],

where we used (3.2) for the second equality and the definition of ξ for the third. If σ 7→ W 2
2 (σ, ν) were

L-differentiable at µ, then (3.2) combined with Lemma 3.4 would imply that, as n→∞,

W2
2(X + ξn, Y )−W2

2(X,Y ) = o(‖ξn‖2),

which does not hold since ‖ξn‖2 = E1/2[|Y−E[Y |X]|2]
n .

Now, we assume that Πopt(µ, ν) = {(Id, T )#µ} for some measurable transport map T : Rd → Rd. Let, on the
lifted probability space, X ∼ µ, Y ∼ ν and (ξn)n be a sequence of square integrable Rd-valued random vectors
such that ‖ξn‖2 := E1/2

[
|ξn|2

]
tends to 0 as n→∞. We denote by µn the law of X + ξn. Let Yn ∼ ν such that

W 2
2 (µn, ν) = E[|X + ξn − Yn|2] be defined on a possible enlargement of the lifted probability space. We have

W 2
2 (µn, ν) ≤ E[|X + ξn − T (X)|2] = E[|X − T (X)|2] + 2E[(X − T (X)).ξn] + E[|ξn|2]

= W 2
2 (µ, ν) + 2E[(X − T (X)).ξn] + E[|ξn|2].

On the other hand,

W 2
2 (µ, ν) ≤ E[|X − Yn|2] = E[|X + ξn − Yn|2]− 2E[(X − Yn).ξn]− E[|ξn|2]

= W 2
2 (µn, ν)− 2E[(X − T (X)).ξn]− E[|ξn|2] + 2E[(Yn − T (X)).ξn].

With Cauchy-Schwarz inequality, we deduce that

|W 2
2 (µn, ν)−W 2

2 (µ, ν)− 2E[(X − T (X)).ξn]| ≤ ‖ξn‖2 (‖ξn‖2 + ‖Yn − T (X)‖2) .

Note that from (3.1) the left-hand side is equal to |W2
2(X + ξn, Y ) −W2

2(X,Y ) − 2E[(X − T (X)).ξn]| and is
thus well defined on the original lifted probability space, as required by the definition of the Lions derivative.
Now, Lemma 3.5 applied with Xn = X + ξn ensures that limn→∞ ‖Yn − T (X)‖2 = 0 so that σ 7→ W 2

2 (σ, ν) is
L-differentiable at µ with ∂µW

2
2 (µ, ν)(x) = 2(x− T (x)).

Proof of Lemma 3.4. By the fundamental theorem of simulation (see e.g. Bouleau and Lépingle [6], Thm. A.3.1,
p. 38), since the lifted probability space supports a random variable with uniform distribution on [0, 1], it
also supports a couple (X̃, U) with X̃ ∼ µ and U an independent random variable uniformly distributed
on [0, 1]. Since F is Fréchet differentiable at X ∼ µ, by Theorem 6.2 [7] it is also Fréchet differentiable at
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X̃. Let for i ∈ {1, . . . , d}, DF (X̃)i denote the ith coordinate of DF (X̃) and Pi(x,dz,du) with respective
marginals Qi(x, dz) and Ri(x, du) denote a regular version of the conditional law of (DF (X̃)i, U) given X̃ = x.
Let gi(x) = inf{z ∈ R : Qi(x, (−∞, z]) ≥ 1/2} be the median of Qi(x, dz). Notice that, by property of the
median, E[|DF (X̃)i − gi(X̃)||X̃] ≤ E[|DF (X̃)i − E[DF (X̃)i|X̃]||X̃] so that

E[|gi(X̃)|] ≤ E[|DF (X̃)i|] + E[|DF (X̃)i − gi(X̃)|]
≤ E[|DF (X̃)i|] + E[|DF (X̃)i − E[DF (X̃)i|X̃]|] <∞.

Let

v±i (x) = inf{u ∈ [0, 1] : Pi(x, {gi(x)} × [0, u]) ≥ (Qi(x, (−∞, gi(x)))−Qi(x, (gi(x),+∞)))±}.

By independence of X̃ and U , there is a Borel subset A of Rd with µ(A) = 0 such that for x /∈ A, Ri(x,du) is
the Lebesgue measure on [0, 1]. Since

Qi(x, (−∞, gi(x))) ∨Qi(x, (gi(x),+∞)) ≤ 1

2
≤ Qi(x, (−∞, gi(x))) ∧Qi(x, (gi(x),+∞)) +Qi(x, {gi(x)}),

for x /∈ A, Pi(x, {gi(x)} × [0, v±i (x)]) = (Qi(x, (−∞, gi(x)))−Qi(x, (gi(x),+∞)))±.
The random variables ξi+ = 1{DF (X̃)i>gi(X̃)} + 1{DF (X̃)i=gi(X̃),U≤v+i (X̃)} and ξi− = 1{DF (X̃)i<gi(X̃)} +

1{DF (X̃)i=gi(X̃),U≤v−i (X̃)} are such that (X̃, ξi+) and (X̃, ξi−) have the same distribution: indeed, condition-

ally on X̃ = x, these are Bernoulli random variables of parameter Qi(x, (−∞, gi(x))) ∨ Qi(x, (gi(x),+∞)).
Therefore E[gi(X̃)ξi+] = E[gi(X̃)ξi−] and, denoting by ei the ith vector of the canonical basis of Rd, for each

ε ∈ [0, 1], X̃ + εξi+ei and X̃ + εξi−ei have the same distribution so that F (X̃ + εξi+ei) = F (X̃ + εξi−ei). Hence

E(ξi+DF (X̃)i) = E(ξi−DF (X̃)i). We deduce that

0 = E[(DF (X̃)i − gi(X̃))(ξi+ − ξi−)] = E[|DF (X̃)i − gi(X̃)|]

and conclude that P
(
DF (X̃) = g(X̃)

)
= 1. Proposition 5.24 [8] ensures that the couples (X,DF (X)) and

(X̃,DF (X̃)) share the same distribution and therefore P (DF (X) = g(X)) = 1.

Proof of Lemma 3.5. Let ηn and ηn34 respectively denote the distributions of (X,T (X), Xn, Yn) and (Xn, Yn).
Since (µn)n converges weakly to µ, this sequence is tight and we deduce that (ηn)n is tight. Let us consider a
subsequence weakly converging to η∞ and that we still index by n for notational simplicity. From the convergence

Xn
Pr−→ X as n→∞, we deduce that (X,T (X), Xn)

Pr−→ (X,T (X), X). Hence the marginal η∞123 of the triplet
of the three first coordinates under η∞ is η∞123 = (Id, T, Id)#µ. Next, the marginal η∞34 of the couple of the two
last coordinates is a coupling between µ and ν such that

∫
Rd×Rd |x − y|

2η∞34(dx, dy) ≤ lim infn→∞
∫
Rd×Rd |x −

y|2ηn34(dx, dy). Since
∫
Rd×Rd |x− y|

2ηn34(dx, dy) = E
[
|Xn − Yn|2

]
= W 2

2 (µn, ν) converges to W2(µ, ν) as n→∞,

η∞34 ∈ Πopt(µ, ν). Therefore η∞34 = (Id, T )#µ and µ(dw) a.e. the conditional law of the fourth coordinate given
that the third is equal to w is δT (w)(dz). Since under η∞123 the two first coordinates are a function of the third
one, this is also the conditional law of the fourth coordinate given that the three first coordinates are equal
to (w, T (w), w). Hence η∞(dx, dy,dw,dz) = µ(dw)δ(w,T (w))(dx, dy)δT (w)(dz) so that η∞ = (Id, T, Id, T )#µ.
Since the weak limit does not depend on the subsequence, the whole sequence (ηn)n converges weakly to
(Id, T, Id, T )#µ.

Since |Yn − T (X)| ≤ 2|Yn|1{|Yn|≥|T (X)|} + 2|T (X)|1{|Yn|<|T (X)|}, for m > 0, we have

|Yn − T (X)|21{|Yn−T (X)|≥m} ≤ 4|Yn|21{|Yn|≥m/2} + 4|T (X)|21{|T (X)≥m/2}.
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Hence

E
[
|Yn − T (X)|21{|Yn−T (X)|≥m}

]
≤ 8

∫
Rd
|x|21{|x|≥m/2}ν(dx)

which provides the uniform integrability needed to conclude that limn→∞ E
[
|Yn − T (X)|2

]
= 0. The convergence

of E
[
|Xn − Yn|2

]
= W 2

2 (µn, ν) to W 2
2 (µ, ν) = E

[
|X − T (X)|2

]
as n → ∞ together with the convergence in

probability of (Xn, Yn) to (X,T (X)) implies that

lim
n→∞

E
[
||X − T (X)|2 − |Xn − Yn|2|

]
= 0

and therefore that the random variables (|Xn−Yn|2)n are uniformly integrable. From the inequality |Xn−X|2 ≤
3(|Xn−Yn|2 + |Yn|2 + |X|2) and the convergence of (Yn)n to T (X) in quadratic mean, we deduce that the random
variables (|Xn−X|2)n are uniformly integrable. With the convergence in probability of (Xn)n to X, we conclude
that limn→∞ E

[
|Xn −X|2

]
= 0.

Lemma 3.4 is also useful to check that the notion of L-differentiability does not depend on the choice of the
atomless lifted probability space (Ω,A,P). We will say that a function f : P2(Rd) → R is LΩ-differentiable at
µ ∈ P2(Rd) if there exists X ∈ L2(Ω,P;Rd) such that µ = L(X) and FΩ(X) = f(L(X)) is Fréchet differentiable
at X. The function FΩ is called the lift of f on the probability space (Ω,A,P).

Proposition 3.7. Let (Ω,A,P) and (Ω̃, Ã, P̃) be two atomless probability spaces. The function f : P2(Rd)→ R
is LΩ-differentiable at µ ∈ P2(Rd) iff it is LΩ̃-differentiable at µ.

Proof. By symmetry, it is enough to prove that the LΩ-differentiability implies the LΩ̃-differentiability and the
Fréchet derivatives are given by the same function in L2(Rd, µ;Rd). Let us assume that f is LΩ-differentiable at
µ. The atomless property and the fundamental theorem of simulation ensure the existence on the original lifted
space (Ω,A,P) of random variables (U,X) such that U is uniformly distributed on [0, 1] and independent from
X ∼ µ. Then, FΩ is Fréchet differentiable at X and there exists a measurable function g ∈ L2(Rd, µ;Rd) such
that DFΩ(X) = g(X) by Lemma 3.4. We consider FΩ̃ : L2(Ω̃, P̃;Rd)→ R the lift of f on an atomless probability

space (Ω̃, Ã, P̃) and X̃ ∼ µ under P̃. Let Ỹ ∈ L2(Ω̃, P̃;Rd) and R(x, dy) denote a regular version of the conditional
law of Ỹ given X̃ = x. By Lemma 2.22 [14], there exists a measurable function ρ : Rd × [0, 1]→ Rd such that
for all x ∈ Rd, ρ(x, U) is distributed according to R(x,dy). Then, Y = ρ(X,U) is such that (X,Y ) has the same
law under P as (X̃, Ỹ ) under P̃, and therefore Y ∈ L2(Ω,P;Rd). We then have

FΩ̃(X̃ + Ỹ )− FΩ̃(X)− Ẽ[g(X̃).Ỹ ] = FΩ(X + Y )− FΩ(X)− E[g(X).Y ]

= FΩ(X + Y )− FΩ(X)− E[DFΩ(X).Y ].

With E[|Y |2] = Ẽ[|Ỹ |2], we deduce that the Fréchet differentiability of FΩ at X implies the Fréchet
differentiability of FΩ̃ at X̃ and DFΩ̃[X̃] = g(X̃).

By considering the atomless probability space (Bd,B(Bd),Leb) where Bd the ball centered at the origin
of unit volume in Rd endowed with the Borel sets and the Lebesgue measure, Gangbo and Tudorascu ([10],
Cor. 3.22) have proved the equivalence between the LBd -differentiability (and therefore the L-differentiability)
and the geometric differentiability, as well as the relation between the two derivatives.

As pointed by one of the referees, one can also deduce Proposition 3.7 from Corollary 3.22 [10] by Gangbo
and Tudorascu: f is geometrically differentiable at µ if, and only if, FBd is Fréchet differentiable at any X ∼ µ,
and in this case we have DFBd(X) = ∇µf(X), where ∇µf : Rd → Rd is the Wasserstein gradient of f at µ.
Let (Ω,A,P) be an atomless probability space and FΩ denote the corresponding lift of f . Then, there exists an
almost isomorphism i : Bd → Ω that pushes forward the Lebesgue measure to P. We have FBd(X ◦ i) = FΩ(X)
for X ∈ L2(Ω,P;Rd). If X ∼ µ, then X ◦ i ∼ µ and one easily deduces that FΩ is Fréchet differentiable at X with
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DFΩ(X) = DFBd(X ◦ i) ◦ i−1 = ∇µf(X ◦ i) ◦ i−1 = ∇µf(X). In a symmetric way, if FΩ is Fréchet differentiable
at X ∼ µ, then FBd is Fréchet differentiable at X ◦ i and DFBd(X ◦ i) = DFΩ(X) ◦ i = ∇µf(X ◦ i), so that
DFΩ(X) = ∇µf(X).

Acknowledgements. We thank Pierre Cardaliaguet for pointing out the reference [10] to us.
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