
SQUARES : A SQL Synthesizer Using
Query Reverse Engineering

Pedro Orvalho
INESC-ID, Lisboa, Portugal
pmorvalho@sat.inesc-id.pt

Miguel Terra-Neves
OutSystems, Lisboa, Portugal
miguel.neves@outsystems.com

Miguel Ventura
OutSystems, Lisboa, Portugal
miguel.ventura@outsystems.com

Ruben Martins
CMU, Pittsburgh, USA
rubenm@cs.cmu.edu

Vasco Manquinho
INESC-ID, IST - Universidade

de Lisboa, Portugal
vmm@sat.inesc-id.pt

ABSTRACT
Nowadays, many data analysts are domain experts, but they
lack programming skills. As a result, many of them can
provide examples of data transformations but are unable to
produce the desired query. Hence, there is an increasing
need for systems capable of solving the problem of Query
Reverse Engineering (QRE). Given a database and output
table, these systems have to find the query that generated
this table. We present SQUARES, a program synthesis tool
based on input-output examples that can help data analysts
to extract and transform data by synthesizing SQL queries,
and table manipulation programs using the R language.

PVLDB Reference Format:
Pedro Orvalho, Miguel Terra-Neves, Miguel Ventura, Ruben Mar-
tins and Vasco Manquinho. SQUARES : A SQL Synthesizer
Using Query Reverse Engineering. PVLDB, 13(12): 2853-2856,
2020.
DOI: https://doi.org/10.14778/3415478.3415492

1. INTRODUCTION
Due to the Big Data revolution, many people with ex-

pertise in their respective domains have become data an-
alysts. As a result, there is a growing population of non-
expert database end-users that have limited programming
knowledge [18]. Although most users know how to make a
description of what they want or what the task should do,
sometimes they do not know how to express it in a query
language, such as SQL. On that account, many systems
were proposed in order to help end-users query a relational
database [13, 18]. This area of Program Synthesis became
known as Query Synthesis, where the goal is to automati-
cally generate the query desired by the user [13].

The user’s intent can be specified using different approa-
ches such as input-output examples [13, 17] or a natural

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415492

language description [16]. In both approaches, the user pro-
vides an input database. However, in the first approach, the
user also provides the desired query’s output table, while in
the second the user provides a query description in natural
language. Query Synthesis from input-output examples is
also known as Query Reverse Engineering (QRE) where the
user provides a database D with schema graph G and an
output table Q(D), which is the result of running some un-
known query Q on D. Given the pair (G,Q(D)), the goal of
QRE is to produce the query Q whose result is Q(D).

Nowadays, not knowing which SQL query generated some
table can easily happen, due to changes in the software or
just by changing the data analyst. Furthermore, consider
that a data analyst wrote a query in SQL, but she is unaware
whether there exists a similar query that produces the same
result with lower complexity regarding the number of table
joins and conditions. If a QRE system searches for a query
in a growing number of table joins and conditions, it can
return the query that is consistent with the output table
and has the lowest complexity possible [17]. Finally, we
note that QRE is not specific to SQL and other languages
can be used such as SPARQL [1]. Moreover, other program
synthesis tools have been developed for table manipulation
using the R language [3].

This paper presents SQUARES, a new program synthesis
tool based on input-output examples that is able to synthe-
size SQL queries, as well as table manipulation operations
using the R language. We start by providing a general de-
scription of the tool in Section 2. Next, Section 3 demon-
strates how to use our framework. Section 4 briefly reviews
related systems and the paper concludes in Section 5.

2. SQUARES
SQUARES, A SQL Synthesizer Using Query Reverse En-

gineering, is a new enumeration-based programming by ex-
ample system developed on top of a state-of-the-art syn-
thesis framework, Trinity [6]. SQUARES is implemented in
Python and uses the Z3 SMT solver [2] to check the satisfi-
ability of constraints generated by the program enumerator.

Figure 1 illustrates the architecture of SQUARES. As other
synthesis tools, SQUARES receives as input a set of input-
output examples and its architecture can be divided into
two main components: enumerator and decider. Given a
Domain-Specific Language (DSL, see Figure 2), the enumer-
ator is responsible for enumerating all possible programs up

2853

Domain-Specific
Language

Desired
Program

SQUARES

Enumerator Decider

Candidate Program

Reason for Failure

Passed

Input-Output
Tables

Figure 1: Architecture of SQUARES

table → input | inner join(table, table) |
inner join3(table, table, table) |
inner join4(table, table, table, table) |
filter(table, filterCondition) |
filters(table, filterCondition,
filterCondition, op) |
summariseGrouped(table,
summariseCondition, Cols) |
anti join(table, table) | left join(table, table)
bind rows(table, table) | intersect(table, table)

tableSelect → select(table, selectCols, distinct)
op → Or | And
distinct → true | false

Figure 2: Domain-Specific Language of SQUARES.

to a given number of operations. Each production rule in our
DSL has a direct translation to the R language 1 [7]. SQUA-
RES’ DSL uses four distinct types: table, tableSelect, op and
distinct. The input’s type is table and the output’s type is
tableSelect. Regarding the variety of production rules, we
use the basic operations offered by R’s dplyr 2 library (e.g.
inner join, filter, summarise, left join). The termi-
nal symbols belonging to filterCondition, summariseCondi-
tion, Cols, selectCols (Figure 2), are computed on the fly
because they differ with the input-output examples, as well
as, the number of input tables. Currently, our DSL already
supports a considerable portion of SQL [7], however, the
DSL could be further extended in order to synthesize more
complex queries i.e., queries with other SQL operators.

For each program P, the decider checks if P satisfies the
input-output examples provided by the user. Let PR de-
note the translation of program P to R. The enumerator
executes PR on the input examples and the decider com-
pares if the output matches the expected one. If the output
of PR does not match, the decider produces a reason for
failure. As in Neo [3], the enumerator prunes all equiva-
lent unfeasible programs from the search space. Afterwards,
the next candidate program is enumerated. Otherwise, if
the output of PR matches the expected one, the synthesizer
translates PR to SQL and returns both the SQL query and
the R program. Note that each production rule in R (e.g.
anti join) can be easily translated into several operators
in SQL3 (e.g. anti join → SELECT . . . FROM. . . WHERE NOT

EXISTS . . .). Therefore, we can generate programs with
more SQL productions rules if we use a DSL for R and then
translate the desired program to SQL, instead of generating
a program directly from a SQL grammar.

1https://www.r-project.org
2https://cran.r-project.org/web/packages/dplyr/
vignettes/dplyr.html
3https://dbplyr.tidyverse.org/articles/
sql-translation.html

Input Output
Id Grade Id
101 8 102
102 11 103
103 15 105
104 7 106
105 18
106 10

Figure 3: Input table: Students’ ids and grades.
Output table: id of students whose grade is positive
(grade >= 10).

Trinity [6] by default uses tree-based enumeration to search
for programs. The number of nodes used by Trinity’s en-
coding grows exponentially with the number of production
rules in a program. Therefore, SQUARES uses a new line-
based encoding [10], that scales better than the tree-based
approach. The interested reader is referred to the litera-
ture [7, 10] for more details about SQUARES’ encoding.

SQUARES starts by searching for programs with one pro-
duction rule and iteratively increases this bound until a
program that satisfies all input-output examples is found.
Therefore, SQUARES returns the first and also the smallest
query in terms of SQL production rules that is consistent
with the input-output examples provided by the user.

As most of the Programming-By-Example state-of-the-art
synthesizers [3, 4, 6], SQUARES takes as input a set of ex-
amples and any constants or aggregate functions (e.g., sum,
mean) that the query may need. Overall, the user can pro-
vide four types of information: input-output examples, con-
stants, aggregates and attributes. This knowledge is useful
to express the user intent and to guide the search through
the program space.

• Input-Output Examples. The user specifies the input
tables and the output table. The input and output
examples are mandatory.
• Constants (Optional). The user can also provide con-

stants to be used in the program. Note that only con-
stants provided by the user will be considered when
enumerating programs in SQUARES.
• Aggregates (Optional). The user can provide the name

of aggregate functions that might appear in the de-
sired program. Aggregates function such as max, min,

count (n), mean, like.
• Attributes (Optional). When the user specifies a con-

stant or an aggregate, she needs to specify which at-
tribute is supposed to be compared against the con-
stant or used in the aggregate function. This way, the
synthesizer can generate valid conditions that use the
constants and aggregates provided by the user.

The user can provide this information to our framework
and run SQUARES in three different environments:

• with a Python script (locally),
• using Jupyter notebooks (locally),
• through Google Colab (online).

To an experienced programmer, the best way to use
SQUARES is to download it from GitHub 4 and run it us-
ing Python. In this environment, the user can easily provide

4https://github.com/squares-sql/squares

2854

https://www.r-project.org
https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html
https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html
https://dbplyr.tidyverse.org/articles/sql-translation.html
https://dbplyr.tidyverse.org/articles/sql-translation.html
https://github.com/squares-sql/squares

Class Faculty Student Output
C name F key F key F name S key S name Level n
Potions f1 f1 Snape S1 Harry JR 2
Charms f2 f2 Flitwick S2 George SR

Dark Arts f1 f3 Sprout S3 Ron JR
Herbology f3 f4 McGonagall S4 Fred SR

Transfiguration f4 S5 Hermione JR

Enrolled
S key S1 S2 S3 S3 S4 S4 S5

C name Potions Potions Charms Transfiguration Charms Herbology Dark Arts

Figure 4: Four input tables: Class, Enrolled, Faculty and Student. One output table.

large input-output examples (tables) in the form of text files
(.csv). In contrast, when using Jupyter notebooks or Google
Colab, the user needs to write these tables as strings. Hence,
these environments are more suited for small examples.

The Jupyter notebook and Google Colab environments
are similar to use. The main difference is that the user
has to install every dependency locally to run the Jupyter
notebook. On the other hand, in Google Colab, all depen-
dencies are automatically installed whenever a new session
is started. In the next section, we focus on using SQUARES
with Jupyter notebooks, as we did in the available video
demonstration [8]. Nevertheless, the interface in Google Co-
lab is analogous.

3. DEMONSTRATIONS
This section provides two useful demonstrations of SQUA-

RES. Using a Jupyter notebook, a non-programmer user can
synthesize the desired SQL query and/or an R program by
following the instructions provided in the console.

Demonstration 1. Consider the scenario where a professor
graded an exam with scores ranging from 0 to 20. 5 She
does this every year and wants to know which students have
grades greater than or equal to 10. To generate the de-
sired query, she provides information from the previous year
to SQUARES. In particular, she provides an input-output
example with a table containing all the student’s identifi-
cation and respective grades (input table, Figure 3) and an
output table containing the identifiers of students with pos-
itive grades (output table in Figure 3). To reinforce the user
intent and to aid the program synthesizer, she can think of
one constant (10) and one attribute (grade) as possibilities
to be included in the query. Hence, giving this information
to SQUARES the query generated using our DSL would be:

select(filter(input , grade >= 10),id,true)

Translating from our DSL to R, SQUARES generates the
following R query:

df1 <- input %>% filter(grade >= 10)

df2 <- df1 %>% select(id) %>% distinct ()

The following SQL program is translated from the previ-
ous R query:

SELECT DISTINCT ‘id‘

FROM ‘input ‘

WHERE (‘grade ‘ >= 10.0)

5http://sat.inesc-id.pt/~pmorvalho/squares-vldb-1

Demonstration 2. We chose a more complex example to
explain our framework’s capabilities 6. The following exam-
ple is inspired by exercise 5.1.1 from a classic textbook on
databases [11]. Consider the following four tables: Student,
Class, Faculty and Enrolled. With schema: Student(S key:
integer, S name: string, level: string),Class(C name: string,
F key: integer),Faculty(F key: integer, F name: string),
Enrolled(S key: integer, C name: string). These tables are
presented in Figure 4. Now, imagine a user wants to count
(COUNT()) how many Juniors (Level = "JR") are enrolled
in a class taught by Professor Snape (F name = "Snape").
First, the user should write these tables, input and output,
as strings and provide them to SQUARES. Afterwards, the
user should consider which hints (constants, aggregates, and
attributes (see Section 2)) to be provided to SQUARES.
Constants. The user desires to know how many Juniors
("JR") are enrolled in a class taught by Professor Snape
("Snape"). Therefore, she can think of two constants ("JR"
and "Snape") that may be used and introduce them in the
Jupyter notebook as const="JR, Snape".
Aggregates. Since the user wants to know how many stu-
dents are enrolled in Professor Snape’s class, she should pro-
vide the COUNT operator to SQUARES. In this case, the user
should write "n" to count the number of students in the field
that corresponds to SQUARES’ aggregates. The user only
needs to indicate which SQL operators she thinks might be
included in the desired program (e.g. MAX, MIN, AVG,
SUM, LIKE, CONCAT or COUNT).
Attributes. In terms of attributes, the user should provide an
attribute for each constant and aggregate provided. Hence,
in this case, the user should provide three attributes: Fac-
ulty name F name (to be compared with constant "Snape"),
Level (to be compared with "JR") and student identifier
S key (to be counted).

After introducing all this information the user should run
the Jupyter notebook. After only a few seconds, SQUARES
returns the desired query both in SQL and R. The following
queries (R and SQL) are the ones produced by SQUARES.

df1 <- inner_join(inner_join(

inner_join(Faculty , Class),

Enrolled), Student)

df2 <- df1 %>% group_by(F_name , level)

%>% summarise(n = n())

df3 <- df2 %>% filter(F_name == "Snape"

& Level == "JR")

df4 <- df3 %>% select(n)

6http://sat.inesc-id.pt/~pmorvalho/squares-vldb-2

2855

http://sat.inesc-id.pt/~pmorvalho/squares-vldb-1
http://sat.inesc-id.pt/~pmorvalho/squares-vldb-2

SELECT ‘n‘

FROM

(SELECT ‘F_name ‘, ‘Level ‘,

COUNT() AS ‘n‘

FROM

(SELECT *

FROM

(SELECT *

FROM

(SELECT *

FROM ‘Faculty ‘

INNER JOIN ‘Class ‘)

INNER JOIN ‘Enrolled ‘)

INNER JOIN ‘Student ‘)

GROUP BY ‘F_name ‘, ‘Level ‘)

WHERE (‘F_name ‘ = ’Snape’

AND ‘level ‘ = ’JR’)

4. RELATED SYSTEMS
Query Reverse Engineering has numerous applications like

database usability, data analysis, and data security [13]. In
the last decade, several systems were developed trying to
solve QRE. TALOS [13], STAR [17] and FastQRE [5] are
frameworks specialized in generating Select-Project-Join
queries. The focus of SQLSynthesizer [18] and REGAL [12]
is to generate more complex queries with aggregates. Mor-
pheus [4] was originally designed for table transformations
in R and has limited support for SQL queries. Neo [3] and
Trinity [6] also perform an enumeration-based search of pos-
sible queries, they use a tree-based encoding to enumerate
programs, which grows exponentially with the number of
production rules used in a query [10].

Scythe [15, 14] is a state-of-the-art SQL synthesizer and
has good performance for queries using small tables but has
issues with memory usage when using larger tables. We
compared SQUARES against Scythe, on several QRE in-
stances from a classic database textbook [11] and observed
that SQUARES has similar performance on small examples
(both solved 19 out of 28 instances) [7]. However, when
considering QRE instances from real-world queries from a
low-code programming framework, tables with millions of
entries, SQUARES solved 20 out of 20 instances whereas
Scythe was only able to solve 2 instances [7]. The main rea-
son for SQUARES’ performance is that our approach, unlike
Scythe, is independent of the size of the input-output tables.

5. CONCLUSION
In the last few years, companies have collected massive

amounts of data. As a result, domain experts with little
programming skills have become responsible for performing
data analysis. Hence, a good and scalable Query Reverse
Engineering (QRE) system is more important than ever to
improve their productivity.

In this paper, we presented SQUARES, a novel open-source
enumeration-based synthesizer for SQL and R. SQUARES
can be used in three different ways: using Python (locally),
Jupyter notebooks (locally) or Google Colab (online). To
see SQUARES in action, we refer the reader to our demon-
stration video at YouTube [9] and to SQUARES’ website [8],
where the user can find links to examples of Query Reverse
Engineering problems on Google Colab.

6. ACKNOWLEDGMENTS
This work was partially supported by NSF award number

CCF-1762363 and national portuguese funds through FCT,
under projects UIDB/50021/2020, DSAIPA/AI/0044/2018
and project ANI 045917 financed by FEDER and FCT.

7. REFERENCES
[1] E. Abramovitz, D. Deutch, and A. Gilad. Interactive

inference of SPARQL queries using provenance. In
ICDE, pages 581–592, 2018.

[2] L. M. de Moura and N. Bjørner. Z3: an efficient SMT
solver. In TACAS, pages 337–340, 2008.

[3] Y. Feng, R. Martins, O. Bastani, and I. Dillig.
Program synthesis using conflict-driven learning. In
PLDI, pages 420–435, 2018.

[4] Y. Feng, R. Martins, J. V. Geffen, I. Dillig, and
S. Chaudhuri. Component-based synthesis of table
consolidation and transformation tasks from examples.
In PLDI, pages 422–436, 2017.

[5] D. V. Kalashnikov, L. V. S. Lakshmanan, and
D. Srivastava. Fastqre: Fast query reverse engineering.
In SIGMOD, pages 337–350, 2018.

[6] R. Martins, J. Chen, Y. Chen, Y. Feng, and I. Dillig.
Trinity: An extensible synthesis framework for data
science. PVLDB, 12(12):1914–1917, 2019.

[7] P. Orvalho. SQUARES : A SQL Synthesizer Using
Query Reverse Engineering. Master’s thesis, Instituto
Superior Técnico, Lisboa, Portugal, 2019.

[8] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins,
and V. Manquinho. SQUARES video demonstration.
https://www.youtube.com/watch?v=ZJQcoWw-l14.
Accessed: 2020-03-22.

[9] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins,
and V. Manquinho. SQUARES webpage.
https://squares-sql.github.io/. Accessed:
2020-03-22.

[10] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins,
and V. M. Manquinho. Encodings for
enumeration-based program synthesis. In CP, pages
583–599, 2019.

[11] R. Ramakrishnan and J. Gehrke. Database
management systems (3. ed.). McGraw-Hill, 2003.

[12] W. C. Tan, M. Zhang, H. Elmeleegy, and
D. Srivastava. Reverse engineering aggregation
queries. PVLDB, 10(11):1394–1405, 2017.

[13] Q. T. Tran, C. Y. Chan, and S. Parthasarathy. Query
reverse engineering. PVLDB, 23(5):721–746, 2014.

[14] C. Wang, A. Cheung, and R. Bod́ık. Interactive query
synthesis from input-output examples. In SIGMOD,
pages 1631–1634, 2017.

[15] C. Wang, A. Cheung, and R. Bod́ık. Synthesizing
highly expressive SQL queries from input-output
examples. In PLDI, pages 452–466, 2017.

[16] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig.
Sqlizer: query synthesis from natural language.
PACMPL, 1(OOPSLA):63:1–63:26, 2017.

[17] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join
queries. In SIGMOD, pages 809–820, 2013.

[18] S. Zhang and Y. Sun. Automatically synthesizing SQL
queries from input-output examples. In ASE, 2013.

2856

https://www.youtube.com/watch?v=ZJQcoWw-l14
https://squares-sql.github.io/

	Introduction
	SQUARES
	Demonstrations
	Related Systems
	Conclusion
	Acknowledgments
	References

